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Abstract
We advocate the use of Gaussian Process Dynamical

Models (GPDMs) for learning human pose and motion pri-

ors for 3D people tracking. A GPDM provides a low-

dimensional embedding of human motion data, with a den-

sity function that gives higher probability to poses and

motions close to the training data. With Bayesian model

averaging a GPDM can be learned from relatively small

amounts of data, and it generalizes gracefully to motions

outside the training set. Here we modify the GPDM to per-

mit learning from motions with significant stylistic varia-

tion. The resulting priors are effective for tracking a range

of human walking styles, despite weak and noisy image

measurements and significant occlusions.

1. Introduction

Prior models of pose and motion play a central role in

3D monocular people tracking, mitigating problems caused

by ambiguities, occlusions, and image measurement noise.

While powerful models of 3D human pose are emerging,

sophisticated motion models remain rare. Most state-of-

the-art approaches rely on linear-Gaussian Markov models

which do not capture the complexities of human dynam-

ics. Learning richer models is challenging because of the

high-dimensional variability of human pose, the nonlinear-

ity of human dynamics, and the relative difficulty of acquir-

ing large amounts of training data.

This paper shows that effective models for people track-

ing can be learned using the Gaussian Process Dynamical

Model (GPDM) [22], even when modest amounts of train-

ing data are available. The GPDM is a latent variable model

with a nonlinear probabilistic mapping from latent positions
✁

to human poses ✂ , and a nonlinear dynamical mapping on

the latent space. It provides a continuous density function

over poses and motions that is generally non-Gaussian and

multimodal. Given training sequences, one simultaneously

learns the latent embedding, the latent dynamics, and the

pose reconstruction mapping. Bayesian model averaging is

✄
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used lessen problems of over-fitting and under-fitting that

are otherwise problematic with small training sets [10, 12].

We propose a form of GPDM, the balanced GPDM, for

learning smooth models from training motions with stylis-

tic diversity, and show that they are effective for monocular

people tracking. We formulate the tracking problem as a

MAP estimator on short pose sequences in a sliding tem-

poral window. Estimates are obtained with deterministic

optimization, and look remarkably good despite very noisy,

missing or erroneous image data and significant occlusions.

2. Related Work

The dynamical models used in many tracking algorithms

are weak. Most models are linear with Gaussian pro-

cess noise, including simple first- and second-order Markov

models [3, 9], and auto-regressive (AR) models [14]. Such

models are often suitable for low-dimensional problems,

and admit closed-form analysis, but they apply to a re-

stricted class of systems. For high-dimensional data, the

number of parameters that must be manually specified or

learned for AR models is untenable. When used for peo-

ple tracking they usually include large amounts of process

noise, and thereby provide very weak temporal predictions.

Switching LDS and hybrid dynamics provide much

richer classes of temporal behaviors [8, 14, 15]. Never-

theless, they are computationally challenging to learn, and

require large amounts of training data, especially as the di-

mension of the state space grows. Non-parametric models

can also handle complex motions, but they also require very

large amounts of training data [11, 17]. Further, they do

not produce a density function. Howe et al [7] use mixture

model density estimation to learn a distribution of short se-

quences of poses. Again, with such high-dimensional data,

density estimation will have problems of under- and over-

fitting unless one has vast amounts of training data.

One way to cope with high-dimensional data is to learn

low-dimensional latent variable models. The simplest case

involves a linear subspace projection with an AR dynamical

process. In [2, 4] a subspace is first identified using PCA,

afterwhich a subspace AR model is learned. Linear models

are tractable, but they often lack the ability to capture the

complexities of human pose and motion.
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Richer parameterizations of human pose and motion

can be found through nonlinear dimensionality reduction

[5, 16, 18, 21]. Geometrical methods such as Isomap and

LLE learn such embeddings, yielding mappings from the

pose space to the latent space. But they do not provide

a probabilistic density model over poses, a mapping back

from pose space to latent space, nor a dynamical model.

Thus one requires additional steps to construct an effec-

tive model. For example, Sminchisescu and Jepson [18] use

spectral embedding, then a Gaussian mixture to model the

latent density, an RBF mapping to reconstruct poses from

latent positions, and a hand-specified first-order, linear dy-

namical model. Agarwal and Triggs [1] learn a mapping

from silhouettes to poses using relevance vector machines,

and then a second-order AR dynamical model.

Rahimi et al [16] learn an embedding through a nonlinear

RBF regression with an AR dynamical model to encourage

smoothness in the latent space. Our approach is similar in

spirit, as this is a natural way to produce well-behaved la-

tent mappings for time-series data. However, our model is

probabilistic and allows for nonlinear dynamics.

We use a form of probabilistic dimensionality reduc-

tion similar in spirit to the Gaussian Process latent variable

model (GPLVM) [10]. The GPLVM has been used to con-

strain human poses during interactive animation [6], as a

prior for 2D upperbody pose estimation [19], and as a prior

for 3D monocular people tracking [20]. While powerful,

the GPLVM is a static model; it has no intrinsic dynam-

ics and does not produce smooth latent paths from smooth

time-series data. Thus, even with an additional dynamical

model, our GPLVM-based people tracker often fails due to

anomalous jumps in the latent space and to occlusions [20].

3. Gaussian Process Dynamical Model

The GPDM is a latent variable dynamical model, com-

prising a low-dimensional latent space, a probabilistic map-

ping from the latent space to the pose space, and a dynam-

ical model in the latent space [22]. The GPDM is derived

from a generative model for zero-mean poses ✂✁�✄✂✆☎✆✝ and

latent positions
✁ �✞✂✟☎✡✠ , at time ☛ , of the form

✁ �✌☞ ✍✏✎✒✑ ✎✔✓✕✎✗✖ ✁ �✙✘✛✚✢✜✛✣✥✤✧✦✩★ � (1)

✂✔� ☞ ✍✩✪✬✫ ✪✞✭✮✪✯✖ ✁ � ✜✛✣✰✤✧✱ ★ � (2)

for weights ✲ ☞✴✳ ✑ ✚✶✵ ✑✏✷ ✵✹✸✺✸✻✸ ✼ and ✽ ☞✾✳ ✫ ✚✿✵ ✫✧✷ ✵✢✸✻✸✺✸ ✼ , basis

functions

✓ ✎
and

✭✮✪
, and additive zero-mean white Gaussian

noise ✤ ✦❀★ � and ✤✧✱ ★ � . For linear basis functions, (1) and (2)

represent the common subspace AR model (e.g., [4]). With

nonlinear basis functions, the model is significantly richer.

In conventional regression (e.g., with AR models) one

fixes the number of basis functions and then fits the model

parameters, ✲ and ✽ . From a Bayesian perspective,

✲ and ✽ are nuisance parameters and should therefore

be marginalized out through model averaging. With an

isotropic Gaussian prior on each
✫ ✪

, one can marginalize

over ✽ in closed form [12, 13] to yield a multivariate Gaus-

sian data likelihood of the form❁ ✖❃❂❅❄❇❆ ✵✏❈❉ ✜❊☞❄ ❋●❄ ❍■ ✖❑❏✩▲ ✜ ❍ ✝ ❄ ▼❖◆P❄ ✝❘◗✢❙❯❚
❱✔❲❨❳❏❬❩❪❭✞❫ ▼ ✘✛✚◆ ❂✆❋ ✷ ❂❨❴✧❵✢❛

(3)

where

❂ ☞✬✳ ✂✮✚✩✵✢✸✻✸✻✸✺✵ ✂

❍ ✼ ❴ is a matrix of training poses,

❆ ☞✳ ✁ ✚✩✵✢✸✻✸✻✸✺✵ ✁
❍ ✼ ❴ contains the associated latent positions, and

▼❖◆
is a kernel matrix. The elements of kernel matrix are

defined by a kernel function,

✖❃▼❜◆ ✜ ✎ ★ ✪ ☞❞❝ ◆P✖ ✁

✎ ✵ ✁

✪ ✜ , which

we take to be a common radial basis function (RBF) [12]:

❝ ◆ ✖ ✁ ✵ ✁✛❡ ✜❊☞ ❉ ✚ ◗✢❙❢❚
❱✛❲ ❉ ✷❏ ❄✻❄

✁
❲

✁✛❡ ❄✺❄ ✷ ❛ ✣❤❣❥✐ ★ ✐✩❦❉✕❧ ✸ (4)

The scaling matrix

❋ ♠♦♥❯♣rq✩s❬✖✉t ✚ ✵✹✸✺✸✻✸✺✵ t ✝ ✜ is used to ac-

count for the different variances in the different data di-

mensions; this is equivalent to a Gaussian Process (GP)

with kernel function ❝ ✖ ✁ ✵ ✁ ❡ ✜❪✈ t ✷✇ for dimension ① . Finally,❈❉ ☞③② ❉ ✚ ✵ ❉ ✷ ✵✢✸✻✸✺✸✻✵ ❋⑤④ comprises the kernel hyperparameters

that control the output variance, the RBF support width, and

the variance of the additive noise ✤ ✱ ★ � .
The latent dynamics are similar; i.e., we form the joint

density over latent positions and weights, ✲ , and then we

marginalize out ✲ [22]. With an isotropic Gaussian prior

on the
✑ ✎

, the density over latent trajectories reduces to❁ ✖❑❆❤❄ ❈⑥ ✜❊☞ ❁ ✖ ✁ ✚✹✜■ ✖❑❏✶▲ ✜⑧⑦ ❍ ✘✔✚❇⑨ ✠ ❄ ▼❨⑩❶❄ ✠ ◗❥❙❯❚
❱ ❲❨❳❏❷❩❪❭ ❫ ▼ ✘✔✚⑩ ❆❊❸❇❹✿❺❻❆✆❴ ❸❇❹✿❺ ❵✢❛

(5)

where

❆❜❸❇❹❼❺ ☞✬✳ ✁ ✷ ✵✹✸✺✸✻✸✻✵ ✁
❍ ✼ ❴ ,

▼❨⑩
is the

✖❑❽ ❲ ❳ ✜✄❾ ✖❑❽ ❲ ❳ ✜
kernel matrix constructed from

❆❨❿➁➀ ☞➂✳ ✁ ✚ ✵✢✸✻✸✺✸✻✵ ✁
❍ ✘✔✚ ✼ , and

✁ ✚ is given an isotropic Gaussian prior. For dynamics the

GPDM uses a “linear + RBF” kernel, with parameters ⑥ ✎ :
❝ ⑩➃✖ ✁ ✵ ✁✛❡ ✜➄☞ ⑥ ✚ ◗❥❙❯❚

❱ ❲ ⑥ ✷❏ ❄✻❄
✁
❲

✁✛❡ ❄✻❄ ✷ ❛ ✣ ⑥ ❧ ✁

❴
✁✛❡ ✣ ❣ ✐ ★ ✐ ❦⑥✮➅

The linear term is useful for motion subsequences that are

approximately linear.

While the GPDM is defined above for a single input se-

quence, it is easily extended to multiple sequences ② ❂✡✪✶④ .
One simply concatenates all the input sequences, ignoring

temporal transitions from the end of one sequence to the

beginning of the next. Each input sequence is then associ-

ated with a separate sequence of latent positions, ② ❆ ✪ ④ , all

within a shared latent space. Accordingly, in what follows,

let

❂ ☞✾✳ ❂ ❴✚ ✵✢✸✻✸✺✸✻✵ ❂ ❴➆ ✼ ❴ be the ➇ training motions. Let
❆

denote the associated latent positions, and for the defini-

tion of (5) let

❆❜❸❇❹✿❺
comprise all but the first latent position

for each sequence. Let

▼❖⑩
be the kernel matrix computed

from all but the last latent position of each sequence.



3.1. Learning

Learning the GPDM entails estimating the latent posi-

tions and the kernel hyperparameters. Following [22] we

adopt simple prior distributions over the hyperparameters,

i.e.,
❁ ✖ ❈⑥ ✜✁� ✂ ✎ ⑥ ✘✔✚✎

, and
❁ ✖ ❈❉ ✜✁� ✂ ✎ ❉ ✘✛✚✎

,1 with which

the GPDM posterior becomes❁ ✖❃❆ ✵ ❈⑥ ✵✏❈❉
❄ ❂ ✜✄� ❁ ✖✉❂ ❄ ❆ ✵❯❈❉ ✜ ❁ ✖❃❆ ❄

❈⑥ ✜ ❁
✖
❈⑥ ✜ ❁

✖ ❈❉ ✜ ✸ (7)

The latent positions and hyperparameters are found by min-

imizing the negative log posterior

☎ ☞ ✆ ❏✞✝✠✟ ❄ ▼❨⑩❶❄ ✣ ❳❏❬❩✗❭✞❫ ▼ ✘✔✚⑩ ❆❊❸❇❹❼❺ ❆✆❴ ❸❇❹✿❺ ❵
❲ ❽ ✝✠✟ ❄ ❋●❄ ✣ ✡ ❏ ✝✠✟ ❄ ▼❖◆ ❄ ✣ ❳❏ ❩✗❭ ❫ ▼ ✘✔✚◆ ❂✆❋ ✷ ❂ ❴ ❵
✣ ✍ ✎ ✝☛✟ ⑥ ✎ ✣ ✍ ✎ ✝☛✟ ❉ ✎ ✣✌☞ ✵ (8)

where ☞ is a constant. The first two terms come from the

log dynamics density (5), and the next three terms come

from the log reconstruction density (3).

Over-Fitting: While the GPDM has advantages over the

GPLVM, usually producing much smoother latent trajecto-

ries it can still produce large gaps between the latent posi-

tions of consecutive poses; e.g., Fig. 1 shows a GPLVM and

a GPDM learned from the same golf swing data (large gaps

are shown with red arrows). Such problems tend to occur

when the training set includes a relatively large number of

individual motions (e.g., from different people or from the

same person performing an activity multiple times). The

problem arises because of the large number of unknown la-

tent coordinates and the fact that uncertainty in latent posi-

tions is not modeled. In practical terms, the GPDM learning

estimates the latent positions by simultaneously minimiz-

ing squared reconstruction errors in pose space and squared

temporal prediction errors in the latent space. In Fig. 1 the

pose space is 80D and the latent space is 3D, so it is not sur-

prising that the errors in pose reconstruction dominate the

objective function, and thus the latent positions.

3.2. Balanced GPDM:

Ideally one should marginalize out the latent positions to

learn hyperparameters, but this is expensive computation-

ally. Instead, we propose a simple but effective GPDM

modification to balance the influence of the dynamics and

the pose reconstruction in learning. That is, we discount

the differences in the pose and latent space dimensions in

the two regressions by raising the dynamics density func-

tion in (7) to the ratio of their dimensions, i.e., ✍ ☞ ✡ ✈ ✆ ;

1Such priors prefer small output scale (i.e., ✎✑✏✓✒✔✎✖✕✗✒✔✘✙✏ ), large RBF sup-

port (i.e., small ✎✛✚✗✒✜✘✢✚ ), and large noise variances (i.e., small ✎✑✣ ✏✤ ✒✥✘✦✣ ✏✕ ).

The fact that the priors are improper is insignificant for optimization.

(a) (b)

(c) (d)

Figure 1. Golf Swing: (a) GPLVM, (b) GPDM and (c) balanced

GPDM learned from 9 different golf swings performed by the

same subject. (d) Volumetric visualization of reconstruction vari-

ance; warmer colors (i.e., red) depict lower variance.

for learning this rescales the first two terms in (8) to be

✍
❱ ✆ ❏ ✝☛✟ ❄ ▼ ⑩ ❄ ✣ ❳❏ ❩✗❭ ❫ ▼ ✘✔✚⑩ ❆ ❸❇❹❼❺ ❆ ❴ ❸❇❹✿❺ ❵✢❛ ✸ (9)

The resulting models are easily learned and very effective.

3.3. Model Results

Figures 1–4 show models learned from motion capture

data. In each case, before minimizing
☎

, the mean pose,✧
, was subtracted from the input pose data, and PCA or

Isomap were used to obtain an initial latent embedding of

the desired dimension. We typically use a 3D latent space

as this is the smallest dimension for which we can robustly

learn complex motions with stylistic variability. The hyper-

parameters were initially set to one. The negative log pos-

terior
☎

was minimized using Scaled Conjugate Gradient.

Golf Swing: Fig. 1 shows models learned from 9 golf

swings from one subject (from the CMU database). The

body pose was parameterized with 80 joint angles, and

the sequence lengths varied by 15 percent. The balanced

GPDM (Fig. 1(c)) produces smoother latent trajectories,

and hence a more reliable dynamic model, than the orig-

inal GPDM. Fig. 1(d) shows a volume visualization of the

log variance of the reconstruction mapping,

❏ ✝☛✟✩★✦✪✦✫ ✐ ★ ✬ ★ ✭ ★✯✮✰ ,

as a function of latent position. Warmer colors correspond

to lower variances, and thus to latent positions to which the

model assigns higher probability; this shows the model’s

preference for poses close to the training data.

Walking: Figs 2 and 3 show models learned from one gait

cycle from each of 6 subjects walking at the same speed on a



(a) (b)

Figure 2. Walking GPLVM: Learned from 1 gait cycle from each

of 6 subjects. Plots show side and top views of the 3D latent space.

Circles and arrows denote latent positions and temporal sequence.

(a) (b)

(c) (d)

Figure 3. Walking GPDM: Balanced GPDM learned from 1 gait

cycle from 6 subjects. (a,b) Side and top views of 3D latent space.

(c) Volumetric visualization of reconstruction variance. (d) Green

trajectories are fair samples from the dynamics model.

treadmill. For each subject the first pose is replicated at the

end of the sequence to encourage cyclical paths in the latent

space. The body was parameterized with 20 joint angles.

With the treadmill we do not have global position data, and

hence we cannot learn the coupling between the joint angle

times series and global translational velocity.

Fig. 2 shows the large jumps in adjacent poses in the la-

tent trajectories obtained with a GPLVM. By comparison,

Fig. 3 (a,b) show the smooth, clustered latent trajectories

learned from the training data. Fig. 3(c) shows a volume

visualization of the log reconstruction variance. Fig. 3(d)

helps to illustrate the model dynamics by plotting 20 latent

trajectories drawn at random from the dynamical model.

The trajectories are smooth and close to the training data.

Figure 4. Speed Variation: 2D models learned for 2 different sub-

jects. Each one walking at 9 speeds ranging from 3 to 7 km/h. Red

points are latent positions of training poses. Intensity is propor-

tional to � ✁✄✂✆☎✞✝✠✟☛✡ ☞✍✌ ✎✏✌ ✑✒✌✔✓✕ , so brighter regions have smaller pose

reconstruction variance. The subject on the left is healthy while

that on the right has a knee pathology and walks asymmetrically.

Speed Variation: Fig. 4 shows 2D GPDMs learned from

two subjects, each of which walked four gait cycles at each

of 9 speeds between 3 and 7km/h (equispaced). The learned

latent trajectories are approximately circular, and organized

by speed; the innermost and outermost trajectories corre-

spond to the slowest and fastest speeds respectively. Inter-

estingly, the subject on the left is healthy while the subject

on right has a knee pathology. As the treadmill speed in-

creases, the side of the body with the pathology performs

the motion at slower speeds to avoid pain, and so the other

side of the gait cycle must speed up to maintain the speed.

This explains the anisotropy of the latent space.

3.4. Prior over New Motions

The GPDM also defines a smooth probability density

over new motions

✖❃❂ ❡ ✵ ❆ ❡ ✜ . That is, just as we did with

multiple sequences above, we write the joint density over

the concatenation of the sequences. The conditional density

of the new sequence is proportional to the joint density, but

with the training data and latent positions held fixed:❁ ✖❑❆ ❡ ✵ ❂ ❡ ❄❼❆ ✵ ❂ ✵ ❈⑥ ✵ ❈❉ ✜ � ❁ ✖ ✳ ❆ ✵ ❆ ❡ ✼✙✵ ✳ ❂ ✵ ❂ ❡ ✼ ❄ ❈⑥ ✵ ❈❉ ✜ (10)

This density can also be factored to provide:❁ ✖❃❂ ❡ ❄❼❆ ❡ ✵ ❆ ✵ ❂ ✵ ❈❉ ✜ ❁ ✖❑❆ ❡ ❄❼❆ ✵ ❈⑥ ✜ ✸ (11)

For tracking we are typically given an initial state ✁ ❡✖ , so

instead of (11), we have❁ ✖✉❂ ❡ ❄❼❆ ❡ ✵ ❆ ✵ ❂ ✵ ❈❉ ✜ ❁ ✖❃❆ ❡ ❄✢❆ ✵ ❈⑥ ✵ ✁ ❡✖ ✜ ✸ (12)

4. Tracking

Our tracking formulation is based on a state-space

model, with a GPDM prior over pose and motion. The state

at time ☛ is defined as

✓ � ☞❅✳✘✗ �✗✵ ✂✔�⑧✵ ✁ �❻✼ , where ✗ � denotes

the global position and orientation of the body, ✂✮� denotes

the articulated joint angles, and
✁ � is a latent position. The

goal is to estimate a state sequence,

✓ ✚✚✙ ❴ ♠ ✖❻✓ ✚✩✵✢✸✻✸✻✸✺✵ ✓ ❴ ✜ ,
given an image sequence, ✛ ✚✚✙ ❴ ♠✬✖

✛ ✚ ✵✹✸✺✸✻✸✻✵✜✛ ❴ ✜ , and a learned

GPDM, ✢
♠ ✖❑❆ ✵ ❂ ✵ ❈⑥ ✵ ❈❉ ✜ . Toward that end there are



two common approaches: Online methods infer

✓ � given

the observation history ✛ ✚✜✙ �✙✘✔✚ . The inference is causal, and

usually recursive, but suboptimal as it ignores future data.

Batch methods infer states

✓ � given all past, present and fu-

ture data, ✛❼✚✜✙ ❴ . Inference is optimal, but requires all future

images which is impossible in many tracking applications.

Here we propose a compromise that allows some use of

future data along with predictions from previous times. In

particular, at each time ☛ we form the posterior distribution

over a (noncausal) sequence of � ✣ ❳
states❁ ✖❑✓ � ✙ �✂✁☎✄

❄
✛✹✚✜✙ �✂✁☎✄ ✵ ✢ ✜❊☞✆ ❁ ✖ ✛⑧� ✙ �✂✁☎✄

❄❇✓ � ✙ �✂✁☎✄ ✜ ❁ ✖❑✓ � ✙ �✂✁☎✄
❄
✛❼✚✜✙ �✙✘✔✚✶✵ ✢ ✜ ✸ (13)

Inference of

✓ � is improved with the use of future data, but

at the cost of a small temporal delay.2 With a Markov chain

model one could use a forward-backward inference algo-

rithm [23] in which separate beliefs about each state from

past and future data are propagated forward and backward

in time. Here, instead we consider the posterior over the

entire window, without requiring the Markov factorization.

With the strength of the GPDM prior, we also assume

that we can use hill-climbing to find good state estimates

(i.e., MAP estimates). In effect, we assume a form of ap-

proximate recursive estimation:❁ ✖❑✓ � ✙ �✂✁☎✄
❄
✛ ✚✜✙ �✂✁☎✄ ✵ ✢ ✜✞✝✆✔❁ ✖ ✛ � ✙ �✂✁☎✄

❄❪✓ � ✙ �✂✁✟✄✯✜ ❁ ✖❑✓ � ✙ �✂✁☎✄
❄❪✓ ✠☛✡✌☞✚✜✙ �✙✘✔✚ ✵ ✢ ✜ (14)

where

✓ ✠✍✡✌☞✚✚✙ �✙✘✔✚ denotes the MAP estimate history. This has

the disadvantage that complete beliefs are not propagated

forward. But with the temporal window we still exploit data

over several frames, yielding smooth tracking.

At each time step we minimize the negative log poste-

rior over states from time ☛ to time ☛ ✣ � . At this minima we

obtain the approximate MAP estimate at time ☛ . The esti-

mate is approximate in two ways. First, we do not represent

and propagate uncertainty forward from time ☛ ❲ ❳
in (14).

Second, because previous MAP estimates are influenced by

future data, the information propagated forward is biased.

Image Likelihood: The current version of our 3D tracker

uses a simplistic observation model. That is, the image

observations are the approximate 2D image locations of a

small number (
✎

) of 3D body points (see Fig. 5). They were

obtained with the WSL image-based tracker [9].

While measurement errors in tracking are often corre-

lated over time, as is common we assume that image mea-

surements conditioned on states are independent; i.e.,

❁ ✖ ✛ � ✙ �✂✁☎✄
❄❇✓ � ✙ �✂✁☎✄✯✜❜☞ �✂✁☎✄✏ ✎

✑ � ❁
✖
✛
✎❬❄❇✓❬✎ ✜ ✸ (15)

2However an online estimate of ✒✔✓✖✕✘✗ would still be available at ✙✛✚✢✜ .

(a) (b) (c) (d) (e)
Figure 5. WSL Tracks: The 2D tracked regions for the different

tracked sequences (in yellow) are noisy and sometimes missing.

Further, we assume zero-mean Gaussian measurement

noise in the 2D image positions provided by the tracker. Let

the perspective projection of the ✣ �✥✤ body point, ✦
✪
, in pose

✓ � , be denoted ✧
✖
✦
✪ ✖❑✓ �❇✜❪✜ , and let the associated 2D image

measurement from the tracker be ★✩
✪
� . Then, the negative

log likelihood of the observations at time ☛ is❲ ✝✠✟ ❁ ✖ ✛ � ❄❪✓ �❇✜❊☞ ❳❏ ★ ✷✪
✫✍✪
✑ ✚

✬✬✬ ★✩
✪
� ❲ ✧

✖
✦
✪ ✖❻✓ �❇✜❪✜ ✬✬✬ ✷ ✸ (16)

Here we set

★ ✪ ☞ ❳✮✭
pixels, based on empirical results.

Prediction Distribution We factor the prediction density❁ ✖❻✓ � ✙ �✂✁☎✄
❄❇✓ ✠✍✡✌☞✚✜✙ �✙✘✛✚ ✵ ✢ ✜ into a prediction over global motion,

and one over poses ✂ and latent positions
✁

. The reason,

as discussed above, is that our training sequences did not

contain the global motion. So, we assume that❁ ✖❻✓ � ✙ �✂✁✟✄
❄❇✓ ✠✍✡✌☞✚✚✙ �✙✘✛✚ ✵ ✢ ✜❖☞❁ ✖❃❆ ❡ �⑧✵ ❂ ❡ � ❄ ✁ ✠✍✡✌☞�✙✘✔✚ ✵ ✢ ✜ ❁ ✖ ✗ � ✙ �✂✁☎✄

❄
✗ ✠✍✡✌☞�✙✘✛✚✜✙ �✙✘ ✷ ✜ ✵ (17)

where

❆ ❡ � ♠ ✁ � ✙ �✂✁✟✄ and

❂ ❡ � ♠ ✂ � ✙ �✂✁☎✄ .

For the global rotation and translation, ✗➄� , we assume a

second-order Gauss-Markov model. The negative log tran-

sition density is, up to an additive constant,❲ ✝✠✟ ❁ ✖ ✗ � ❄ ✗ ✠✍✡✌☞�✙✘✛✚✜✙ �✙✘ ✷ ✜❜☞
❄✺❄
✗✡� ❲ ★✗✡� ❄✻❄ ✷❏ ★ ✷✯ ✵ (18)

where the mean prediction is just ✰✗✡� ☞ ❏
✗ ✠✍✡✌☞�✙✘✔✚ ❲

✗ ✠✍✡✌☞�✙✘ ✷ .

For the prior over

❆ ❡ � , ❂ ❡ � , we approximate the GPDM

in two ways. First we assume that the density over the pose

sequence,
❁ ✖❃❂ ❡ � ❄❢❆ ❡ � ✵ ✢ ✜ , can be factored into the den-

sities over individual poses. This is convenient computa-

tionally since the GPDM density over a single pose, given a

latent position, is Gaussian [6, 20]. Thus we obtain❲ ✝☛✟ ❁ ✖✉❂ ❡ � ❄ ❆ ❡ � ✵✜✢ ✜✱✝
❲ �✂✁☎✄✍ ✪

✑ �
✝✠✟ ❁ ✖ ✂

✪ ❄
✁

✪ ✵✘✲❉ ✵ ❆ ✵ ❂ ✜
☞ �✂✁☎✄✍ ✪

✑ �
✳ ❋ ✖

✂

✪ ❲ ✧
◆P✖

✁

✪ ✜❪✜ ✳ ✷❏ ★ ✷ ✖
✁

✪ ✜ ✣ ✡ ❏ ✝✠✟ ★ ✷ ✖
✁

✪ ✜✁✣ ❳❏ ✳ ✁

✪ ✳ ✷
(19)

where the mean and variance are given by✧
◆P✖

✁ ✜ ☞ ✧ ✣ ❂❨❴✧▼ ✘✔✚◆✵✴ ◆ ✖
✁ ✜ ✵ (20)★ ✷ ✖

✁ ✜ ☞ ❝ ◆ ✖ ✁ ✵ ✁ ✜ ❲ ✴ ◆P✖
✁ ✜ ❴✧▼ ✘✔✚◆ ✴ ◆P✖

✁ ✜ ✵ (21)



Figure 6. Tracking 63 frames of a walking, with noisy and missing data. The skeleton of the recovered 3D model is projected onto the

images. The points tracked by WSL are shown in red.

and

✴ ◆ ✖
✁ ✜ is the vector with elements ❝ ◆ ✖ ✁ ✵ ✁

✪ ✜ for all

other latent positions
✁

✪
in the model.

Second, we anneal the dynamics
❁ ✖❃❆ ❡ � ❄ ✁ ✠✍✡✌☞�✙✘✔✚ ✵✜✢ ✜ , be-

cause the learned GPDM dynamics often differ in important

ways from the video motion. The most common problem

occurs when the walking speed in the video differs from the

training data. To accommodate this, we effectively blur the

dynamics; this is achieved by raising the dynamics density

to a small exponent, simply just using a smaller value of ✍
in (9), for which the kernel matrix must also be updated to

include

❆ ❡ � . For tracking, we fix ✍ ☞ ✭ ✸ � .
Optimization: Tracking is performed by minimizing the

approximate negative log posterior in (14). With the ap-

proximations above this becomes

✁ ☞ ❲ �✂✁☎✄✍ ✪
✑ �

✝✠✟ ❁ ✖ ✛ ✪✞❄❇✓✏✪ ✜ ❲ �✂✁✟✄✍ ✪
✑ �

✝✠✟ ❁ ✖ ✗ ✪ ❄
✗ ✠✍✡✌☞✪ ✘✛✚✜✙ ✪ ✘ ✷ ✜❲ ✝✠✟ ❁ ✖❃❆ ❡ � ❄ ✲⑥ ✵

❆ ✜ ❲ �✂✁☎✄✍ ✪
✑ �

✝✠✟ ❁ ✖ ✂

✪ ❄
✁

✪ ✵ ✲❉ ✵ ❆ ✵ ❂ ✜ (22)

To minimize
✁

in (22) with respect to

✓ � ✙ �✂✁☎✄ , we find that

the following procedure helps to speed up convergence, and

to reduce getting trapped in local minima. Each new state

is first set to be the mean prediction, and then optimized in

a temporal window. For the experiments we use � ☞ ❏
.

Algorithm 1 Optimization Strategy (at each time step ☛ )② ✁ �✂✁☎✄ ④ ✂ ✧
⑩ ✖

✁ �✂✁✟✄✩✘✛✚ ✜ ☞ ❆ ❴ ❸❇❹✿❺ ▼ ✘✔✚⑩ ✴ ⑩ ✖
✁ �✂✁☎✄❀✘✔✚ ✜② ✂✔�✂✁☎✄ ④ ✂ ✧

◆ ✖
✁ �✂✁✟✄ ✜ ☞ ✧ ✣ ❂ ❴ ▼ ✘✛✚◆ ✴ ◆ ✖

✁ �✂✁☎✄ ✜②✍✗✡�✂✁☎✄ ④ ✂ ❏
✗✡�✂✁☎✄❀✘✔✚ ❲ ✗✡�✂✁✟✄✩✘ ✷

for ✄ ☞ ❳ ✸✹✸✢✸✆☎✙☛✆✝✟✞ do② ❆ ❡ � ④ ✂✡✠
♣ ✟ ✁

with respect to

❆ ❡ �② ✓ � ✙ �✂✁☎✄ ④ ✂☛✠
♣ ✟ ✁

with respect to

✓ � ✙ �✂✁✟✄
end for② ❆ ❡ � ④ ✂☛✠

♣ ✟ ✁
with respect to

❆ ❡ �
One can also significantly speed up the minimization

when one knows that the motion of the tracked object is

very similar to the training motions. In that case, one can

assume that there is negligible uncertainty in the recon-

struction mapping, and hence a pose is directly given by

✂ ☞ ✧
◆ ✖

✁ ✜ . This reduces the pose reconstruction likeli-

hood in (19) to ✝ ✷ ✝✠✟ ★ ✷ ✖
✁ ✜ ✣ ✚✷ ✳ ✁ ✳ ✷

, and the state at ☛ to
✓ � ☞ ✖

✗ �⑧✵ ✁ � ✜ , which can be optimized straightforwardly.

5. Tracking Results

Here we focus on tracking different styles and speeds

for the same activity. We use the Balanced GPDM model

shown in Fig. 3 for tracking all walking sequences below. In

Fig. 6 we use a well-known sequence to demonstrate the ro-

bustness of our algorithm to data loss. In the first frame, we

supply nine 2D points—the head, left shoulder, left hand,

both knees and feet, and center of the spine (the root). They

are then tracked automatically using WSL[9]. As shown in

Fig. 5(d) the tracked points are very noisy; the right knee

is lost early in the sequence and the left knee is extremely

inaccurate. By the end of the sequence the right foot and

left hand are also lost. Given such poor input, our algorithm

can nevertheless recover the correct 3D motion, as shown

by the projections of the skeleton onto the original images.

While better image measurements can be obtained for

this sequence, this is not always an option when there are

occlusions and image clutter. E.g., Fig. 7 depicts a cluttered

scene in which the subject becomes hidden by a shrub; only

the head remains tracked by the end of the sequence (see

Fig. 5(e)). For these frames only the global translation is ef-

fectively constrained by the image data, so the GPDM plays

a critical role. In Fig. 7, note how the projected skeleton still

appears to walk naturally behind the shrub.

Figure 8 shows a sequence in which the subject is com-

pletely occluded for a full gait cycle. When the occlusion

begins, the tracking is governed mainly by the prior.3 The

3D tracker is then switched back on and the global motion

during the occlusion is refined by linear interpolation be-

tween the 3D tracked poses before and after the occlusion.

Before an occlusion, it is very important to have a good esti-

mation of ✁ , as subsequent predictions depend significantly

3We manually specify the beginning and end of the occlusion. We use

a template matching 2D detector to automatically re-initialize WSL after

the occlusion, as shown in Fig 5(c).



Figure 7. Tracking 56 frames of a walking motion with an almost total occlusion (just the head is visible) in a very clutter and moving

background. Note how the prior encourages realistic motion as occlusion becomes a problem.

Figure 8. Tracking 72 frames of a walking motion with a total occlusion. During the occlusion the tracker is switched off and the mean

prediction is used. Note the quality of the tracking before and after the occlusion and the plausible motion during it.

on the latent position. To reduce the computational cost of

estimating the latent positions with great accuracy, we as-

sume perfect reconstruction, i.e., ✂ ☞ ✧
◆ ✖

✁ ✜ , and use the

second algorithm described in Section 4.

The latent coordinates obtained by the tracker for all of

the above sequences are shown in Fig 10. The trajectories

are smooth and reasonably close to the training data. Fur-

ther, while the training gait period was 32 frames, this three

sequences involve gait periods ranging from 22 to 40 frames

(by comparison, natural walking gaits span about 1.5 oc-

taves). Thus the prior generalizes well to different speeds.

To demonstrate the ability of the model to generalize to

different walking styles, we also track the exaggerated walk

shown in Fig. 9. Here, the subject’s motion is exagger-

ated and stylistically unlike the training motions; this in-

cludes the stride length, the lack of bending of the limbs,

and the rotation of the shoulders and hips. Despite this the

3D tracker does an excellent job. The last two rows of Fig. 9

show the inferred poses with a simple character, shown from

two viewpoints, one of which is quite different from that of

the camera. The latent coordinates obtained by the tracker

are shown in Fig. 10; the distance of the trajectory to the

training data is a result of the unusual walking style.

6. Conclusions

We have introduced the balanced GPDM for learning

smooth prior models of human pose and motion for 3D peo-

ple tracking. We showed that these priors can be learned

from modest amounts of training motions including stylis-

tic diversity. Further, they are shown to be effective for

tracking a range of human walking styles, despite weak and

noisy image measurements and significant occlusions. The

quality of the results, in light of such a simple measurement

model attest to the utility of the GPDM priors.
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