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Abstract— A 3D pendulum implemented using a triaxial air
bearing system is proposed for Earth-based testing of orbiting
spacecraft attitude dynamics and closed loop systems. This
proposal is based on prior research on attitude dynamics and
control of orbiting spacecraft, attitude dynamics and control
of the 3D pendulum, and an experimental implementation of
the 3D pendulum in our laboratory, referred to as the Triaxial
Attitude Control Testbed (TACT). These research themes are
integrated to assess the strengths and weaknesses of such an
Earth-based testbed for spacecraft attitude dynamics and con-
trol hardware and software components. Several different cases,
based on the importance of orbital effects and gravitational
effects, are analyzed.

I. INTRODUCTION

Spacecraft attitude dynamics and control has been a
widely studied topic over the past several decades. Ever
improving technology leads the way for future vehicles
such as optical telescopes, space-based interferometry, and
formation flight, capable of highly complex missions.

Design of such spacecraft attitude systems leaves
engineers with a choice between Earth-based testing where
gravity plays a dominant role and expensive space-based
testing where problems could result in mission failure. This
is especially important for small organizations that do not
have the resources to carry out extensive analytical studies.
Space vehicles can be assured to meet attitude mission
requirements if suitable Earth-based testing is a part of the
design process.

There are few test methods that simulate a space-like
environment on Earth. Hardware-in-the-loop and software-
in-the-loop methods allow testing of hardware and software
components based on computer simulation of the spacecraft
attitude dynamics and the space environment. These
methods are valuable in testing the component input-output
properties, but they are strongly dependent on the attitude
models used in the simulation, and they typically do not
expose the hardware or software components to the rotational
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dynamics environment experienced by an orbiting spacecraft.

The proposed methodology provides a physical Earth-
based alternative to testing hardware and software
components that are part of spacecraft attitude dynamics
and control systems. This methodology is based on a triaxial
attitude control testbed that is a physical implementation
of a 3D pendulum using a spherical air bearing. Although
air bearing rotational system have their limitations, they
do allow the testing of spacecraft hardware and software
in a low-torque environment similar to space. Air bearing
systems offer a financially viable option for Earth-based
testing of advanced spacecraft dynamics and control
components.

Several air bearing testbeds are in use today, both in
educational institutions and in government and industry
laboratories. A historical survey of air bearing simulators
is provided in [1], with a more in-depth look at various
testbeds in [2], [3], [4], [5]. These systems represent only a
fraction of the air bearing systems being used today. Each
of the testbeds described in the literature shares a common
attribute; their center of mass is intended to be coincident
with their center of rotation. This attribute simulates a zero
or low gravity spacecraft environment, but it may not be
suitable when gravity gradient effects are significant, such
as for spacecraft in low Earth orbit (LEO).

At the University of Michigan’s Attitude Dynamics and
Control Laboratory, a Triaxial Attitude Control Testbed
(TACT) was developed in the late 1990’s to explore various
issues and concepts in spacecraft dynamics and control.
Following the notation in [1], the TACT is classified as
a dumbbell-type rotational air bearing system. The TACT
consists of a rotational platform, supported by a triaxial
air bearing, which allows nearly unrestricted three degrees
of rotational motion. The TACT is limited only in pitch
to ±45 deg, with both roll and yaw axes entirely free of
motion constraints. Control actuators and instrumentation
are mounted to the platform. Computer and communications



systems are available for data acquisition, test operations,
and post-test processing. This setup has been discussed
in detail in [6] with mathematical models given in [7]. A
picture of the TACT is provided in Figure 1.

Fig. 1. Triaxial Attitude Control Testbed (TACT)

In recent publications, the TACT has been viewed as
a physical implementation of a 3D pendulum [8], [9]. A
3D pendulum is a generalization of the classical planar
pendulum and the spherical pendulum with the mass center
not necessarily coincident with the pivot point. From the
very onset of the TACT research, it has been proposed
that the experimental testbed could be used for spacecraft
dynamics and control experiments. This paper treats these
issues and provides a summary of the conditions under
which a 3D pendulum experimental setup can be used for
Earth-based testing of hardware and software components
of the attitude dynamics and control systems of an orbiting
spacecraft.

The main contribution of this paper is the summary of an
experimental Earth-based methodology that allows, within
limits, the testing and evaluation of spacecraft attitude
dynamics and control hardware devices and related software
systems. One can test and evaluate different attitude control
actuators and sensors as well as other control hardware
and software instruments and components. For extended
mission requirements, the operational life times of these
components can be assessed. The operations of pointing,
tracking, and attitude stabilization of the spacecraft can
also be tested and evaluated in a controlled experimental
environment. This is based on several different results for
the rotational dynamics of orbiting spacecraft and for the
3D pendulum, as well as our prior experience with the TACT.

The presentation is divided into two parts based on the
importance of orbital and gravity gradient effects on the
attitude dynamics of a rigid spacecraft in a circular Earth
orbit. Orbital effects are important since the attitude of the
spacecraft in a circular orbit is conventionally defined with

respect to a uniformly rotating local vertical local horizontal
(LVLH) coordinate frame defined by the circular orbit. In
Earth orbit, the gravitational force is not uniform and there
is a gravity gradient moment about the spacecraft center of
mass [10]. Gravity gradient refers to the attitude dependent
potential arising from the differential gravitational force of
the Earth on the spacecraft. Gravity gradient effects are the
dominant environmental disturbance present in the altitude
range 400 − 40, 000km. Below this altitude, aerodynamic
drag is the most significant disturbance. These results are
summarized in Figure 2, where the gravity gradient moment
is shown for an attitude perturbation of 1 deg.

Fig. 2. Relative effects of various disturbance torques

II. TESTBED FOR SPACECRAFT ATTITUDE DYNAMICS
WITHOUT ORBITAL AND GRAVITY EFFECTS

In this section, we consider an orbiting spacecraft where
the rotation of the LVLH frame and the gravity gradient
moments are ignored; such an approximation is often jus-
tified in high Earth circular orbits (HEO). In this case, we
show that a balanced 3D pendulum, and a TACT experiment,
can be constructed whose attitude dynamics are identical
with the spacecraft attitude dynamics. The balanced 3D
pendulum requires that the center of mass be located at
the pivot. We present equations of motion for the attitude
dynamics of a spacecraft, ignoring orbital effects and gravity
gradient moments. We also present equations of motion for
the balanced 3D pendulum, or its physical implementation
as a TACT. The equations for the attitude dynamics of the
two systems are shown to be identical, thereby providing
the basis for use of the TACT as a testbed for the attitude
dynamics of an orbiting spacecraft.



A. On-Orbit Spacecraft Equations

Consider a rigid spacecraft in a high altitude circular orbit
about the Earth. We assume the spacecraft is in a sufficiently
high orbit that gravity gradient effects are negligible. First we
introduce some useful notation. The cross product operator,
denoted by â, is represented by a 3 × 3 skew-symmetric
matrix:

â = S(a)
4
=




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

Euler’s rotational equations of motion for an uncontrolled
rigid spacecraft viewed as a free rigid body [10], [11] are
given by

{
Jω̇ = Jω × ω,

Ṙ = Rω̂,
(1)

where ω ∈ R3 represents the angular velocity of the space-
craft, expressed in spacecraft-fixed coordinates with respect
to an inertial frame, R ∈ SO(3) represents the attitude of the
spacecraft with respect to an inertial coordinate frame, and
J is the inertia matrix of the spacecraft.

B. 3D Pendulum Equations

Now consider a 3D pendulum where the center of mass
of the pendulum is exactly located at the pivot. In this
case, there is no gravity moment on the pendulum and the
equations of motion are given by

{
Jω̇ = Jω × ω,

Ṙ = Rω̂,
(2)

where ω ∈ R3 represents the angular velocity of the pendu-
lum, R ∈ SO(3) represents the attitude of the pendulum with
respect to an inertial coordinate frame, and J is the inertia
matrix of the pendulum.

C. Comparison

It is clear from the above formulations that (1) and (2)
are identical systems of equations. If the moments of inertia
of the pendulum are selected to be identical to, or uniformly
scaled with, the moments of inertia of the spacecraft, then
the global attitude dynamics of the 3D pendulum exactly
represent the global attitude dynamics of the spacecraft.
This implies that it is relatively straightforward to use an
Earth-based triaxial attitude system to test flight software
and hardware for suitable spacecraft missions.

This has been the underlying basis for most air bearing
spacecraft attitude dynamics and control testbeds, past and
present. In practice, however, it is not a trivial task to align
the center of mass with the pivot. Much care must be taken
to reduce the center of mass offset as much as possible to
counteract any moments due to gravity.

III. TESTBED FOR SPACECRAFT ATTITUDE DYNAMICS
INCLUDING ORBITAL AND GRAVITY EFFECTS

In this section, we consider an orbiting spacecraft where
the orbital effects and gravity gradient moments are assumed
to be significant. The objective is to assess if there are 3D
pendulum attitude dynamics that approximate the orbiting
spacecraft attitude dynamics. This case is somewhat subtle.

We first present equations of motion for the attitude
dynamics of an orbiting spacecraft, including effects due
to rotation of the LVLH frame and including the gravity
gradient moment. We then summarize the relative equilibria
structure of the equations, and we give linear equations that
describe small perturbations from a relative equilibrium.
Next, we present equations of motion for the attitude
dynamics of the 3D pendulum assuming that the center
of mass is distinct from the pivot. The equilibria of the
3D pendulum are described and linear equations for small
perturbations from an equilibrium are given.

The nonlinear equations for the attitude dynamics of the
two systems are distinct with differing equilibria. We show
that, in certain cases, the linear approximations of the two
sets of equations are similar. In these cases, the linear
equations for attitude perturbations from an equilibrium of
the 3D pendulum can be viewed as an approximation of
the linear equations for attitude perturbations from a relative
equilibrium of an orbiting spacecraft. These observations
provide a conceptual basis for use of a 3D pendulum
experimental setup as a testbed for the attitude dynamics
of an orbiting spacecraft.

A. On-Orbit Spacecraft Equations

Consider a rigid spacecraft in a two-body circular orbit
about the Earth. We assume the spacecraft is in a sufficiently
low orbit such that rotation of the LVLH frame and the
gravity gradient moment are not negligible. Recall that
a LVLH right hand coordinate frame is attached to the
spacecraft center of mass with its first axis pointing in the
direction of the spacecraft orbital velocity vector and third
axis pointing towards the Earth’s center. The second axis is
mutually orthogonal to the first and third axes, normal to
the orbital plane. This rotating LVLH coordinate frame is
taken as the reference frame in defining the attitude of the
orbiting spacecraft.

The rotational equations of motion for a rigid spacecraft,
including gravity gradient moments [10], [11], are given by

{
Jω̇ = Jω × ω − 3ω2

0(JRTe3 ×RTe3),

Ṙ = Rω̂.
(3)

where, ω ∈ R3 represents the angular velocity of the
spacecraft, expressed in spacecraft-fixed coordinates with
respect to the LVLH frame, R ∈ SO(3) represents the attitude
of the spacecraft with respect to the LVLH coordinate frame,
J is the inertia matrix of the spacecraft, e2

4
= (0, 1, 0)T



and e3
4
= (0, 0, 1)T are unit vectors, and ω0 represents the

constant rotation rate of the LVLH reference frame with
respect to an inertial frame. This rotation rate is given by
ω0

4
=

√
GMe

a3 , where G = 6.672 × 10−11 m3 kg−1 s−2 is
the universal gravitational constant, Me = 5.9742× 1024 kg
is the mass of the Earth, and a represents the constant
orbital radius.

The conditions for a relative equilibrium are given by
a constant rotation matrix Re such that the principal axes
are aligned with the LVLH axes and the constant angular
velocity vector of the spacecraft is given by ω = ω0R

T
e e2.

Physically this means that a relative equilibrium corresponds
to exact alignment of the spacecraft-fixed axes with the
LVLH axes and a constant angular velocity about the axis
that is normal to the orbital plane with magnitude given by
the orbital angular rate.

It is convenient to assume that the spacecraft-fixed coor-
dinate axes are the principal axes of the spacecraft. Thus
the moment of inertia matrix is J

4
= diag(J1, J2, J3). The

nonlinear spacecraft attitude equations of motion can be
approximated, near a relative equilibrium, by linear equations

J∆Θ̈ + C∆Θ̇ + (K1 +K2)∆Θ = 0, (4)

where

C 4
=




0 0 ω0(J1 − J2 + J3)
0 0 0

−ω0(J1 − J2 + J3) 0 0


 ,

K1
4
=




3ω2
0(J2 − J3) 0 0

0 3ω2
0(J1 − J3) 0

0 0 0


 ,

K2
4
=




ω2
0(J2 − J3) 0 0

0 0 0
0 0 ω2

0(J2 − J1)


 ,

and ∆Θ
4
= [θ1 θ2 θ3]T are 3-2-1 Euler angles that

describe small angle perturbations from the relative
equilibrium. The terms in the symmetric matrix K1 arise
from the gravity gradient moment. The terms in the skew-
symmetric matrix C and the symmetric matrix K2 arise as a
consequence of the uniform rotation of the LVLH frame at
the orbital angular rate about the axis normal to the orbital
plane.

Conditions for local stability of a relative equilibrium
depend on the values of the three moments of inertia. These
stability conditions are summarized in [10], [11]. Some of
the 24 distinct relative equilibrium solutions are stable in the
sense of Lyapunov according to the above linear equations;
other relative equilibrium solutions are unstable.

B. 3D Pendulum Equations

Now consider a 3D pendulum where the center of mass
is not located at the pivot. The dynamics and kinematics

equations of motion for the 3D pendulum, introduced in [7]
and [8], are

{
Jω̇ = Jω × ω + mgρ×RTe3,

Ṙ = Rω̂,
(5)

where ω ∈ R3 represents the angular velocity of the
pendulum, expressed in body-fixed coordinates, and
R ∈ SO(3) represents the attitude of the pendulum with
respect to an inertial coordinate frame. Here, J is the inertia
matrix of the rigid 3D pendulum, m is its total mass, ρ is
the constant vector from the pivot to the center of mass in
the pendulum-fixed coordinate frame, and g = 9.81 m s−2

is the constant acceleration of gravity at Earth’s surface.

Equilibrium solutions for a 3D pendulum satisfy ω = 0,
and 0 = mgρ × RTe3. Therefore, it is seen that an
equilibrium solution occurs when the center of mass vector
ρ is co-linear with the gravity vector RTe3. If the center of
mass vector is in the same direction as the gravity vector,
we obtain a 1D hanging equilibrium manifold, with the
center of mass located below the pivot. If the center of mass
vector is in the opposite direction to the gravity vector, we
obtain a 1D inverted equilibrium manifold, with the center
of mass located above the pivot.

It is convenient to assume that the pendulum-fixed coordi-
nate axes are the principal axes of the rigid pendulum. Thus
the moment of inertia matrix is J

4
= diag(J1, J2, J3). We

further assume that the center of mass lies along the third
principal axis. Using 3-2-1 Euler angles to describe small
angle perturbations from an equilibrium, the nonlinear 3D
pendulum attitude equations of motion can be approximated
by linear equations

J∆Θ̈ +K∆Θ = 0. (6)

For perturbations from a hanging equilibrium

K 4
=




mg‖ρ‖ 0 0
0 mg‖ρ‖ 0
0 0 0


 ,

and for perturbations from an inverted equilibrium

K 4
=



−mg‖ρ‖ 0 0

0 −mg‖ρ‖ 0
0 0 0


 .

C. Comparison

It is clear from the above formulations that (3) and (5)
describe different sets of nonlinear equations. In fact, the
attitude dynamics of the orbiting spacecraft and the attitude
dynamics of the 3D pendulum have fundamentally different
global properties, including different equilibria structures.
The spacecraft attitude dynamics has 24 distinct relative
equilibrium solutions, while the angular momentum of the
3D pendulum about the vertical axis is conserved and the
3D pendulum has a 1D manifold of hanging equilibria and



a 1D manifold of inverted equilibria. This suggests that the
3D pendulum can not be used to represent the exact attitude
dynamics of an orbiting spacecraft, at least when orbital
rotation effects and gravity gradient moments are included.
However, if we examine the linear equations, we see that
the linear attitude dynamics of the orbiting spacecraft and
the linear attitude dynamics of the 3D pendulum are similar
in some respects.

For additional insight, assume that the spacecraft is an
axially symmetric rigid body. The linear equations for the
spacecraft attitude perturbation dynamics near a relative
equilibrium for which the axis of symmetry is along the local
vertical LVLH axis are considered. In this case, J1 = J2,
which we denote by the transverse moment of inertia Jt. We
denote the axial moment of inertia by J3 = Ja. In this case
the linear perturbation equations for the spacecraft are

J∆Θ̈ + C∆Θ̇ + (K1 +K2)∆Θ = 0, (7)

where

C 4
=




0 0 ω0Ja

0 0 0
−ω0Ja 0 0


 ,

K1
4
=




3ω2
0(Jt − Ja) 0 0

0 3ω2
0(Jt − Ja) 0

0 0 0


 ,

K2
4
=




ω2
0(Jt − Ja) 0 0

0 0 0
0 0 0


 .

As shown previously, the terms in the symmetric matrix K1

arise from the gravity gradient moment while the terms in
the skew-symmetric matrix C and the symmetric matrix K2

arise as a consequence of the uniform rotation of the LVLH
frame at the orbital angular rate about the axis normal to
the orbital plane.

Even if the orbital rotation effects are not ignored, these
linear equations for the orbiting spacecraft attitude dynamics
have two zero eigenvalues, which is consistent with the fact
that the angular momentum about the vertical axis of the
3D pendulum is conserved. In this respect, the local attitude
dynamics of the orbiting axially symmetric spacecraft are
captured by the local attitude dynamics of the 3D pendulum.

Further, if the inequality Jt > Ja, then the relative
equilibrium of the attitude dynamics of the orbiting
spacecraft has local properties that are reflected by any
hanging equilibrium of the 3D pendulum. This is a
physically meaningful case in which the TACT can provide
a testbed for the attitude dynamics of an orbiting spacecraft.
If the inequality Jt < Ja, then the relative equilibrium
of the attitude dynamics of the orbiting spacecraft has
unstable local properties that are reflected by any inverted
equilibrium of the 3D pendulum. Test operations in such an

unstable situation are not usually important.

Although the linearized attitude dynamics of an axisym-
metric orbiting spacecraft and the linearized attitude dy-
namics of the 3D pendulum are not identical, they differ
only in the terms that arise due to the rotation of the
LVLH frame. In different words, the attitude dynamics of
the 3D pendulum are identical to the attitude dynamics of
the axisymmetric orbiting spacecraft if the rotation of the
LVLH frame is ignored. This makes clear in what sense the
3D pendulum attitude dynamics and the orbiting spacecraft
attitude dynamics are related. This property is perhaps not
surprising since the attitude dynamics of the spacecraft are
expressed in a rotating frame, while the attitude dynamics
of the 3D pendulum are expressed in a non-rotating, inertial
frame.

IV. TESTBED FOR SPACECRAFT CLOSED LOOP
ATTITUDE DYNAMICS

The prior discussion has focused on use of the TACT, or
any physical implementation of the 3D pendulum, to test
hardware or software components of a rigid spacecraft in a
circular orbit operating in open loop. The objective is that
the 3D pendulum attitude dynamics represent the attitude
dynamics of the spacecraft in a circular orbit. As described
in Sections II and III, this test objective can be realized, at
least with some qualifications.

As noted in Section II, the balanced model of the TACT
has the same global dynamics as the orbiting spacecraft
model, if one excludes gravity-gradient and orbital effects.
Thus, a balanced TACT can be used as an experimental
testbed to study attitude dynamics and tracking control
problems. Such studies have been carried out, and adaptive
controllers for angular velocity tracking and identification
have been implemented on the TACT for the orbiting
spacecraft model excluding gravity-gradient and orbital
effects [12].

For the spacecraft model given in Section III, we observe
that one can test hardware and software components using
a physical implementation of the 3D pendulum such as the
TACT, operating in closed loop based on feedback control
of the spacecraft attitude dynamics. It should be clear that
this is achieved if the feedback controller proposed for the
spacecraft attitude dynamics is suitably realized in hardware
and software on the testbed. Most spacecraft control
actuators and sensors are rigidly mounted on the spacecraft;
in terms of the TACT, these actuators and sensors, and the
associated flight control hardware and software, should be
rigidly mounted on the TACT in a consistent way. In this
fashion, the closed loop attitude dynamics of the spacecraft
in orbit are represented by the closed loop attitude dynamics
of the 3D pendulum experimental setup.

Closed-loop attitude control experimental results for the
TACT are presented in [9], and an attitude control strategy



for an orbiting satellite including orbital effects and gravity
gradient effects is given in [13].

V. ADDITIONAL COMMENTS

Even if the spacecraft orbit rotation effects are ignored, it
may not be possible to construct a 3D pendulum testbed that
exactly reproduces the resulting attitude dynamics of the
orbiting spacecraft. In particular, important scaling issues
arise in selecting the mass, moment of inertia, and the vector
ρ from the pivot to the center of mass of the 3D pendulum.
If the mass and moment of inertia of the 3D pendulum are
selected to be identical to the those of the rigid spacecraft,
then the vector ρ is necessarily small. In practice, it is not
possible to modify the mass distribution of the TACT to
achieve a precisely specified vector ρ with small magnitude
in a specified direction. Small mass elements can be added
to the TACT to achieve the desired result, but this is a very
delicate and difficult calibration problem.

Such careful TACT design and calibration may not be
necessary for most spacecraft testing purposes. The testing
objective is likely to require a dynamic attitude environment
that, only approximately, reproduces the attitude dynamics
of the orbiting spacecraft near a stable relative equilibrium.
In this sense, any small imbalance corresponding to
a small magnitude for the vector ρ implies that the
attitude dynamics of the TACT near a hanging equilibrium
approximates the attitude dynamics of an orbiting spacecraft
near a stable relative equilibrium for some unknown orbit.
In this sense, testing for robustness simply requires that
a set of tests be performed for a variety of TACT imbalances.

A more involved testing methodology could combine the
physical testing approach described here with the more
traditional hardware-in-the-loop approach. This could be
accomplished using additional feedback loops whose purpose
is to modify the TACT attitude dynamics so that they more
accurately reflect the orbiting spacecraft attitude dynamics.
This approach could be used to incorporate the rotation
effects of the LVLH frame, that may otherwise not be
captured in a TACT test, and it could be used to provide
a global representation of the gravity gradient moments. Of
course, the addition of these feedback loops would add extra
complexity and cost to the experimental set up.

VI. CONCLUDING REMARKS

Air bearing systems can provide the basis for Earth-based
testing and evaluation of technology for spacecraft attitude
dynamics and control systems. A triaxial air bearing testbed
offers flexibility in carrying out experimental testing of
pointing, tracking, and attitude stabilization systems for
orbiting spacecraft.

Attitude dynamics and control hardware, such as actuators
and sensors, and the control software intended for operation
in the space environment, can be assessed in an Earth-based
experimental test. This methodology provides a means

for studying issues such as control power-on, control
power-off, normal control operation, robustness to variations
in spacecraft mass, moment of inertia, location of center
of mass, orbital parameters, non-rigid body effects due to
spacecraft flexibility or fuel slosh, control failure analysis,
and reliability of control actuators, control sensors, and
control software.

In some cases, exact spacecraft attitude dynamics can be
reproduced by a 3D pendulum experimental setup. In other
cases it may not be possible to reproduce the exact attitude
dynamics of the spacecraft, but the testbed may provide a
suitable approximation to the spacecraft attitude dynamics
for testing purposes.
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