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ABSTRACT

The two factors that determme the t1me complex1ty assocmted with model dnven

1nterpretauon of range maps are: 1) the particular strategy used for the generatlon of =
object hypotheses; and 2) the manner in which both the model and the sensed data are .

orgamzed data organization being a. primary - determlnant of the efﬁ01ency of .
venﬁcatron of a given hypothes1s In this report, we present 3D-POLY, a working sys-
_tem for recogn1z1ng Ob]CCtS in the presence of occlusion and against cluttered back-
grounds The time complexity of this system is only O(n2) for single Ob]CCt recogni-- -

~ tion, where n is the number of features on the object. The most novel aspect of this sys- .

tem is the manner in. which the feature data are organized for the models We use a data
structure called the feature. sphere for the purpose. We will present efficient algonthms :
for ass1gn1ng a feature to its- proper place on a feature sphere, and for extracting the

‘ ‘nelghbors of a glven ‘feature from the feature sphere representatlon For hypothesis - g

generation, we use local feature sets, a notion similar to those used before us ‘by Bolles,

Shirai and others. The combination of the feature sphere idea for streamlining ’
 verification and the local feature sets for hypothesis generauon results in a- system_ c

whose time complex1ty hasa polynomial bound.

v ‘In addition to recognizing objects in occluded env1ronments, 3D- POLY also
‘ possesses model learning capability. Model learning consists of looking at a model

- object from different views and integrating the resulting information, ‘The 3D-POLY
 system also contams ut111t1es for range 1mage segmentauon and class1ﬁcat10n of scene -
surfaces : -
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INTRODUCTION

_ The goal of this research is to develop a robot vision system that can recognlze'
'and locate objects randomly positioned and oriented in 3-D space, poss1bly occurring in
heaps Idealy, the capab111ty of such a vision systen should approx1mate that of the -
human vision system [Ma-82], which can perform recognition of a wide variety of
ob_]ects in real tlme even under poor hghtmg condition. While computer vision research o
in the last 25 years or so has only proved that such a real-time general vision system-- '

: remams a d1stant goal by using active sensors it is ‘possible today to des1gn systems that
can indeed 1dent1fy objects and compute their poses and do so with a measure of robust- '
ness in occluded env1ronments )

In general one must address the followmg issues when des1gmng a robot v1s1on B

e Image acqulsmon :
'The: questron here is what types of i 1mages one should use and how they should be |

= acqulred '

e Feature extraction: : v

What features should be extracted from an 1mage in order to describe the shapes and

geometncal relation of the object surfaces seen in the i 1mage " '

' oModel representatlon - .
How one should represent ObjCCt knowledge that would allow efﬁcrent retrleval of
model data. ‘

[ Matchmg algonthm -
Here the issue is how i image features should be matched with Ob_]CCt features

It should be emphas1zed that these four main issues are hrghly 1nten'elated in- the sense
that the representations and methods used for one have a bearing on the representations “
and methods used for others. The reason for this 1nterdependence is the fact that in most
cases the overall flow of control in the recognition process corresponds to what is
shown in Fig. 0.1. Clearly, how features are extracted depends to some extent on the
type of acqulred data. -
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A system diagram of the four basic components of an object recognition

Figure 0.1.
' system.
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Clearly, object recogmtlon calls for the extraction of ' scene features, measurement -
of their attributes, such as shape and other geometrical characteristics, and the relatlon-'
ships of the features to one another. Since features play a pivotal role in recogmtlon N
we must choose those features that can be detected reliably from images and that pos-
- SESS sufﬁcrent discriminatory power for distinguishing between objects. In addltlon'
since we also need to locate the objects, i.e. to determine their positions and’ orrenta--
tions, the set of features should also provide spatial information about the ob}ects For

 these reasons, 3D-POLY uses geometric features that constitute the shapes of objects.

-‘Geometnc features include surfaces, edges and points, and each of them is spec1ﬁed by B
a set of attnbutes such as shape, relation and position/orientation.

It stands to reason that the data acquired about a scene must allow us to extract -
these geometnc features For various reasons, 2-D reflectance i images can not be used -
and one must take recourse to range maps, where each data element in the i 1mage isa
quantlzed representation of distance to an object point from a reference plane or pornt
An extensive survey of various techniques for acquiring range 1mages can be found in
[Ka -85, Be —87] In 3D- POLY range images are generated by us1ng structured hght' '
scanmng "

A structured light range sensor consists of a light projector and a camera; the pro-

: Jector casts a stripe of light onto object surfaces and the camera detects the 111un11nated- c ‘

strlpes ‘The range to any illuminated surface point is computed by using mangulauon,
formulas. In the first chapter of this report, we show how perspective geometry can be
used to derive a 4x3 calibration matrix that directly converts an image point into its

correspondmg 3:D coordinates.- We also present a simple to use experimental pro- .
cedure that y1e1ds thlS calibration matrix. We will use the phrase range map to alsof o

refer to.the (x,y,2) data obtained for all the illuminated points in a scene.

It is necessary to go through several processmg and detectlon steps before'

geometric features can be extracted from a range map. These are presented in Chapter - ,
2. We first describe a procedure for the computation of surface normals from rangef"'? o
-images. Over smooth surfaces this procedure works like the traditional ones in that a o
surface normal is computed by fitting a planar patch to the range map over a small win- o
dow. However, in the vicinity of edges between different surfaces, our procedure has =~

the virtue of placing the windows adaptively in such a manner that the surface normal: _

computation does not get corrupted by attempting to fit a planar patch across an edge -

between two different surfaces. In Chapter 2, we also discuss the detection and the
clas51ﬁcat10n of three primitive surface types, namely, planar, cyhndncal and conical.

Chapter 3 presents the heart of 3D-POLY. There we have discussed how the sys-.
. tem generates and venﬁes hypotheses about object identities and poses. The hypothesrs '
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gené_ration and verification strategies presented there reduce the otherwise exponential
time - co'mpl,ex’ity to a low-order polynomial bound. For hypothesis generation smfaée
features are grouped around vertices into local feature sets. For verification, 3D-POLY
uses a special feature called principal direction that pos‘se_s a separate definition for each
different typé of feature. Principal directions are used to organize the model data into a
- data structure called the feature sphere. It will be shown that using local feature sets for
hypbthesi_sf formation and feature spheres for verification allows 3D-POLY to recognize |
* objects with very low time complexity. ’ ‘ e ‘

~ ‘To be complete, an object recognition sysvtcmk must have the means to learn object
models. 3D-POLY posses such capability, which is described in Chapter 4. We
‘describe there a multi-view integration procedure for synthesizing the shape of an
‘object. The majdr issue in model multi-view integration for shape synthcsis is the
~ detection -of feature common to different views, a problem that is made eéﬁecially
difficult by the fact that the attﬁbutc values for the same feature may be different in dif-
ferent views. - ‘ S SRR
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I _CHAPTERL =
- MODELING AND CALIBRATION OF STRUCTURED LIGHT SCANNERS

In this Chapter we have used projectivity theory to model the process of structured .
A'light"s_cénnihg for 3D robot vision. The projectivity formalism is used to derive a 4x3
transformation matrix that converts points in the image plane into their corresponding
3D world coordinates. Calibration of the scanner consists of computing the coefficient
of this matrix by'showing to the system a set of lines generated by suitable object edges.
- We end this paper by showing how the matrix can be used to convert image pixel loca-
tions into the world coordinates of the corresponding object points using two different

scanning strategies.
. 11 Introductlon

e ’_ Stru'cmréd light scanning is a rugged approach to range mapping a scene’ fOr 3D

- robot vision. In order to take full advantage of the flexibility for viewpoint selection o

~ made possible bya six-degree-of-freedom robot, we use a portable structured light unit
that can be picked up by the robot when it wants to gather 3D vision data (Fig. 1.1).

~ Within the constraints imposed by manipulator kinematics, the unit can then be oriented
- in‘any direction deemed desirable by the robot for the task at hand, and ”s'canjﬁed. either

- in a translational or a rotational mode for data collection.

A structured light unit consists basiéally'of a light projector and a camera. The

light projector throws a plane of light in the direction of the scene. The intersection of - -~

 this plane with an object creates a stripe of ilhiminated points on the object surface, the

stripe being recorded in the camera image plane. If the unit is properly calibrated, the .- )
- world coordinates of the illuminated points can be calculated by using triangulation for- -

mulas, as has been done by Agin [Ag —82]. Agin used a 4x3 collineation matrix to write
down a geometric relationship between the illuminated pixel coordinates and the world
cOordinatcs of the corresponding object points. The coefficients of this matrix are expli-
- cit functions of the camera and projector parameters. Calibration of the system implies :

determination of the coefficients of this matrix, which requires that the camera and th'é'_ -

. - 1! . . .
~ projector parameters be precisely known -- these parameters being positions and orien-
tations of the camera and the projector, and the internal magnifications of the camera



‘projector .

" wision scanner .. .

Figure 1.1. Robot engaged in scanning a scene Wwith a detachable structured-light
. .scanmer. T e
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lens system." Because of the explicit dependence of the matrix coefficients on such
parameters, Again had to first calibrate the robot joints so that the required.positions -

could pinned down precisely, and then he had to individually calibrate the camera aim, =

- camera scale and the projector aim.

| In this r:‘eport,‘ we look at the calibration problem 'fr‘o.ﬁi/ a difféljerit pomtof view.

| The basic goal of structured-light calibration is to find a formula that converts the 2D - .

‘coordinates of a recorded pixel in the image plane to the world coordinates of the
“corresponding object point. Our position is that it should be possible to obtain this rela--
tionship for a ,structured light system without having to worry about such low-level
details as the precise locations and aiming vectors for the camera and the prOjé_qvtbr.
However, we do not believe that it is possible to do away with the requirement that the
robot itself be mechanically calibrated before it can be used in conjunction with a struc-
tured light system. In fact, the accuracy of the methods to be proposed in this report will -

* be no better than the absolute accuracy of the robot. . .- S AT I

" Note that the problem of deriving formulas that take us from 3-D world coordi-
‘nates to 2-D image coordinates and vice versa also arises in straightforward camera
imaging. As is well known [D&H 7 31, it is possible to write down a’3$<4 homogeneous
 transformation’ matrix that for a given object point yields uniqucly its corresponding
image point; but, if we desire a transformation in the reverse direction, viz, from the
~ image to the world, it is only possible to calculate the direction to the object point Z-
and not its location -- by using a similar matrix. R e
In Sectlon 2, we will show that for the case of structured light imaging if we apply -
-~ the theory of projectivity to relate the points in the light plane with the corr'eéponding' :

points-in the image plane, it is indeed possible to derive a 4x3 homogeneous transfor-

mation matrix that is reversible. . This ‘implies that fqr each object point of a priori
- known location, we can uniquely determine its camera image plane coordinates; and for -

- each image point we can uniquely determine the world coordinates of the correspond- .. o

~ ing object point.

As we will show, the trénsfbrmation matrix derived from the pfdjeétivity‘ thgdry_ i

‘makes unnécessary the precise calculations of the locations of the camera and thefprQ‘-;_ S v_ o
jector and their aiming angles. Therefore, it is no longer critical that the robot joints'be -~

cal_ib,rate,d'p‘jr_écisély,vat least from the standpoint of enhancing the accuracy of range
mapping. .. o L ' TR R

We will also show. th’at, although from a p‘urély theoretical standpoint .ohly four »
object points. at known locations are required for calibration -- meaning the computation
~of the elements of tvhev transformation matrix -- the practical difficulty consisting of
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knowmg where exactly the ob]ect points are located has caused us to seek other
approaches ‘We will describe our procedure which consists of showmg to the robot at
least six lines generated by suitable object edges in the scene. In this procedure, it is not
necessary to know. the exact locations of the begmnrngs and the ends of the lines, as
' long as their relative separations are known. Secuon 3 presents a procedure for com-
' putmg the optlmum values of the cahbratron matrrx when more than six 11nes are shown ‘
to the robot ‘ : : C

Once a structured light system is calrbrated the process of scanning for the ) pur- ,

'V pose of range mapplng a scené can take various forms. We will talk about two

methods: rotational scanning and linear scanning. In Section 4 we w111 formulate Coor-
J d1nate transformatrons for both methods ' .

Fmally, in. Sectlon 5 we w1ll show some. ca11brat10n results and compare our tech-
_n1que wrth the two—plane cahbratlon method : : :

1 2 Pro,jectlve Geometry

Frrst we: w111 deﬁne the notatron used in thrs report

| X U P, A

—An 1ta11c upper case letter refers to a point whrch may be on a hne, on a plane, or -
o m 3D space. Usually, X, Y, Z are points in- space, and U, V are pomts in the
L 1mage plane : :
Xb"Xs, : - o . : : K
An italic- upper case letter w1th a subscnpt also refers toa pornt but in thrs case
- the ‘homogeneous coordinates . of the pomt are also spe01ﬁed The subscnpt
~ denotes the coordrnate frame in. wh1ch the point is deﬁned ; :
. Xb,Xs, .4:.,.'-.‘,‘.‘,.' . B ‘ |

" Bold italic upper case letters wrth subscnpts are used to denote the regular COOI‘dl-

' i nates of a pomt

r, s, £ ‘
, A bold 1talrc lower case letter 1s used to denote a , line or a plane
Letter F with a subscnpt is used for representmg a coordlnate frame The sub-.
o SCI‘lpt 2 spec1ﬁes a two: drmensmnal coordrnate frame ' g '
b ch9 A » R : RN
Letter T wrth a subscnpt represents a transformatlon from one ‘coordinate system
to another The first letter of the subscr1pt denotes the orlglnal coordmates system :




while the vs;eCo'nd‘letter denotes the destination cobrdin’ate systém. » | '
1.2.1. One Dimensional Projectivity

On a plane, given a center of projection P and any two lines s and 7 not passing
 through P, as shown in Fig. 1.2, a one-dimensional projectivity is defined as follows:
“LetXbea point on line s, its projective image X” on line 7 is the intersection of line PX
with r. Let A,B,C,D be any four distinct points on line s, the cross ratio of A, B with
respect to C, D is - o

AB-cpy~ AC  BD
(ABCD)I= 55 3D

Let A’,B’ ,C’,D’ on line r be, respectively, the image points of A, B, C, D 'under’the '
projectivity shown. An important property that follows from projectivity is the invari-
‘ance of the cross-ratio. This invariance can be expressed as .
|  (A.BiCD)=(A"B’C’\D") B R ¢ B &
or v : ' ' .
R ey
'BC AD " B'C’ AD | EER
- With this relation established between s and 7, we can find the image ’p0int X’ of X
under this projectivity by substituting X for D, and X’ for D": R

. ABICX)=4BiCX) * B ¢ &)

It is f‘Bbvious that the two corré:spondjng sets of triplets, {A, B, C} and
{A’, B’, C’}, completely describe the projectivity on s and r from the projection center
P. One may raise the following questions at this point: Can we always find a projec- -
tivity on a plane which converts a set of points on one line to a set of points on another
line ? Is this projectivity unique? Answers to these questions, which are crucial to the
main theme of this paper, are provided by the following theorem [Ay —67]:

The Fundamental Theorem of One Dimensional Projectivity . e
» Given three distinct points on a line and another three points on a second line,
~ there is one and only one projectivity which carries the first three points ‘re‘spec‘-‘
- tivelyinto the second three points. | T

To illuStrate the ‘the'orem, we first locate three points 4, B, C at arbit'raryl places "on a
line s and another three points A’, B’,C’ on a line r (Fig 1.3-a). For finding the unique
projectivity, we will fix the line s in the plane and move around the line r on the plane
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A’ B, : C,

(a)

"".A,."'.B,’ i i T

) 3

v 1Y
. \
"

(b).

Flgure 1.3, : :

- a) Three points defined on each of the two lines that will be used for demonstrat-
ing 1-D projectivity. b) If we fix line s of (a) and move around line 1 shown there,
there will exist only one projectivity for Wthh AA’, BB’ and CC’ w111 meet at a
pomt :
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“until the three lines AA’, BB’, CC’ meet at one point (Fig 1.3-b); this common point of
intersection is the projection center of the projectivity. A more difficult case is shown
in F1g 1.4-a, in which the corresponding points on lines s and r are ordered differently.
The prOJect1v1ty for this case is shown in Figure 1.4-b. ' :

7 For representmg a pomt on‘a hne, we need to define a coordinate system to
express its position on the line. The familiar coordinate system on a line is established
by selecting on the line a point O from which all measurements along the line are made,
a unit of measure, and a sense of direction: Essentially, this consists of selectlng a point
o, called the origin, and U, called the unit point; to these two points we assign the coor-
~ dinate values O and 1 respectively. The coordinate x of a point X on the line is then the
directed distance of X from O. If on the other hand, a homogeneous coordinate system

_ is desired, that can be done by assigning-coordinates. (0, 1) to O, (1,1) to U, and (x;, x2)
to any point X such that xy /xp =x. Itis obvious that a point does not have a unique

o representatlon ina homogeneous coordinate system.

Let s say that we have chosen an ongln O and a unit point U to deﬁne a coordlnate
system for a line s. Also, let O’ and U’ define a coordinate system for another line 7.
We do not requlre that the unit length OU on line s be equal to the unit length O’U’ on
line 7. We also do not require that the points O” and U’ be the images of the points O
and U under any projectivity. In fact, equation (1.2) is independent of the coordinate
' systems defined on either lines in the projectivity; this is a consequence of the follow1ng
* theorem that we present w1thout proof: :

: 'Thedrem of Cross Ratio

- The cross ratio of any four points on a line is independent of the coordinate sys-
tem established on the line. ‘

leen a p01nt X on, say, the 11ne s, it is a simple matter to derive a formula for the
’correspondmg point on line r. With respect to the coordinate system on line s, let the-
points A, B, C, X have coordinates a, b, ¢, x respectlvely Similarly on lme r, let the
points A’, B’, C’, X’ have coordmates a’, b ¢, x’ respectlvely Then equatlon (1 2)
can be rewntten as: : :
-0 b-x _(@-c)b' -x)
CB-0@-n  @'-c)@-x)

- (1.3)
e now solve (1 2) for x’ in terms of x. Setting 2=¢) =¢) d (@-c) _
D) b-c) =0 an (b’—c')_B’We

" have
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c A’

(a)

(b)

Figure 1.4,
a) An example similar to that of Figure 3a except that the order of the three points

on line r is opposite to the order on line s. -b) The unique projectivity that
corresponds to the case shown in (a). -
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‘e annx+al
ayx+axn :
where a;; =oa’ -Bb’, ajp=ab’p-a’ba, ayn =0— Bazz—aﬁ ba. In terms of
homogcneous coordmates, we have, by setting x =x1 / x5, and x’ =x'11x'5,

x’ 1 _»_ anx, +a12x2 S

.x2 421x1+a22x2
or o
[ pxfy=anxy +anxy
o ., p#
: px'2=a21x1 +axnxy ’ p*

In matnx form, we havc

P[x,l} - [6111 an| [*1 o : | 1.4)
|*¥2| [821 a22] X2 2 ' :

Note that the existence of the free variable p. Since a point in homogeneous coordi-
nates does not have a unique expression, thatis, x"=x1 /x2 =px; / px2. With the help
of th1s free variable, we are ensured that regardless of the homogeneous coordinates
* chosen, the above expression for the projectivity solution will always satisfy equation
(1.4). ‘Also note that the roles of X and X ’ are exchangeable. We could consider X as
the image of X’, and we will get the same form of matrix equation as (1.3).

1.2.2. Two DimenSional Projectivity

We can establish a formalism for two dimensional projectivity in 3D space that is
similar to the one dimensional projectivity in a plane. Let s and r be two planes in
space and let there be a point P, which is neither on s nor on 7, to be used as the center
of projection (Fig. 1.5). For cach point X on s, its image pomt X’ on r is the intersec-
tion of line PX with plane 7. Itis obvious that the invariance of the cross-ratio is still
~ valid for any four collinear points on § and their i images point on r. Also, for any: col-
linear points on s, their image points are also collinear. Extcndmg the fundamental
thcorem of one dimensional prOJecuvuy, we have:

‘The Fundamental Theorem of Two Dimensional Projectivity
vGiven'four distinct non-collinear points on a plane and another four distinct non- -

- collinear points on the '_bther plane, there is one and only one projectivity which
" carries the first four points respectively into the second four points.
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Figure 1.5.

rojectivity.

Elements of two dimensional p
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* A homogeneous coordinate system can also be established on a plane by a simple
extensron of what was done for line projectivity. ‘Suppose we choose a point (0, 0, 1)
~ as the origin in a plane and use two orthogonal unit points, (1, 0, 1) and (0, 1, 1), to lay
- out a coordinate frame in the plane.  The homogeneous coordinates of any point in the
plane are given by (x; x2 x3) with x3 #0; (x1/x3, x2/x3) are the regular coordinates of
the pomt Analogous to the derivation of equatlon (1.4), we can get a 3x3 conversion
. matrix. which converts a point X on plane s to its image point X’ on plane r, both points

o »bemg expressed using. homogeneous coord1nates

REAE ai ap ap| |%
plxa| =|an axn an| - |x2
|x'3|  |axn axn ax| |x3

V :_'It is easy to venfy ‘that this equatlon preserves collmeanty and invariance of the: cross-
ratio. Agam, 1f we sw1tch the roles of X and X’, the above generic equatlon 1s st111 vahd
ie, . .

SoXlofenez a3 | Xy . . , IR
coplxa|=|en ex eas| x| o . (L3)
CoolX3 | | €21 €22 €33 - (X3

A structured llght scanner can be modeled by us1ng 2D pl’OJCCthlty as follows We

~ use the camera-focus as the center of projection P, and treat the light stripe plane as
plane s and the camera image plane as plane r. [This model is only valid under the con-
dition that it be possible to use the pin-hole model for the camera (Fig. 1.6).] Although 4
the coordinate system on the i image plane can be arbitrary, a convenient definition con-
sists of using the row index u and column index v of the digitized image as its two coor-
dinates, and choosing the center of image plane as the origin. We will denote this ‘coor-
- dinate frame on the image pIane by F,.. A point Uin the i image plane then has coordi-
nates. (4, v)or,ina homogeneous coordmates system (4, v, 1) with respect to cm

 We also need to define a coordmate system on the light stripe plane. By vntue of o

the previous theorem which says that the cross-ratios are independent of the choice of
- the coordinates 'system, we have considerable latltude in how we go about setting up
this' coordinate frame. We therefore choose one that can be easily related to the three
d1mens1onal base coordlnate frame F » for the robot. We will use x, y,zto represent the
_three orthogonal axes in Fb Then a point X, defined in the frame F}, will have homo-

. geneous coordlnates w,y, z, 1) = (wx, wy, wz, w). Imaglne a translation and a rota- -

tion that bnngs Fptoa coord1nate frame F; whose center is on the plane s and whose Xy
plane is ahgned w1th the plane 5. Since Fs is deﬁned with respect to. the base ‘




light stripe plane

image plane

Figure 1.6. This figure shows that the structured light imaging process can be fit pre- . -
. cisely into 2-D projectivity. We can consider the light stripe plane as
_plane s and the tamera image plane as plane r in drawing correspondence

- with Figure 5. The camera focus center. becomes the center of projection.

L
R
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'coordmate frame Fy, F conta1ns all the mformauon regard1ng the translat1on and rota-
tion. Inhentlng the coordinate system defined on the xy plane of the frame F, we can
define a two dimensional coordinate frame F; on the plane s. Suppose a point X on
' plane s is assigned homogeneous coordinates (x4, X2, x3) with respect to F 25 where
x3 #0. With respect to the frame Fy, which is three dimensional, the homogeneous
- coordinates of the same point are (xl X3, 0, x3) The conversion of X from its two
‘_d1mens1onal homogeneous coordmates in F 2 to its three d1mens1ona1 homogeneous»
coord1nates in Fg can then be written as : :

" 'fxi" [100] [,.1 }
x| lotol || | -
o |Tlooo| 2 s | ( )
| ,*Lx‘,_, 001) ™,

| Now let X, be. the homogeneous coordmates of X w1th respect to the frame F. We can
_ ‘convert X, to the homogeneous coordinates representatron X; with respect to the base
o frame F, b by mult1p1y1ng X with Fy, that is ‘

:,HereF 1sa4><4 matrlx

. Substltuung (u,v 1) for (x 1.%" x 3) in equatlon (1. 5) and comb1n1ng equatlons
" (1 6) and (1 7), we get a 4x3- conversion matrix T, that converts a point U in camera
- 1mage plane to a light stnpe pomt X b in the robot base coordlnate frame

Xb-ch U "
.or
‘:-x St t12't13'
oy I I tasy | | - » o STy '
el = . v . R (1.,8)»
Ll 1ra t42 ta3|

’ Note that we use subscript b to denote that Xb is.in homogeneous coordmates w1th' '
'respect to the base coordinate frame ‘F. Again, we use the free variable p to account
for the non-umqueness of homogeneous coordmate express1ons ’

13, SoIVing for the'ConVersiOn Matrix

We have shown that eq. (1 5) captures the general essence of two d1mensrona1 pro-
jectivity. "For our particular case of transformations between the camera image plane.
and the llght plane the relauonshlp represented by eq. (l 8) is however more su1tab1e
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Ob\qously, the conversion matrrx Tep in eq (1.8) depends upon both the pos1t10ns B '

-and the onentatlons of the camera and the light plane prOJector ‘The purpose of cal1bra—
tion is to find this matnx without recourse to actually measuring these positions ahd.-.’
- orientations. Note that because of the free variable p in equation (1. 8), we can set t43 in
Ty equal to 1 and the equation still holds. Our calibration is to determine the eleven, '
unknown coefﬁcrents inTg, : : '

- We can'y out our cahbratron by ﬁndrng the 2-D prOJect1v1ty that ex1sts between the .~
"camera 1mage plane and the light plane. By the fundamental theorem presented in Sec-

tion 2.2, we can find this projectivity -- in principle at least -- by using four coplanar but ¢

,non-colhnear points in the light plane and their correspondmg pomts in the image v
,"-plane By choosmg four illuminated object points as cahbratmn points, assuming that - ‘
their 3-D- coordinates and their cooresponding image coordinates can be measured

- 'correctly, we should be able to solve for the matrix ;. We will now show how one -

rmght set up equatlons for thlS purpose Rewrmng equatlon (1. 8) as

SRR EFIN
f z;"‘Tsj, ':U

“and ellrmnatlng the free varrable P, we have
L x Tl U [ T4 U

‘ y T2 U | TyU ' R TR (‘1.9) \ |

L ; z—T3U/T4U
or equ1valently, R |
‘_TlUxT4Uo | R et
T, U-yT,U=0 e

T3 U—ZT4 U—O

‘Thus each cahbratlon pomt produces aset-of three linear equatrons in terrns of the o
eleven coefﬁcrents of Tcp. Four calibration poeints would therefore. lead to a set of ,
twelve equations for the eleven unknowns. This number is one more than what we-’j -

- need. Since we could pick any eleven equations out of the twelve and get a solut1on for -

 T,p, we could ostens1b1y get different T,;’s depending on the choice of the eleven equa-
tions; this would ev1dent1y be in contradiction to the umqueness implied by the funda--
mental theorem of pl’OJCCthlty However we should note that the fundamental theorem‘



: requrres the four cahbratlon points to be coplanar Therefore, the twelve 3 D coordi-
~nate values of the four pomts are not 1ndependent of one another and, in fact, they obey ‘
the: constrarnt of the co-plane equat10n ' ' L

det X} X2 X3x41=0

, "That s, one of the twelve coordmates is deterrmned by the other eleven values. Since '
' the above co-plane constraint is in fact implicit in equation (1.8), one of the twelve
- equatlons generated by the four callbratlon points is redundant. Asa consequence, we
o 'can use any eleven equat1ons and amve at the same umque solutlon for ch

- .1 4 A Procedure for Automattc Cahbratlon 7 :

e In practlce, using four obJect pomts at a prtort known locatlons for computmg
the matrix ch is beset w1th d1fﬁcult1es for the following reasons:

1) .There are always some errors associated with the measurement of locations’ of the
. four cahbratlon points in the robot base frame On account of such errors, their
L coplananty can not be completely guaranteed. '

2) cItis unreallstw to assume that the camera can be modeled perfectly by a pin-hole.

A pm -hole model is of questlonable validity, especially when zoom lenses are -
e used. “When the p1n-hole approx1mat10n breaks down, there may be no unrque
’ _'ﬁicenter of pro_]ectlon : :

' 3) »_ Because of the non-zero th1ckness of the illumination stnpe and other d1g1t1zat10n
" aspects of camera 1magmg, there will always be some non-zero error assoclated
wrth the locatlon of the i image pornt correspondrng to an object point.

Smce for these reasons ch can not be found exactly, our best hope isto estimate it
: by mlmmrzmg some error criterion in an over-determined system of linear equations.
In other words, grven more than 4 calibration points, we want to find the T, which best

e fits those calibration points. The T that best fits equation (1.10) can be found by solv-

ing a’ hneagg least square problem similar to the solutlon of camera cahbratlon in

o [B&B —82]

, At th1s pomt the reader probably has the impression that in order to cahbrate a

: structured hght system, one must - first install .in the robot work area.a set of object

o po1nts at a a priori known locatrons However, that is not the case in pract1ce Smce the
- robot is: programmed to move the structured-hght unit in discrete steps, it is possible

E that the 11ght planes enntted from any of the allowed posmons of the scanner w111 not »

Cx Altemanvely, one can use the squared sum of the error drstances of the calibration pomts in -
: world coordmates for the error cntenon v, . ‘
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illuminate the object points. One way to get around this difficulty is to use extended
~ objects in the work area, the objects being of such a shape that at least four non- -

collinear points are illuminated by the light plane emitted from the projector. After the -
vision data is collected, the world coordinates of these object points are measured. by
moving to their locations the robot end-effector. Clearly, this method would only work

if the mechanical calibration of the_ robot is accurate. This method is hard to automate. -
By aﬁtdmating a vision calibration procedure we mean the following: We want to place

c'ert_ain objects at strategic locations in the robot work area; then by simply having the -
- robot record structured-light data on these objects at any time a calibration is desired, it
shOuldvbe\pvqs'sible for the associated computer to figure out the calibration parameters.

o We will now propose a procedure that is easier to automate. A flat trapezoidal
object is located pérmanently in the work area. The object is shaped in such a manner
that no two edges of the top-surface are parallel to each other.. The end coordinates of
the tbp edges of these objects are known to the robot; therefore, one might say that the

equations that define the lines corresponding to these edges are known. Consider one o

such line: Since a line can be defined as the intersection of two planes, it is described by
the following two equations corresponding to the two planes. . ‘
o aix+biy+cyz=d, | ,(_1’.11)
| ax+byy+ceyz=d,
o When the scanner projects a stripe intersecting this calibration line, it generates an
illuminated point whose image coordinates are given by, say, U. While, of coufse;, we
can record the image coordinates of U, its world coordinates are unknown. In the pro- _

cedure being described, we have no need for the world coordinates of the illuminated -

object ,poin‘t'on, the line. By substituting the right hand side of equations (L.9) for the
x,y,zin (1.11), we have v ' o | -
ay Tvl‘U-ll-bl T2°'U+Cl T3-U = dl T4U
| azT1U+b,y TU+cyT3U = dr, T4 U

It shows that each calibration line is capable of pfoducing a set of two equations in
terms of the 11 coefficients of T,;. Therefore, if we use at least six calibration lines, we
will have a system of over-determined linear equation to estimate the conversion
matrix. As we will describe below, it is not necessary to use six different cal_ibr"atio’nv
lines, although' one could certainly do so. ' | B ‘

In our current implementation of this procedure, we use only two distinct object
~edges, which are, not parallel, for generating two calibration lines from ‘any single
viewpoint. By moving the structured light unit to different heights above the table, we -
~ can record the .image coordinates of the same two edges for generating as ‘many
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equatlons as we hke We will now descrlbe a step by-step description of the procedure
First note though that mounted in the robot work area is a flat object whose top surface

is not parallel to the light plane of the scanner. After this initial setup, each time a cali-
bration is camed out by the robot, it automatically carries out the following steps:.

1) “F,The robot moves the scanner to an initial posmon The coordmate frame of the
robot tool center is recorded. ‘

2y ,k_The scanner makes pI'OJCCtS a 11ght plane onto the ca11brat10n block. Th1s gen-
‘erates on the block a segment of the light stripe, whose two end pomts must lie on
-the two calibration lines respectively.

3) . From the digitized image, record the image coordmates of the illuminated points

- corresponding to the two callbratlon lines. Substitute these image coordmates for
Uin the two line equations; this g1ves us four linear equations.

4)  To acquire more calibration lines, use the robot to move the scanner by (dx,dy,d )

. toal new posmon (Fig. 1.7). Now the lme equations will become ' :

-

a1T1U+b1T2U+C1T3U =
| di=aidi-bidy -Cld)T4U

W as Tl-U+b2 TyU+cyT3U =
(dy—azdy —bady —C2d)) T4'U

'Go back to step 2)

5) Mmlrmze certain error criterion to find the best estimate of ch

Note that the estlmated conversion matrix is with respect to the scanner at the ini-
t1a1 position only We will remove this constraint in the next section. ’ '

1S, Linear,and Rotational Scanning
' 1.5.1. Formulation

If the range map of a scene is desired,y the scene must be scanned in some manner
with the structured-light unit. Linear scanning and rotational scanning are the two
‘schemes used in our lab. In linear scanning, the orientation of the scanner is fixed, only
its position is changed equally between successive light stripe projections, as shown in
Figure 1,8. In rotational scanning, the robot holds the scanner at a fixed position, but
rotates the scanner in equal angular increments about the axis of the wrist joint. The
“‘movement of the scanner is specified by the position and orientation of its end effector
on. wh1ch the tool-center is deﬁned Let us define the coordinate frame of the tool-
center as F : such that the z axis of F ; aligns with the ax1s of the robot’s wrist joint. For
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éalibrati_on line 1

image plane |

Flgure 1.7. To acqulre more cahbratlon lines, the robot moves the scanner by

2 Xy N
] 1]
| !
l I
| |
I [
o 1K ' l
. scanner |
‘ I
f(dx,dy,dz) =KW
] scanner|}
L.
Ul

image plane

calibration line 2

(d, .4, .d,) to a new position and makes projection.



Figure 1.8.
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ere, the orientation of the scanner is kept -
lated along a line. b) In rotational scan--

a) In linear scannihg" shoWn h
fixed while the scanner is trans
ning, while holding the scanner ‘at a fixed position the robot rotates the

- scanner in equal angular increments about the axis of the wrist joint.
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the case of hnear scannmg, we w111 express the translatronal movement from prOJectlon '
to projection by D =(d, ,d d ) T his movement can be wr1tten as-a translatlon'
transformatlon martrix: ' ‘ .

: F100d'
’OIOdyv
0014d,|
0001 |

Smnlarly, for rotatlonal scanning, if the angular mcrement between success1ve rota-v
tional positions of the scanner is 8 we can write down the follow1ng for a rotatronal»
rtransforrnatlon matrix ‘

L (cosﬁ_ —sinS'O 0
Rs _ :‘_ sind- cosd O 0
*lo o 10f
o o o1

The conversion matrix T,p, as obtamed from the cahbratlon process, is: deﬁned in
_the base coordinate frame F with the scanner at a specific position, Let the: tool-center
coordmate frame used for calibration be F, . When scanning a scene, the posmon and

' onentatlon of the scanner w1ll differ from those used dunng calibration. Therefore, '
s durmg scanmng, the tool-center coordinate frame as represented by F,, will be dif-
ferent from F,. As a result, the T, cb Matrix obtained from ca11brat10n can not be

plugged d1rect1y in equatron (1.8) for the purpose of computmg the range map of a
- scene. - ‘ ,, : ,

To get over th1s problem, we can convert the matrix T,, b to a matrix Tc , Wthh is
' deﬁned in the tool-center coordmate frame F; . Th1s is done by I

ct-(fﬁ )yt - - R (1 12)

“This relatron is deprcted in Fig. 1.9. Thus Tct converts an 1mage pomt U 1nto the
correspondrng obJect point in homogeneous coordinates with respect to frame F,. Let
F, to be the tool-center coordinate frame at the beginning of a scan and let / denote the

j* prOJectlon inascan. In linear scannlng, we have -
| F, =F,, to (Hd)’
iTherefore we get
'Xb—FtTaU | Sl
—Eodw’ntU R bf'oT,amy
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. Figure 1.9. " Relation among coordinate frames for linear scanning. . -
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; Slmllarly ffo'r’ frotational scanning, we have

X,, F,0 (R5)f Tct 2 S aaw

| 1 5 2. Analysrs of Range Maps

‘ Equatlons ( 1 13) and (1.14) prov1de us with formulas for computmg the range map E
of a’ scene For each l1ght stripe projection during scanning, we record the column

1ndex v of the sampled illuminated ObJCCt point in each row of the canera 1mage By o

applymg equation (1. 13) or ( 1.14), for each row indexéd by u we have the. 3-D

" nates [x (u), y(u), z(u)] of the obJect po1nt These 3 D coOrdtnates are then collected o
N 1ntoarangemap » e

At th1s tlme, a few comments about the parametrlzatlon of the obJect surface are in
order Let row index of the scene range map be the same ‘as the oW 1ndex uof ¢ camera -
o 1mage plane; and let its ‘column index be the 1ndex J assomated w1th successwe pI‘OJCC—' :

- tions of the light stripes. Thus the range map can be expressed as’
| fx(u, ]), y (u, N, z(u »]. For example if the camera image plane i is of 480><512 résolu=
tion, and there are 80 pro_]ectlons in a scan, we will have a range map of 51ze 480><80

- 'Now cons1der the range map ‘of a scene as the sampling of a visible surface, and assume

that the surface is expressed as . f=I[fs fys £l Its  range map ,
| f (u, _]) [fx(u, s fy(u, ) 2 (u, j)]is the quanuzed parametrization’ of thlS v1s1b1e sur- -
, face Note that the direction represented by the j index is d1rectly related o the move-
- ment of the scanner from projection to projection. We want this “movement d1rect1on
. tobe perpendlcular to the column direction of the camera 1mage plane SO that (u, J) wrll
forman orthogonal parametrization of the surface.” This can be i important for latér ) pro-

cessing of the ; range map. For example, most 3-D edge detection operators are derrved ‘

 'with the assumptlon of orthogonal parametnzanon
16 Experimém'al Results and Conclusion

The structured hght scanner used in our experiment consists of a Sony DC-37 ,

CCD camera and an infrared projector. For conducting a calibration expenment the

‘ 'callbratlon block is placed on the table and the scaffier is moved 1o its ‘initial position, -
which i is about 20 inches above the table. A scan is then conducted along a line that is’
horizontal with réspeéct to the work table; during the the calibration block is 1llumlnated» '

by three stripes. This process is repeated at four different heights, -- 20, 14, 8and 2 .

inches -- above the work table, leading to range data on a total of 12 stnpes Thrs data
leads to 48 linear equations for the computation of the conversion matrix. The total.
time expended i in the collectlon of calibration data is about a minute and the computer _
time for processmg this 1nformat1on is about 3 seconds.
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Although u1t1mately the evaluation of a cal1bratron procedure must be camed out
by determlmng the absolute accuracy of the system, for many purposes itis sufﬁc1ent to
) compute the relative accuracy. By absolute accuracy we mean the precision w1th which
the system locates a- point with respect. to the origin in the robot base coordlnate system;
and by relative accuracy we mean the precision with which the system makes a dimen-
,sronal measurement of an object feature located in the Tobot area. In our experimental
_ vevaluauon of the procedure descnbed in this paper, we will only use relat1ve accuracies.
| Thrs is. prlmanly owing to the fact that absolute accuracy tends to be a functlon of the
' accuracres of both the vision cahbrat10n and the robot arm calibration, meaning thata
' measurement of absolute accuracy ‘may or may not tell us about the performance of a
~ vision cahbrauon technrque ' ' ‘

- After callbrat10n the relative accuracy of the procedure is evaluated by the com-

putmg the d1mens1ons N and H of a block, like the one shown in Fig. 1.10. As
| : expected our experimental results show that the accuracies with which these: two meas-
urements- can be made depend upon the d1stance of the block from the structured -light
unit and. the onentauon of the block with respect to the scan direction. For the results
reported here, the long axis of the block was kept approxrmately parallel to the scan

o d1rect10n The results are shown in Table 1.

The reader rmght note that we have not taken into account any nonhnear lens dis-
tortlons in our development of the calibration procedure We have seen that these dis-
tortlons become important for obJect pomts that are far. away from the camera lens, usu—
' ally farther than two feet. Lens nonhneantles may be taken into account by a vanety of

technlques presented by Tsa1 [Ts —86] :
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T,

 Figure 1. 10. The width and the height of the block are computed from the range déta in
S : order to test the relative accuracy of calibration. ' S ~



Table 1.1 Relative accuracy test results

30

d ~8inch 14 inch 20 inch
Ws - <0.04 inch | <0.05.inch
Hgs | <0.03inch | <0.14inch | <0.30 inch

"W =5.66inch H =6 inch

- . d: distance form the scanner to the block top surface
W : difference between the computed width and the real width
H s : difference between the computed height and the real height

chen/kak
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o : CHAPTERZ R
EXTRACTION OF PRIMITIVE FEATURES FROM RANGE IMAGES

In th15 chapter we descnbe the processing steps that are. mvoked for extractmg -
'features from range images. As will be clear from the more prec1se definition in.
Chapter 3; a feature in our system is an analytlcally continuous surface; a stralght ora
curved: edge, or a vertex. Each feature is characterized by a set of attribute-value of
~ pairs.” Feature extraction is basic to the recognition of objects and estimation of the1r‘
. poses; it is also basic to. the “learning by showmg" approach to the constructlon of-‘
' object models as d150ussed in Chapter4 - - L e

There are three main processmg steps descnbed in this chapter The ﬁrst usesan

adaptlve w1ndow technlque for accurate surface normal computation;.our approach here -

is pamcularly accurate in the v1c1n1ty of boundanes between different surfaces. In the-
adaptlve wmdow technique, a window, used to compute the best local surface normal g

by ﬁttmg a plane to the local range points, is located adaptively dependmg upon a E
v v' welghted planar-patch ﬁttlng error. Our second step describes how to segment a range

~ image into smooth surface regions based on range and surface normal d1scont1nu1t1es _

" _Fmally, we present a scheme to classify segmented regions into three types of primitive.
surfaces, planar, cyhndncal and- comcal by ﬁtt1ng planes to the mappmgs of the surface_ :
norma]s onto Gauss1an spheres :

2.1. Inl:-.ltoduction
_ Our system'uses the follobwing three steps for feature extraction: ‘ -
(@) | Preprocessmg compute surface normals. The surface normal ass001ated w1th a

‘range point is computed from the equation of a best fit tangent. plane toa small j
- cluster of range points in the vicinity of the. point in question. s T

(b) Segmentatlon segment a range image into regrons, each representlng a, smooth o
i surface. Segmentatron is accomplished by first extracting range and ‘surface nor- v
mal dlscontlnulty pomts and then performmg a connectivity analys1s on the rest of ‘
.the range map ’ - RO |



: (c) “Classification: clas31fy segmented surfaces into the three pnrmtlve types " The
" ~¢lassification of a surface is accomplished by first projecting the surface normals -
'correspondlng to a segmented surface onto a Gaussian sphere and then fitting a

o ‘plane to the distribution of points on the sphere so obtained. Thelocation of the

Lol 'plane from the center of the sphere is used for charactenzm g the obJect surface

: Smce in our system both segmentatlon and surface class1ﬁcatron rely on surface :
" normals, accurate surface normal computatlon is crucial to the performance of feature
“extraction. By definition, the surface normal at a point is the unit vector normal to the
tangent plane at the point. This surface normal can be computed from the cross product
of two independent tangent vectors at the point; this stralghtforward approach has been
“used by Parvm and Medioni [P&M -86] and Besl and Jain [B&J-86]. The major
. drawback of this approach is its sensitivity to noise due to the differentiation involved
in the computation. Another method: for computlng surface normals consists of fitting
'planar patches to small clusters of points within a window and using for the surface nor-
mal the normal - to the planar patch; see, for example, [M&B —80], [H&J -871,
[Y&K —89] However this approach, too, suffers from- undes1rab1e d1stort10ns, such as .
.~ the ¢ smoothmg of surface normals in the vicinity of boundaries between surfaces,'
f because at such locations the wmdow for computlng the planar patch usually straddles..
_ the two surfaces. To overcome this shortcommg, we have modified this technique by

s using a notion first proposed by Nagao and Matsuyama. [N&M —79] in the context of

vadaptlve smoothmg in 2-D- image processing. They showed how the placement of a
smoothlng window near a region boundary should be made to depend upon extent: of
smoothness accomplished w1th1ng the w1ndow In Sect10n 2, we w111 apply th1s 1dea to,
. surface normal computatlon P - :

A number of contnbutlons have been reported on the subJect of extractmg pnrm v
tive. surfaces from a range map. - Milgrim and Bjorklund [M&B-80], Bhanu[Bh -84],
Boyter[Bo —-84], Parvin and Med10n1 [P&M -86], and Yang and Kak [Y&K -86,
Y&K - 89] extract planar surfaces on the basis of the similarity of surface normals.

~Detection of - cylindrical surfaces in range maps has been reported in - [A&B 73],

[N&B —77] and [B&F -81]. Faugeraus et al. [F&et—83] and Besl and Jain [B&J-88] '

show how analytlcally continuious surfaces of rather arbitrary shape can be extracted

- from range maps by fitting quadric and h1gher order surface functions to range data.
Another method, similar in spirit-to the approach presented in this chapter is reportedv

by Seth1 and Jayaramamurthy [S&J - 84]; in their scheme characteristic contours are

' used to d1st1ngu1sh between spheres cyl1nders and cones (a characteristic contour being

: the locus of constant dot products between surface normals and any fixed vector) The

'charactenstlc contours of a sphere, a cyhnder and a cone are a set of concentric circles,
a set of parallel l1nes, and a set of 1ntersect1ng 11nes, respect1ve1y In the method of
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Sethi and Jayaramamurthy, a decision tree is used to recognlze the pattem of the- . '

'characterrsttc contours in a Hough space.

‘The EGI (Extended Gaussian Image), which in the past has been used by [k —83] ‘
and [Ho —84] for object representation in 3-D vision, can also be used -for class1fy1ng‘

surfaces. It is rather well known that the EGI of planar, cylinderical and conical sur-- )

faces form special patterns on the Gaussian sphere; in the planar case, it is a-small patch
-on the surface of the sphere, for a cylmdncal surface, the points on the sphere lie on a
great circle. and, finally, for a conical surface, the pomts on the sphere lie on a minor
- circle. Prmtz [Pr—87] has shown how by analyzing the EGI pattern for approx1mate' :
symmetries one can estimate the axis of a cylindrical or a conical surface. He expands
the EGI dlstnbuuon by expressing it as a sum of spherical harmonics and then estimates
the. symmetry axis by computing the enginvectors of a matrix whose elements are func-
tions of the coefficients of the spherical harmonics representation. This method, though
theoretlcally elegant, requires a large amount of computation and tends to be inaccurate
because only finite terms of spherical harmonics can be used. [Printz did not show that -
the neglection of higher order terms in a spherical harmonic expansion of an EGI distri-
bution did not degrade the accuracy of calculations.] Hebert and Ponce [H&P -82] pro-
pose using Hough transform to detect the three EGI patterns correspondlng to the three
- primitive surfaces. Their Hough space has two parameters which are the two spherical
angles of surface orientation (a surface orientation is defined for planar surfaces to be
the direction of the normal to the planes, and for cylindrical and conical surfaces to be
“the dlrectlon of the axes of such surfaces). It is not clear how they can d1st1ngulsh all
- the three EGI patterns on a 2-D Hough space since according to their formulation a
- _cone needs three parameters, two for the axis and one for the angle of the cone. More-
over, the accuracy of the computed surface orientation will be limited by the resolution
of the Hough space, let alone the overhead of constructing the Hough space. '

Whlle our aim is also to detect and classify the three EGI patterns correspondlng -
to the three primitive surface types, we have avoided the use of Hough transforms. The
method is based on the observation that planar and cylindrical surfaces are actually two
special cases of a conical surface, especially from the standpoint of the EGI patterns
they produce. There are two ways to look at this observation. A planar surface pro-

duces a small patch on the Gaussian sphere, whereas the EGI points correspondmg toa

“general comcal surface lie on a minor circle and, finally, for a cylindrical surface ona

vmaJor circle. Therefore, if we fit a plane to the EGI points for all three cases, for the
~ case of a planar object surface the fitted plane would have to be tangential to the Gaus- "
sian sphere and hence its perpendicular distance from the center of the Gaussian sphere '
would equal 1. On the other hand, the fitted plane for a conical object surface would be
located at a dlstance between 0 and 1. And, finally, for a cyhndrlcal ObJCCt surface the
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ﬁtted plane would must pass through the center of the Gaussian sphere. This observa-
tion allows us to construct a unified approach to the classification of pr1m1t1ve surface
types This umﬁed approach will be presented in Sectlon 4 of this chapter. '

2 2 Computmg Surface Normals v1a Adaptlvely Located Wmdow

In general a range map of a scene, generated by a structured light scanner, can 1be
represented by the parametric form p; ; = p(i,j), where p stands for the [x,y,z] coordi-
nates of the object point illuminated by the ith stripe, the index j standing for samplmg
1ndex along that stripe.

Smce the surface normal at a surface point is a unit vector normal to the tangent
plane at the p01nt the surface normal may be computed by

o . P
h= - i arTl j
/9P . 9P ,
az 8
: 'F1n1te d1fference operators can be used to compute the two partlal der1vat1ves %—f— and
| ?5 The maJor d1fﬁcu1ty with this method is that it is very sensmve to n01se due to the

differentiation operation. In order to overcome the noise problem, the range data usu-
ally has to be smoothed extensively [B&J 86], which in many cases tends to dlstort the
, _range data espe01a11y in the vicinity of edges. : '

An altemat1Ve method, which is less noise-sensitive, is to estlmate the tangent
plane at each surface point by fitting a plane equation to the surface points in a neigh-
borhood of the point in question. The equatlon of the fitting plane can be expressed as

f(x,y,z) =ax+by+cz~d = 0.

with a2+b 24¢2=1. The normal vector to the plane denoted by n is [a,b, c]: The
nerghborhood over which the plane is fitted by this method is usually an NxN window

centered at p; ;. We will denote the w1ndow by . The best ﬁt plane is found by'
v rmnnmzmg the fitting error: v B
. e(W,,> = 3 fo Ve zk,z) S "~:"‘<2-.]1')"
. o kleW;; ' R
T
kleW,; - .

W1th the constramt a2+b 2+c —1 where Pkl = [xk 1> Yk 1» 2k1). - This constrained
v mmrnnzauon ‘can be accomphshed by takrng the. part1a1 derivatives of the followmg
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Lagrange -fﬁhctip‘n: : - . _

- L= 3 @pl-ay +Aa-nnY
kleW,; o ,

_ w1th respect to n, d and A and settmg them to zero Expandlng out. the expressmn forL o
- we obtam :

L= ‘z [npk,lpkln —2dpk1n‘]+N2d2+7L(1 nn) E
~ kIeW : )

k,IeW o - kleW
Deﬁne a new matnx and a new vector as

Q = ¥ Pk,lPk,I _
k,IeW :

q= 3 Pk,l
k,leu,u )

Lcan therefore be written as : v
' ‘ '—nQn —2dqn +N2d2+7\.(1~—nn) -

: We now set the following partlal derivative to zero:

 Leno-zacami-o

S 2 = () . - _ S 2.
% 2ng" + NP L0 ey
- From(2.3), wehave - .
=-—=nq ' B o T @2s)
Substltutmg thls result in (2. 2), we obtam _
ZnQ = —(nq’)q -2nh = 0 B
N? L
or, eqtuvalently, : , , e e e
CaR=ar S ee

‘J

" R=0-—=49q= 3 piipwi- — Z Phr Z Pri
A, - N kiewy  kiew,

n( X P’%”’kd)" -2d( ¥ pk,z)n +N2d2+x(1—nn) e
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’Equation . 6) implies that the normal vector n to the best fit plane is an eigenvector of
“the matnx R, and A is the corresponding eigenvalue. Since R is a 3x3 matrix and,
therefore, in general, will possess 3 eigenvectors, the question arises is which of these
, corresponds to the desued n'? Itis easy to venfy that the plane fitting error associated
witha partlcular e1genvector n is equal to the correspondmg eigenvalue by substituting
d expressed by equatlon (2.5) in equation (2.1). Since we wish to minimize the fit error
' - e(W, ,), the e1genvector to choose corresponds to the smallest e1genvalue -

, Let [a b’ c’] be the. e1genvector ) computed (assume it has been normahzed too)
‘ Srnce the estimated surface normal can take the value erther [, b’ 'Y or [-a’,—b’,—c 1,
~in order to resolve the amb1gu1ty, we ass1gn

[my=taber -ifv-[a’,b’,»c”_lsl()
--"—[—a -b’, —-c'] R - else '

where v is the v1ew1ng d1rect10n of the range Sensor.

“ The performance of th1s plane ﬁttmg method depends on.the w1ndow size N ><N to
some extent If the size is too small, say 3x3, the computed normal will be' susceptlble
" to noise and quantlzatlon error associated with range values. On the other hand, large'
 sized w1ndows cause smoothing distortions in the computation of surface normals,
E espec1ally when the windows straddle boundanes between two smooth surfaces ‘the
regions where such distortions occur are of size proportlonate to the size of w1ndows'
. used for computatlon Fig. 2.1-illustrates three poss1ble placements’ for a 5x5 window,
~ with the -placements W, and W, located entirely within the smooth surfaces of the:
obJect wh1le the placement W), is straddling the boundary between two surfaces If
window placement is such that it is located entrrely within a smooth surface of the -
object, a plane ﬁttmg method should prov1de satisfactory surface normals, even when
the surface is somewhat curved. However if the window lies across a jump or crease
, boundary, the computed surface ‘normal will be distorted because the fitted range data

o actually come from two different surfaces. The effect of this distortion is that normals

w111 not be wholly d1scont1nuous in travehng over an edge but will smoothly change f :

ThlS smoothmg dlstortlon can be virtually elrmmated by adapt1ve placement of,- E
w1ndows in the vicinity of edges The key idea is to adaptively pos1t10n the fitting win-
dow around the range point in question such that the window encloses the point without
- 'crossmg any edges. To 1llustrate our point, consider the computatlon of surface normal
- at a surface point p;, j lymg on the vrcm1ty of a crease edge by using a 5xS5 fitting win- -

. dowas shown in Fig. 2.2. The crease edge divides the range pixels into two regions Ry

. and Ry representing two. d1fferent surfaces, the range p1xel in question, p, j» being on
N surface R i- W1th a window size of 53, there w1ll be 25 w1ndows :
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Figure 2.1. - Fitting window over a crease edge causes the "smoothing" distortion.
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vthat can enclose the range pixel p; ;. In computlng the surface. norrnal of p, J» WE want
to choose a window of its ne1ghbonng range pixels that best estimate the tangent plane
at p, e Obwously, any window that includes the edge, such as W; ;, will give a dis-

Lo torted result because it would contain range pixels from the other surface R 2. To obtaln ‘ o

T a meamngful result, we must insist that the fitting window lie entirely on the: same side -
of the crease edge with p; ,j- Thus, in this example there are only five w1ndows can be»
- considered for the computation of the surface normal at the range pixel (i, /), these w1n-
dows-‘being" W,+1 -2 Wit j1, Wisg ja, W¢+2, j-1: Wisaj. To select from amongst
these windows, we bear in the mind the requirement that the center of the selected win-
dow should be as close to range pixel (i,J) as possible. On this consideration, of the five
‘windows, only Wi41,j-1 qualifies. This strategy for window selection raises the ques-
tion of how to put the two criteria into a mathemat1cal form such that we can evaluate
each candidate window accordmgly, the two criteria being that the window not cross
» 'any edges and that the center of the w1ndow be as close as pos51ble to the range plxel in
- quest1on e : , 2

“To develop thlS mathematlcal fonn for evaluatmg potentlal w1ndows for surface

."normal computatlon we note that the planar patch. ﬁttlng error is larger at those win-

. dows which cross an edge compared to those windows which do not; this is in keep1ng_
. with the observation made by [B&F -81]. Hence, the fitting error associated with each -

w1ndow can prov1de a indication of whether or not the window has run over an edge.

‘This observauon translates into the following mathematical form for evaluatmg a w1n-
dow Wk,l for consideration at range pixel (i,7) ‘ R

w(z,;,kz)e<wk,) | S I (27)

where w(z, ],k l) is a weighting function 1nverse1y proportlonal to the d1stance between'
the parameter space location (i), which corresponds to the range pixel p; - j» and the
location (k,!) corresponding to the center of window W1, and E(Wy,p) is the fitting error
over window W ;. We choose that window that minimizes 2. 7) among all such candi-
date windows, meaning all those windows that include the range pixel p(i,j). There are
- several ways to define the distance between two pixels in'a 2-D array (see [R&K ~-82]).

In our implementation, we have chosen to use the c1ty block d1stance ) the we1ght1ng
funcuon w 1s deﬁned as - . : '
w(””k ’)—, prapr oy A c>1.

Here the constant ¢ is chosen such that the distance  weighting will be the dormnant fac-
tor in the express1on Q@ if all the windows are within the same cont1nuous Ob_]CCt sur- .
face On the other hand if the planar patch fitting error is large, we want, the second
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‘term in express1on (2 7) to dommate The algorlthm in a pseudo language is sketched
below S : - :

compute surface normal () {

- for each i,j in the image array . .
: compute e(W; ;) of the best fit plane
ST m-] = normal of the best fit plane

. for each i, j in the image array
among allk,l € W;

, find k I that mrnlmlzes (w G, ],k l ) e(WkJ))
nl, jc ml: i '

We can see that the first part of the algonthm is basically. the conventlonal approach' _
except that the fitting errors, (W), are recorded at all the range pixels, meaning for all
‘the w1ndows The second part of the algorithm then looks at a certain nelghborhood of
each range pixel, and assigns that surface normal to it which corresponds to the
minimum of the evaluation function. Note that the only overhead involved in. this addi-
tional work, cotresponding to the second part of the algorithm where the best window is
found hes in the. deterrmnatlon of a minimum from amongst NxN values, th1s can be

done by maklng logo (NXN) compansons '

. We will now show on expenmental data the 1mprovements made possible with the |
adaptive placement of windows. - Fig. 2.3 shows a scene contamlng a wooden object
illuminated with 85 stripes. The resolution of the camera used in this experiment was
480x5 12, resultlng in a 480><85 array of offset data, with each offset value between 0
and 511. Since the resolution in row direction is much higher than that in the column
d1rect10n and since it really does not make much sense to work with unequal resolu-
tlons in the two orthogonal directions, we compress every. three rows of the array into-
one and then compute a 160x85 range image from the resulting data; the detarls on how '
_the offset 1nformatlon is converted into a range map are described in [C&K -87] and
can be found in this report in Chapter 1.. Note that although the array size is rectangu—
- lar being made of 160 rows and only 85 columns, the spat1a1 resolution is approxi- -
- ~mate1y the same in both- directions, the reason being that the camera looks at ‘longer’
extent space in the d1rect10n that corresponds to columns :
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To compare surface normal computation results with and without the adaptive
_ techmque, we show a needle diagram in Fig. 2.4 obtained with 5X5 windows using the
traditional approach (the non-adaptive approach). On the other hand, when the adaptive
approach is used, we get the needle diagram in Fig. 2.5. It is easy to see that the
smoothmg distortions have been vxrtually e11m1nated with the adaptlve method :

2.3. Range'Image Segmentation

In this section, we will present a region growing approach to the segmentation of
- range images. Ou£ algorithm is very similar to the one presented earlier by Snyder and
B11bro [S&B —85]

A, segmentatlon algorithm must segment a range image into regions that
correspond to smooth object surfaces. By definition, smooth surfaces are bounded by
- crease edges where surface normal discontinuities occur. In a range image smooth
object surfaces manifest themselves as regions of range pixels bounded by crease edges
and jump edges. - Suppose we are able to detect a range pixel correspondlng to one of '
these surfaces in a given range image. To grow outwards from this pixel, we must pro-_'
vide termination conditions that indicate the occurrence of jump or crease edges A
Jump edge occurs if there is a range discontinuity between two adJacent p1xels We can
detect a jump edge by using the followmg pred1cate

I pi J—Pril > range_ threshold

_ where pk'l is adJacent to p, j- This range threshold should be a function of scannlng
. resolution (spacmg between two adjacent scans) and should be chosen properly so that
two range points on a slanted surface would not be mistaken for a jump edge We have
chosen the range threshold to be 3 times the scanmng resolut1on :

A crease edge is where surface normals suddenly change d1rect10ns in the range'

image. In order to detect the occurrence of surface normal discontinuities, we must rely‘

“on the change rate of surface normal from one pixel to the next. This change rate may
be regarded as a form of normal curvature measurement [0 —66]. The follc'Wi'ng predi-

cate captures the rate of change of surface normals and can be used as a stoppmg cri-

" terion for the detectlon of crease edges. '

R R

We apologize to the reader for mrsusmg the phrase ‘region growing.” What we have-done can
be simply implemented by first detectmg edges in a range image, followed by connective analysis
of the non-edge. pixels. The connectivity analysis could be unplemented efficiently in the
parameter space (i;j) directly. We felt compelled to use the phrase ‘region growing’ in
connection with our algorithm since our algorithm is very similar to the so-called region growmg '
method descnbed in [S &B -85]. :
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‘cos™! (n; ‘)
| 1Pij = pri!
‘ Theoretlcally speakmg, as the points p;; and pk‘l get closer the predlcate approaches -
the ‘normal - curvature at one of the two points. [Note that the norinal- curvaturé
corresponds to the curvature associated with the curve obtained by cuttmg an ObJCCt
surface’ with a plane. In the curvature measure shown here, the cutung plane is that
“plane which | passes through the points p; j and py ; on the object surface. The third con-
strainit on the cutting plane is that the surface normal at either pi,j or Pk also be con-
tained within the plane.] This curvature threshold used should exceed the makimuti of
the maximal curvature of any of the smooth surfaces expected to be encountered i 1n the
~scene. For example assume that the most curved surface in the scene corresponds to a
sphere of radius 3", then the curvature threshold should be no less than 1/3 the normal
jcurvature of a sphere of radius r be1ng ur. -

> curvature threshold.

, " Range 1mage segmentation proceeds by growing a reglon in. all d1rectlons by
‘ ‘recursrvely merging neighboring range pixels depending upon the two. predlcates -

defined above. Segmentation results on the range image shown in the previous section = -
- are 111ustrated in Fig. 2.6. In general, the performance of this growing procedure is

“highly dependent on the quality of range data and surface normals because only local
. information is used. However, since our adaptive window technique is capable of | pro-
- ducing clear, nondistorted ‘surface normals; this simple region growmg method pre- -
forms qulte well for the types of scenes we have worked with in connectlon W1th this
research :

- We can also extract vertices and edges from a segmented image. To do so, we
trace the boundary of each segmented region clockwise and monitor the labels of its
neighboring regions. A change of the labels signals the presence of a vertex, and any -
two adjacent vertices define an edge. The type (crease, occluding, or occluded) of each
edge can be determined by comparing the range values on the two sides of the edge. -

| Only a crease boundary is regarded as a real edge. The adjacency relatlonshlps between ‘
-surfaces are also recorded durmg th1s boundary trackmg

2.4, Classification of SurfaceS' |

leen a processed range image, we want to clas51fy each segmented reglon 1nto
one of three types of surfaces, namely planar, cylindrical or conical; of course, if a
- Tegion does not fit the criteria for any of these thiree categories, we would like the
region to be classified as unknown. ‘Theoretically, by fitting a quadric function to the
range data of a segmented region and examining the coefficient of the best fit quadric -
functlon we can determine which type of surface the region is. However as noted by
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Hoffman and Jam [H&J —87], in practlce those coefﬁ01ents are very sensitive to noise.
In th1s section we present an efficient method to classify segmented reglons mto the .
three surface types based on the charactenstrcs of thelr extended Gaussran 1mages

The extended Gauss1a.n image of a surface is obtamed by mappmg the surface nor- -

mal at every po1nt of the surface onto a Gaussian sphere [/k—83] [Ho—84]. For a planar
'surface, the EGI is a small patch whose orientation on the Gaussian sphere corresponds
to the normal to the plane (see Fig. 2.7- a). For a cylindrical surface, its EGI is a great
‘ cncle whose ax1s is parallel to the ax1s of the cylinder (see Fig. 2.8-a), by the axis of the

’ 'C1rcle is meant a unit vector perpend1cular to the plane of the circle and passmg throughf
’ _'1ts center And ﬁnally, for a conical surface, its EGIlis a minor circle of radius less than

e one, the ax1s of the minor circle being again parallel to the axis of the’ conlcal surface,

as shown in Fig. 2.9-a. In addition, as illustrated in Fig. 2.10, the. d1stance from the
center of the sphere to the plane contam1ng the circle in each case is g1ven by

d—s1n(9)
. wnereas the ,radaus of the circle is given by
- r=cos(0), '

6 belng the cone angle.. It is useful to think of planar and cylmdncal surfaces as two -
special cases of a conical surface We can eas1ly visualize a cone becormng a plane by
-lettmg the cone angle 6. approach n/2. To see how a cone deforms into. a cyhnder of
radius r,-we first fix an orthogonal section of the cone where the radius. equals rand
then let 9 approach 0. by pulling the t1p of the cone away from the section. The effect of
deforming a cone into a cylinder or a plane can can also be seen in its EGI; As the.cone
angle 0. approaches 0, the circle on the Gauss1an sphere becomes a great circle, and as.0
approaches /2 the circle shrmks to a point. In other words, We can regard. the. EGI’s of
planar and cylmdncal surfaces as the two. extreme cases of the EGI- of a cone.

Based on the above observat10n we.can class1fy a reg1on of range data by usmg
the procedure sketched below. First, we. test ‘whether the EGI of the region fits a "gen-
eric’ ' circle. If i it doesn t, the region should be classified as unknown surface; otherwise, -
we compute d the distance of the plane. containing the circle from the center. of: the
| ‘sphere, and classrfy the region into.one of the. three types according to the d1stance of
course, in ‘practice, for any of the three surface.types, points on the sphere. may not. be: o

available everywhere on. the circle. Therefore, an assumption in our: work is, that g, .

- sufficiently large arc, segment of. the circle is available in order. that we. may ﬁnd the= =
plane that contalns the c1rcle e

Clearly, our procedure for surface class1ﬁcat1on requires. that we- deternnne :
whether or not the po1nts on the EGI fall.on a circular arc and, if they do then we must,
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A planar surface _ The surface normals are mapped onto

with its surface normals "a small patch on the Gaussian sphére

iy

Fitting a plane to the points

on the Gaussian sphere

Figure 2.7. The EGIs of a planar surface and the fitting plane on the Gaussian sphere.
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A cylindrical surface .~ The surface normals are mapped onto

w1th its surface normals: - -~ agreatcircle on ﬂle‘Gaussjan ‘sphere

Fitting a plane to the points

on the Gaussian sphere

Flgure 2 8 The EGIs of a cyhndrlcal surface and the ﬁtung plane on the Gauss1an
spherc
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"'A cone with its surface normals : : . the surface normals are mapped onto
‘ v a small circle on the Gaussian sphere

R

" Fitting a jjlane to the points

- on the Gaussian sphere; here, 0<d<l -

Figure 2.9. . The EGIs of a conical surface and the fitting plane on the Gaussian sphere.
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Figure 2.10. The radius of the circle, which is the EGI of a conical surface, is equal to
cos(0); the distance from the sphere center to the center of the circle 1s '
given by sin(), where 0 is the cone angle.



52 I - chen/kak

compute the distance of the plane containing that circle from the center of the sphere.
Observe that any point n of a perfect circle on a Gaussian sphere with axis @ and per-
pendicular distance d must satisfy the following equation :

na-d=0. ; B X

This turns out to be a plane equation with normal a and distance from the center equal
to d. Thus the circle can be interpreted as the intersection of the plane with the Gaus-
sian sphere Therefore, if we fit a plane to the EGI points for all three cases, for the
~ case of a planar object surface the fitted plane would have to be tangential to the Gaus-
sian sphere and hence its perpendicular distance from the center of the Gaussian sphere
would equal 1, as shown in Fig. 2.7-b. On the other hand, the fitted plane for a cylmdn—
cal ObJCCt surface must pass through the center of the Gaussian sphere (see Fig 2.8- b).
And, finally, for a conical object surface, the fitted plane would be located at a dlstance
between 0 and 1 (see Fig. 2.9-b). To accomphsh this plane fitting, we mlmmlze the fol- :
low1ng error function , : s
e= Y (n;-a - d)?
_ .. i, jeregion
At thls point, the reader would note that this minimization problem is exactly the same
as the plane fitting problem discussed in Section 2. Again, a and d can be found by
solv1ng the eigénvector of a matrix R which is a function of n; ; as defined in Section 2.
If the EGI of a surface is indeed an arc on a circle, then the estimated @ and d should
y1e1d very small fitting error €. On the other hand, if the EGI of the reglon is not part of
~ a circle, meamng that the surface is none of the three primitive types, we can expect a
51gn1ﬁcant1y larger fitting error €. Thus by properly thresholding the perpendlcular dis-
tance d we can determine whether or not the region is a generic cone. The complete
: algonthm in pseudo language is glven below: L

cla551fy reglon (Re) {

find a, d Wthh minimizese= Y, (n;;"a - d)2
. . l]ERk .

L compute e

—_— unknown threshold
//Rk//

. “return (unknow type)
L elseif d> plane_threshold
" normal =4
~ return (plane)
" else if d < cylinder_threshold
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cylinder_axis = @
return (cylinder)
else
cone_axis = d
“cone_angle = sin! (@)
return (cone)

Note that the conditions we use for surface categorization are necessary but not
sufficient. For example, a major circle on an EGI will be produced not only by a
cylinder but also by a ruled surface.



' _ CHAPTER 3 .
3D-POLY A ROBOT VISION SYSTEM FOR RECOGNIZIN G
.3 D OBJECTS IN LOW-ORDER POLYNOMIAL TIME

) 3."12 Introductlon ’

The task at hand is to locate and identify mstances of known model ob]ects ina
range image. The objects are assumed to be rigid. This task can, in general be accom-
' phshed by. matching features extracted from the image (scene features) w1th those ﬁ
descnbmg models ‘(model features). We will assume that the features are geometnc 1n -
nature and can be charactenzed by shape, posmon and orientation; such features may
» 1nc1ude surfaces, edges pomts etc. e .

What are the des1rable traits- of a good system for obJect recogmtlon and locatlon’?
N ‘Clearly, it should be robust enough to work in multi-objéct scenes wheére the 0 jects
- may be occludmg oné another. The complexity of the system should exh1b1t a low- '

- order polynomral dependence, on, say, the number of features involved. Thé system

should also be easy to train, meaning that it should be amenable to "leatning by show-

- ing." In our context, that theans that if we showed the system an object in‘all its external

‘ ‘entlrety then the system should automatically .extract the relevant 1nformat10n that it
would subsequently use for recogmtlon and locatlon determination.

A system with these traits is in operatlon in the Robot Vision Lab at Purdue The

| system, called 3D POLY, has been tésted on scenes consisting of mutually occludmg -

obJects Fig.3.11i is an ‘example of such a scene which is made of two different types of
objects shown in Flg 3.2. Evidently, these objects, whose surfaces are of planar and
conical types in convex and concave juxtapositions, do not exendplify the most difficult
‘that can be found in the industrial world; liowever, their recogmtlon in occluded'»
'~ environments represents a significant advance in our opinion. The various frames in
Fig. 3.3 illustrate a successful determination of location and ideiitification of oné of the

- objects whose surfaces are sufﬁc1ent1y visible in the scene of Fig. 3. 1, and the manipu- Co

lation of this object by the robot For the objects in the heap, the models were autotnati--
cally generated by the system — we call this learning by showing — by placmg each
object in a computer controlled scanner; each object was shown in many different
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(b

(a)

Figure 3.2.. The two objects that make up the pile in the scene shown in Fig 3.1.
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A jsaqﬁence of 'framés-sh'ows the robot sﬁccessfully plckm
nized object. - " ' ‘ o
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conﬁguratrons so that the system could build an integrated "whole view" model of the
‘object. The details of the "learning” system will be presented in Chapter 4.,

The aim of this chapter is not to descnbe the entrre system that results in the type
of sensor-guided manipulation shown in Fig. 3.3, but only those aspects that deal with
. strategies for hypothesis generation and the manner in which the model 1nformat10n is

- organized to facilitate verification. In the next section, we will state more: formally the _ '-
problem of determining the identity and location of an object. Against a background of o :
- this problem statement, in Section 3 we will discuss the literature related to our

~‘research. Fmally, the rest of this chapter will then present the mam theme of thlS artlcle .

3. 2 Problem Statement

: Before we formally state the problem of ‘object recognition, we would hke to |
deﬁne the more 1mportant symbols used in our presentation. '

e SorS;: A scene feature will be denoted by S. When more than one feature i is under B
’ ‘d15cuss1on the i** feature will be denoted by S;. ‘

. ‘o M or M; will denote model features.

e O, Will denote a scene object. For the purpose of explaining our hypothesis genera-
~ tion strategies and verification procedures, we will assume that the scene consist of
a smgle object. However, as will be pointed out in Section 7, the entire method is
easily generalizable to ‘multi-object scenes. (Of course, its success in multi- -object
scenes would depend upon the extent to which an object is visible.)

S e 0 will denote a candidate model object. Selection of a model Ob_]CCt from the
library of objects available to the system is part of hypothesis generation.

e n will denote the number of features extracted from the scene object.
e m w1ll denote the number of features in the model ObJCCt

e Trwill represent the location (orientation and position) of the scene object; it 1s 1n -
~ fact a transformation consisting of a rotation R and a translation . The transforma- -
tion takes the object from the model coordinate system to its actual location in- the

world coordinate system (see Fig 3.4). Actually, the model coordinate system is the - "
same as the world coordinate system, the only difference being that in the former all

model objects are supposed to reside at the origin in some standard orientation.
When we say a model object resides at the origin, we mean that some reference
~pomt on the obJect is coincident with the origin. :

t We will also use T to denote the set of all possible solutions for the location of an ob_]ect e
glven the cmrently known constraints. The type of usage should be clear from the context. \
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A scene object

A model object

/ object-centered
/ = coordinate system

....
_____

Tr

Figure 3.4. The relation between the object-centered coordinate system for the model
data, the world coordinate system used for the scene data and the transfor-
mation that specifies the pose of object.
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o ¢ w1ll denote a one-to—one mappmg function between the scene features and the
. model features. In this paper, we will assume a one-to-one mapping- between the
- seene . features and the model features. Although there can certainly be s1tuat10ns_

“where a one-to-one mapping may not be appropriate ~— for example, when scene

“edges are broken oneé may have to map more than one scene edge to the same

model edge — our segmentation algorithms do manage to produce features at
" almost the same level of connectivity as the model features, at least for the types of

scenes depicted in Figs. 3.1 For example, Fig. 3.5 shows the edge and surface
. features of the- obJects ina heap : : :

W1th th1s notatlon a scene object may be represented by
‘ H~—{S|l—1 ..,n}

| anda model object by | _ |
| =(M;1j=1,...,m) | o :
“where the ordermg of the features is ummportant at’ th1s tlme we w1ll have more to say '

about the subJect of ordering later, since it plays an 1mportant role in the mterpretatlon
~of mulu-object scenes. :

» Smce all objects will be assumed to be rigid, if object Oy is an’ instance of model
Oy placed at location T in 3-D space,’ then every observed scene feature of O, must be
- an instance of some model feature of O transformed by the rotation and translation
spec1ﬁed by Tr. One may now state our problem more formally by saying that the aim
of our system is to find a model object, O,,, determrne its position and orientation
transform Tr and establish a correspondence ¢ : O;—0,, such that

SesTMe e

for all S; e O;. Here <=>. symbolrzes a match between the two features S; and M, (,) o

“The criteria under which two features may be considered to match will; in general,
depend on factors such as the types of features used, capabilities of the sensor,’ -occlu-
sion, noise, etc., and will be addressed later. Equation (3.1) prov1des a framework for
drscussmg the problem of feature matching in general terms.

The problem of recogmtron and localization of a scene obJect may be decomposed
into the followmg three subproblems:

. () \Select a candidate model O,, from the hbrary, this generates the obJect

‘1dent1ﬁcat10n hypothesis. .
"(b) : Determme (esumate) the locauon Tr; this is the location hypothes1s

(©) Establlsh a correspondence ¢ between O; and O,, that satisfies equanon (3 l)
Such a correspondence constitutes verification of the: hypothes1s
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The size of the solutlon space for the first subproblem is proportlonal to the number of
. model" ob_]ects in the ‘model library. For the second subproblem, one has to contend
~with the six degrees of freedom associated with the transformation Tr, three of these
’ -belng associated with the position vector ¢ and the other three with the onentatAon
matrix R. If we use RT" to denote the solution space assomated w1th the second sub— '
problem, 1t isgivenby ’

‘ -_R = R3x[0 2w ][0, 2x]X[0, ]

. }where R stands for the real line, and, therfore, R3 stands for the solutlon space
correspondlng to all p0551b1e solutions for the translational vector z. The solutron space
associated . with the third subproblem is obviously of size m”", since, in general one
must allow for all possible ways in which the n scene features can be matched wrth the
m model features. Therefore, we can write the followmg expression for the solutlon
space assoc1ated with the problem represented by equatron (3 1) : '

# of models xRT’ ><m

We do not wish to give the reader an impression that strategies for range 1mage
mterpretatlon must be founded on the problem decomposition shown here, only that it
is a preferred approach for us (and a few other researchers in other laboratones)

'Approaches that do not conform to our problem decomposmon do exist and some of |
l ~ these have been extensively investigated. In our literature survey in Sectlon 3 we have :
: alluded to these competmg approaches. : o ‘

» In general any solution to the problem of matchmg a scene object 0 w1th a can-

» dldate model Oy, can, for the purposes of analyzing complexity and efﬁcrency related
issues, be conceived of as a tree search, as for example shown in Fig. 3.6." A traversal
through the search tree may be referred to as a recognition process, each arc in thef':' .

; traversal. representmg an attempt at scoring a match between a scene feature and a '
~ model feature. Each node in a traversal may be considered to represent the current state :
-~ of the recognition process, where the current state is spe01ﬁed by (¢*, Tr") w1th c '
~ being a partial correspondence list established so far and 7r"* representing -the parual;

solution to the determination of obJect location. Clearly, the initial state of tree search, -

represented by the root, should be (c* = Q Tr* —RT’ ). Through the tree search, ‘we 4

mcremently construct the correspondence ¢ on the one hand and contract the solution |

- space of Tr" on the other. A model object is considered to be an acceptable 1nterpreta- B
tion of a scene object if the traversal reaches one of the terminal nodes. Since reachlng «
a terminal node merely means that all of the n' scene features have been matched, it
E clearly does not constitute a sufficient condition for object recognition; all that can be
- said is that the model is an acceptable interpretation. If no traversal in the tree search is
able to arrive at a terminal node then the candidate model object must be rejected Note B
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s: scene feature

m: model featlire

Figure 3.6. Data driven: tree searéh. ‘
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- that thé tree search deplcted in Fig. 3.6 represents data-drrven approach to the recognr- |

© tion process, the search being data driven because the sequence of matches i 1s controlled o

by the order of the scene features. Alternatively, the recognition process may be. cast i 1n

" a model-driven framework as shown in Fig. 3.7, where the sequence of matches is con-

trolled by the order in which thie model features are invoked. The time complex1ty ,
associated with model—dnven search is O (n™). For recognizing isolated smgle objects;

since n will be approxunately equal to m /2, reflecting the Ppossibility that only half the
features would in most cases be visible from a viewpoint, and since m™/? is less than
(m /2)™, one can argue that for such cases a data-dnven search mrght be more efﬁclent _
' ’than a model-dnven search. ‘

Gomg back to the data-drrven tree search shown in Fig. 3.6, since each’ path in the

 tree corresponds toa poss1ble solution to the correspondence ¢, and sifice in the ‘worst
cas¢ the search may have to sweep through the entire space (via, say, backtracklng)
~ and since the total number of nodés in the space is of the order of m” , the titie com-
 plexity of an exhaustive search- on the tree is equal to O (m™). This exponential coth-
- plexity, ‘which is unacceptable for practically all applications, can be substantrally
reduced by usmg constraint propagation, of which hypothesis- and-verrfy is one exam-
' ple In thls paper we will show that it is possible to establish a hypothes1s—and-ver1fy
approach in'such a manner that the time complex1ty reduces from the exponenual toa
low order polynomlal '

| 3. 3 Related therature

Oshlma and Shirai [O&S —83] [Sh —87]represent both the scene and the models byg
- graphs whose nodes represent planar or smoothly curved surfaces together with their
attributes, and whose arcs represent relauons between surfaces, the relations being of
type adJacency, convexity or concavity of common edges, dihedral angles, distance -
between the centroids, etc. The attributes of the surfaces at the nodes include perimeter,

area, mean. region radii, etc. In fact, for the models a separate graph may be used for : |
1 each 'typical view of the object;" the authors do not make clear what they mean bya

“typical view." Given a range image of unknown objects, their system first selects a
"kernel", wh1ch consists of one or two most reliable surfaces for recognition, then per-
forms an exhaustrve search of all model graphs to find all compatible model kemels .
’Fmally, the system performs a model-driven depth first search and attempts to. ﬁnd a

 correspondence between the remaining scene surfaces and the model surfaces “This -

approach is an example of hypothesis generation and verification, a hypothes1s belng a .
model object i in a pose correspondm g to what they call a typrcal view. -
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_s: scene feature
~'m: model feature

Iy

: Fig;ire,3;;’-.7 - -MOdei driven tree séarch.‘
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- Fan, Med10n1 and Nevatia [F&er—88] present a scheme for estabhshmg the. |
correspondence of objects and object surfaces between two range images representing -

two views of the objects. Note that this problem is similar to the one addressed - by ) _
Oshimia and Shirai, in which a model is actually a typical view of its corresponding :
object.’ They also describe scenes by graphs as Oshima and Shirai did. However, in

their approach before feature matching starts, each graph is segmented into a set of |

subgraphs, each subgraph representing a candidate object to be matched. ThlS obJectf
segmentatlon is done by grouping surfaces mainly linked by convex and concave boun-
daries. Be51des they use a richer set of surface descriptors, such as average pnnc1pal -
kcurvatures, 3.D areas, etc., and use transformation constraints, which are global con-
stramts, 1n addmon to the mter—surfaces constraints for graph matching. '

Tomrta and Kanade [T&K —84] present an edge-based vision system for recogm- '
tion and locallzatlon of 3-D objects. An input range image is segmented into planar or -
conic surfaces and each surface i is then descibed by its boundary segments. Each object
model is described in the same manner from range images acquired during a learnmg'
- phase. By matching boundary components through an exhaustive search, a transforma-

 tion is then hypothesized. The candidate transformation is then tested by matchmg the
other boundary segments for verification, the matching invoked durmg the venﬁcatlon -
phase be1ng controlled by rellablhty, plaus1b111ty, etc. : '

Bolles and Horaud [B&H -86] in the1r 3DPO system emphas1ze the i 1mportance of
feature ordenng in reducing the complexity of matching. Their matching strategy starts
: w1th a d1st1nct1ve edge feature, and then grows a match by adding compatible’ features,
one at a time. Once a sufficient number of compatible features has been detected to

~ allow a hypothesis to be formed, the verification procedure evaluates it by companng
‘the measured range data with the data predicted according to the- hypothesis. The ord--

ering of features to be matched is predetermined by an interactive feature-selection pro- |

cess, the ordering being done on the basis of uniqueness, cost of detecting it, likelihood -
of its detection, etc. Selection of a branch at a node of the search tree is hard-wired in
this system. In other words, the sequence in which the scene and object features are
matched is precompiled by the human operator. o

. Ikeuchi [Ik —87] presents a procedure for determining the unknown attltude of an =
Ob_]CCt from 3-D measurements; the procedure uses an interpretation tree to gulde the
process of matching scene features with model features. Upper levels of the interpreta-
- tion tree seek to categorize the attitude of the object with respect to one on its aspects
(with respect to a given v1ewpomt an aspect is a grouping all the attitudes that appear

topologically similar from that viewpoint). Attitude categorization takes into account

visible dominant surfaces and their 1nterrelat10nsh1ps Starting with the knowledge of ~
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the aspect, lower levels of Ikeuch1 S mterpretatmn tree then try to calculate more pre-
cisely the Ob_]CCt attitude. In the work reported in [k —87], the mterpretatlon tree was
specified by a human; however, we believe, it is now possible to complle it automati-
cally from the CAD models of an object. The reader should note the important differ-
ence between an interpretion tree and the search tree shown in Fig. 3.6. Whereas the

latter is a search space associated with the pairings of scene and model features, the
former is a delineation of the steps of a procedure that must be invoked for interpreta-

tion, the alternative choices of the steps of the procedure bemg convemently' '

represented by the branching of a tree.

Hansen and Henderson [H. &H —87] also propose a method for the automatrc gen-
eration of recognition algorithms, also in the form of interpretation trees, based on the
geometric properties of object shapes. They select and order features in the interpreta-

tion tree based on four qualities, namely, rarity, robustness, computational expense ,

completeness, and consistency. The synthe51zed interpretation tree has two parts, the
first part is for matching the strongest set of view independent features; the second part
then finds corroborating evidence in support of the hypothesis generated by the ﬁrst part
and thus completes the determination of the ob_]ect S pose. ‘

Faugeras and Hebert [F &H —-83}, [F&H —86] present a 3-D ob_]ect recogmtlon and
locahzatlon system based on geometrical matching between primitive surfaces. Primi-
- tive surfaces in a scene are segmented by region growing based on planar or quadrrc
surface ﬁt 'Each model object is also represented by a list of primitive surfaces The

recognition process consists of first selecting from the model object a feature, such as
an edge or a surface; then they look for a scene feature to match the selected model
feature. The next step consists of the selection of another model feature, such that this
- and the previous model features completely constrain the pose of the model object
,(clearly, if- the two model features are edges, they cannot be parallel; or, if one model '
feature is a cyhndncal surface and the other a planar surface, the principal axes of the .
two cannot be orthogonal). The system looks for a scene feature to match the second. :
: model feature The two scene features thus found generate a hypothesis for the tranfor-
matlon matrix for the scene object. The verification of the hypothesis consists of match-
‘ing the remamlng model features with the available scene features.taking 1nto account"
the position transformation. The verification stage carries out the minimization' of an
- error measure, the measure being a sum of the errors between the predicted positions
and orientations of the model features and their actual positions and orientations in the
scene. The construction of this error measure is facilitated by organizing the scene
features on a unit sphere which captures the relative orientations of the features and.
allows quick comparison with the transformed-model features. o
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Gnmson and Lozano Perez [G&L -84] address the task of matchlng a set of
observed range points, together with the measured local surface normal, with . the sur-
faces of polyhedral objects. Matching consists of assigning observed points to obJect
-surfaces under the constraints corresponding to the upper and lower bounds on parame- ‘
~ “ters such as the distances between two observed points, the angles between their
assigned surfaces, etc. When a glven set of surface assignments satlsﬁes all the local
.constraints, a feasible mterpretatlon of the measurements is generated — a feasible
- 1nterpretatlon is like a hypothesis that must be verified subsequently. Local constralnts
constitute necessary but not sufficient conditions for the correct ass1gnment of surfaces
to the measured range points. Another way of expressing the same idea is that even if -
local constraints are satlsﬁed there may not exist a valid global transformation that -
agrees w1th the generated assignments of surfaces to the measured points. “This is illus- -
trated by Fig. 3.8, The measured points P, Py, and P5 can satisfy all the usual local
constralnts with regard to assignments (P 1,f1) , (P2,f2), (P3,f3), where f1,f>, and f3
are three model surfaces. However, there does not exist a global transformation that -
~would agree with the assignment.. Dur1ng verification phase, for every two measured =
points and the normals of their assigned surfaces, a rotation matrix is estimated;. ‘and, 7
_ eventually, the centroid of all such rotation matrices is calculated to setve as a rotation
transformatlon to bring the model and the scene objects into c01n01dence In a s1m11ar -
: manner from every three measured points, a translation matrix is computed and ‘even-
- tually, the centroid of all such translation matrices found. The average rotatlon and
. translation matnces thus computed are applied to transform the model obJect 1nto the
" scene space. Fmally, the validity of the average transformations is computed by pro_|ect- L

. ing the measured points onto the correspondlng model surfaces. During this process, the L |

) visystem calculates the normal distance between a measured point and its assigned sur-.

- face and, also, the system projects the point onto the ass1gned surface to carry out an

1n51de-outS1de computation. If the projection is found to be outside the ass1gned sur-
. face, that is an mdlcatlon that the feasible 1nterpretatlon under test may not be so- feasr-,
ble after all '

In a more recent report, Grimson and Lozano-Perez have reported an extensron of
their system in which constraint propagatlon is used in conjunction with the local con-
straint- satlsfactlon [G&L —87]. The basic idea here will be explained with the help of -
Fig. 3 9. We will assume that we have two range measurements and the assoc1ated sur-

B face normal measurements, as represented by the points P1 and P2 in Fig. 3.9. From

these measurements, we can compute the distance d and the angle 0. Let us further
assume that on the basis of the measured surface normals we have selected the two
model surfaces shown in the figure. In the model database, we will associate a “base '
point” Wlth each'surface, as depicted by the points B1 and B2 in the ﬁgure One can
. now show that the two measured points can occupy only partlcular posmons w1th



" model

Flgure 3.8.  This figure shows that satlsfymg local constraints does not- guarantee a
- global transformatlon between the model object and the scene ObJCCt
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viewpoint for making

range measurement

Figure 3.9. If we know the range values to the two points, P1 and P2, shown in the
figure and the local surface normals, we can then compute the distance d
and the angle 6. These two parameters are used in a constraint propaga-
tion approach to object interpretation.
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respect to the base pomts on the respect1ve surfaces. In other words, after the measured
po1nt Pl is assrgned a location on surface 1 with respect to base pomt B1, then on sur-
face 2 the measured point P2 must lie at a fixed location with respect to base point B2

stnctly speakmg, this being true only in the absence of noise. In the presence of
v n01se, one could predrct an interval in which the second measurement must lie. The idea
. in constraint propagatlon is to compute this permissible interval as one goes down the
1nterpretatlon tree and, of course, when the permls51b1e interval for any assignment goes
'to Zero, one need go no further along that path in the tree. We believe that this very
5 elegant idea is quite complex to implement for the case of 3 D objects because of the

algebraic difficulties with the representation .of arbitrary shaped polygons in terms of

parameters that can be bounded for the purposes of constraint propagation. However |
, bas1ca11y, the idea i is powerful and ments further investigation. :

In the1r object recogmtlon approach Besl and Jain [B&J —86] use the 1dea that a
- smooth surface can be charactenzed by its Gaussian and mean curvatures, which are
invariant to rotations and translations. Each surface point is. classified into one of eight
'categones according to the signs of its Gaussian and mean curvatures. Their recogni-
tion procedure . first extracts critical points from a range image, a critical point be1ng
- defined by the intersection of zero-crossings of the two partial first derivatives of a

ge map with respect to the two parameters of surface parametrization. Only critical
: pomts with pos1t1ve Gaussian curvature are used. Finally, a critical point together with

L 1ts nelghborhood which carries the signed information about the Gaussian and mean
. curvatures, is used as a shape descriptor for the purpose of object charactenzatlon Ori-
- ginally, the aim of these authors was to use such shape descriptors as v1ew-1ndependent»

features, since, after all, the Gaussian and mean curvature computatlons are view
mdependent However, as the authors now realize [Ja—88], the choice of the critical
'pomts is extremely sensitive to v1ewpomt selection. For that reason, this strategy may
not y1eld acceptable results 1n pracuoe : .

Bhanu [Bh —84] uses stochastlc relaxat10n for labelmg the surfaces in' a range ‘map.
ObJect surfaces are approximated by-convex polygon faces, and the neighbors of each
face are ranked according to their areas. Fundamental to any relaxation labeling is the
definition .of - a compatibility. measure which measures the appropriateness of assigning a
- -model label to a scene surface given a label assignment at a neighboring surface. In
Bhanu s work, this measure is defined as a function of the distances between the cen-
trords of the scene surfaces on-the one hand and between their assigned labels on the
: other' of ratios of the areas of the surfaces computed in a similar fashion; etc. Compu-

- tation cons1sts of two iterative. stages In the first stage, only a pairwise compaublhty

- functron is used, meaning, for example that the compatibility function is a. function of
o some attnbute of two nerghbormg surfaces and their two correspondmg labels In the-



) 'computauon those labels are retalned that maxnmze the overall compa
assrgned labels B ‘

v Another 1nterest1ng approach called "pose clustermg" or "generalrzed Hough‘:'
transform is proposed by Stockman [St —87] He uses a Hough space of 12 ‘parameters
‘which are the 12 unknowns of a 4x4 transformatlon matrix. - The basic rdea in this

”approach is ds follows Suppose we match a planar scene surface with a 51m11ar model
surface, in general this would ot generate a unique transformatlon bccause of the

remammg three degrees of freedom, meaning that after the two surfaces are brought

into’ comadence it will still be posmble to translate and rotate one with respect to; the ‘

- other. Although a unique transformation is not generated such ‘a match does:constrain

the possible transformations; implying that in the parameter space such a miitch would

lead to a subreglon wh1¢h must contain the correct transformation. By d1v1d1ng the.
parameter space into bms and keeping track of contributions made to each bin: by dif-
ferent matches, and retammg the bin with a maximal entry, it should theoretlcally be
poss1ble to deterrmne the correct transformation. In practice, a direct 1mplementat10n of :

'_ this idea i is difficult because of bin counting in high dimensional spaces To get around, :

'.thls d1fﬁcu1ty, Stockman matches a pair of non-coplanar edges from the scene w1th a

pair of- edges from the model, such a match generating a single point in the parameter ‘

. Space, since thére can only exist one transformation matrix capable of taking two non-- -

coplanar edges from the scene into two non-coplanar edges from the model. Stocan L
~ then apphes a clustermg algorlthm to the resulting points in the parameter space to find '

the most. plau51ble tranformation. ‘The clustermg algorithm consists of exammmg every‘.

“point generated in the parameter space, constructing neighborhood around such pomts, o
and countmg the number of neighboring such points in each- nelghborhood The pomt '

~with the largest number of neighbors i is the desired unique transformation. The i impor- .
tant issues in this computation are those that deal with the choice of the 51ze of ne1gh- ‘
borhood, and the thresholds to be used for re1ect1ng the most dense nelghborhoods o

In the 11terature cltatlons above, all the researchers have first extracted features, )
such as edges, planar, quadric and other surfaces, etc., from ~range 1mages and then
matched these features with those of models. There do exist other methods in: whlch )
: .matchlng is not preceded by feature extraction, For example, in the extended Gaussmn- -
image approach of Horn [Ho ~84] and Ikeuchi [Tk -83], surface normals measured from -
~ a scene ‘are mapped d1rectly onto a unit sphere and the resulting EGI is then compared
with that of the model. The EGI approach has also been used in [Y&K -~ 86] and -
[Y&K —86] for determmlng the identify, position and orientation of the topmost obJect' )
ina p11e of s1mp1e shaped obJects : *
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Then there exist approaches where for every poss1b1e viewpoint an 1ntegrated
~ value of some geometrical parameter is represented on a unit sphere for comparison
- with a similar representation of a model. For example, in the work of Fekete and Davis
[F&D —84] and Korn and Dyer [K&D —87], an integrated value of some surface pro-
: perty seen from different viewpoints is recorded on a sphere and used for the estrmat10n
of ob]ect pose. Note that the feature sphere 1dea advanced in our work here bears no
resemblance to this prior work. Another interesting approach, called geometnc hash-
- ing, i§ proposed by Lamdan and Wolfson [L&W-88]. In that approach every ‘model

feature is made accessible through a hashing table, the hashing function being derived
from the positions/orientations of the features in relation to a coordinate system defined
‘ona base which consists of a minimal set of features for determmlng an obJect pose.

o Fmally, there are many approaches de51gned for the recognition of 3 D or 2-D
Ob_]CCtS using 2-D 1magery, e.g. the ruled-based ACRONYM system [Br -83], the
" charactenstw views approach [C&F -82), and the automatic programming approach
[Go —83] just to name a few. The reader is referred to the review articles by Ch1n and
Dyer [C&D —86] and Besl and Jam [B&J —85] for general surveys of the subJect

3, 4 Features for Ob_|ect Recogmtlon

_ The concept of a feature normally 1mp11es some sahency wh1ch makes 1t espe- ,
: ‘01a11y effectlve in describing objects and in matchmg Since the recognition of obJects
will be solely based on shape, of primary interest are geometric features, such as edges,
vert1ces, surfaces together w1th their mathematical forms, etc.  Such features specify
_ three d1men81onal shape, in contrast with features like surface texture, color, etc. These
" latter features, although important for recognition of objects by humans, will not be
“addressed in this paper, since they can not be detected in range images. In 3D-POLY
- we cons1der ‘only those geometric features with which we ‘can associate -positions or
onentatlons For example, a vertex feature has associated with it a position vector, -
~which is the vector from the origin to the vertex. Similarly, a: cyhndrlcal-surface
'feature has assomated with it an onentatlon, which is the unit vector parallel to the axis
- _of the. cyhnder We will categorize the geometncal features into three d1fferent classes
,pnrmtrve surfaces, pnm1t1ve edges, and pomt features :

Pmmtlve surfaces include planar surfaces, cyhndncal surfaces and COIllC surfaces
which are three special cases of quadnc surfaces. Primitive edges refer to. strarght-hne
- features or ellipsoidal- curve features. Point features consist mainly of obJect vertices .
and those surface pomts that have distinctive d1fferentlal—geometrrcal propertles, sur-
face points fallmg in the latter category exhibit maximal or minimal curvatures or can

o be saddle pomts These three classes of features are effectlve in descnbmg the shape of -



like generahzed kcyhnders [N&B —77] and’ pnmmve sohds [Re —80] that are often
deﬁcult to extract from range 1magery :

: 341 Attrlbutes of Features

We re esent a feature by a set of attnbute-value pairs, each ; palr bemg denoted by ,
<a WS, where a is the name of the attrrbute and v its value. Thé value of an attnbute
can be a number a symbol a set of labels of other features, or a list of sorme of these;
dependlng on the nature of the attribute. For example, the surface feature 52 of the
model ob_]ect in Flg 3.10 may be described by : S

_'<surface type cylindrical >,
| <radiis: 35,

- <axis: (0.0, 0.0, 1.0)>,

- <area: 3>,

;-’<pomt on_uxis: (OO OO OO)>

;_<adjacent ' region : {sl 53, 54})>,; - , .
- The atmbutes ofa feature accordlng to their geometric and topologlcal charactensncs,
can be categonzed on the bases of shape, relat1ons and posmon/onentatlon Each of
these categones will be drscussed in greater detail below. & :

oShape attrlbutes TR
A shape attribute;, denoted by sa descrrbes the local geometnc shape of the featiire,
"For example, "surface type" "radlus and “area" are some of the poss1ble sha e
attnbutes of surface feature s2 Ideally, a shape attnbute should be transformatlon
invariant, i.e. 1ndependent of 'the ob_]ect S posmon and orientation, in practlce when
a feature is seen through 4 'sensor, sonie of its shape attributes may "look" dlfferent_ '
'from different viewpoints. Therefore, we make ‘a ‘distinction betweeh two different
types of shape attnbutes those that are v1ewpomt 1ndependent and those that are -
not. For example, the area of a surface and the length of an edge are v1ewpo t
dependent because they may vary with v1ew1ng direction due to Geclusion. On the
: other hand the attrlbutes surface type and radius are v1ewp01nt ind
: course, we do reallze that in hlgh n01se and h1gh-occ1us1on snuanons apr
matlon of say, the rad1us of a cyhndrlcal surface may be d1fﬁcu1t and may even -
become v1ewp01nt depe Clea s for
matchmg a scene feature to a model feature we should take thlS v1ewp nt-
idependency into cons1derat10n '




5 ~ chen/kak

A scene object

A model object

. Figure 3.10. Labels of the prinﬁtive/fsurfaces,,.pﬁrrlitive edges and the ve.rﬁce_s of the '
object shown in Fig 3.4. S : : .



¢ Relation at‘trlbutes
A rélation attiibute; derioted by ra, 1nd1cates how a givén feature is topologlcally :
related to other features. For example, for the surface featiire 52, the att‘nbute
<adjacent to: {sl 53, s4}>" indicates its adjacency with thiee ottier surfaces
Relatlon attribiites should also be mdependent of transformatlon An attnbute _

- "<on_ top_of s1s" 1s not a proper relation attribute for featire §2 because it
depends on the pose of the obJect : ' -

oPosntlon/orlentatlon attributes: S

- A position/orientation attnbute, denoted by la, specifies. position and/or onentatlon
- of -4 feafure with Téspect- to some coordinate system. ‘In *general, thé
' pos1t10n/onentauon attributes of a scene feature are measured with réspect to a
- world coordinate systern, and those of a model feature are mieasured with réspect to
‘a model-centered coordinate system. As with shape atiributes, some
posmon/onentatmn attributes may be viewpoint-dependent, such as the centroid of

a surface or the nudpomt of an edge; while others may be v1ewp01nt-1ndependent :
as w1th the attributes surface-normal of a planar surface, or the axis of a cyhndncal.
surface, etc. The v1ewpomt-dependent position/orientation attributes should be

- avoided in the estimation of Tr during hypothesis generation (sée next section ),
- however, they can be useful for rapldly eliminating the unmatched features durmg

the venﬁcauon process. ’

Smce a feature may possess miore than one shape atiribute — for example, the_
feature 52 in F1g 3.10 possesses the shape attributes surface-type, area, radius, etc. —
we will use the symbol SA to denote the sét of shape attributes associated with a

feature Slmllarly, we ‘will use symbols RA and LA to denote the sets of relation and . ;

position/orientation aftributes of a feature, respectively. Therefore, the feature edge e2
of the object i in F1g 3.10 may be described by

SA(e2) = {<shape: straight s, <length : 3->, oo ) . s
LA(e2) = {<diréction: (0.0,1.0,0.0)>, <point on_edge: (1.0,0.0,3.0)>, - - 1,
and ’ ' :

RA(e 2) { <end  Vertex:v1S, ¢ ).
In practice, we may ot need to uise all the three categories of attnbutes but only those
useful for a particular application. For ‘example, Faugeras and Hebert in théir geometric
matching approach [F&H —86] have used only shape and position/orientation attnbutes
The set of attributes used in describing features should also depend on the sensor capa- -
bility and the performance of the feature extractors. Using attributes Wthh can not be
reliably detected or mrieasured by a sénsor will not contnbute much to solving the prob- '
1em of object récognition. In anly eveiit, a minithal tequirémeiit in deciditig Wthh attri-
butes to use for describing features is that no two features in‘ah image or in a model be _ '



77 chen/kak

‘ allowed to have the same set of attnbute-value pairs. This, of course, does not 1mp1y
that a model or a scene not contain multlple instances of a particular feature type. To
elaborate, the vertex ‘features v 1 and v 2 for the model object in Fig. 3.10 are identical,
but their attribute-value pairs will be different because of the dlfferences 1n their
posmon/onentauon attributes. ' a

‘ 3 4' 2. Principal Directions of Model Features’

Empmcal observations show that an important characteristic associated with an
ObJCCt feature is what we call its principal direction. In an object-centered coordinate
system, the principal direction of a feature gives us a fix on the directional position
and/or orientation of the feature with respect to the other features on the object. Since,
one must first establish an obJect-centered coordinate frame, a principal direction can
only be assigned to a model object, or to a scene object which has been embedded in an
obJect-centered coordlnate frame via pnor matches with some features. ' '

In Sectlon 5, we show how a useful data structure — we call them feature spheres
— can be defined using the concept of principal directions. Here, we will define the
pnnc1pa1 dJrectlons more formally and make the reader aware of the fact that the
manneér in which such definitions are made are different for different classes of features,
and within each class, for different types of features. As was mentioned before, dif-
ferent classes of features correspond to primitive surfaces, primitive edges and primi-
tive points. Within the class primitive surfaces, we may have different types of features
such as cylindrical, planar, spherical surfaces, and so on. While for some class and type
of features, the principal direction represents their onentatlons, for others it represents
the1r directional position on the object. '

We will now formally deﬁne the prinicpal direction, denoted by @, for the three
- classes: of features and for types w1th1n each class:

(1) anmve surfaces

e Planar surface: ,
@ = The direction of the outward surface normal

e Cylmdncal surface or conic surface:

@ '= The direction of the axis. The 180° ambiguity assoc1ated with th1s dlrec-
tion is resolved by choosing that direction which subtends an acute angle with
the positive z-axis. For axes that are perpendrcular to the z- coordmate, that

* direction is retained which is closest to the x-coordinate. And, the axis 1s per—
'pendlcular to both z and x, then we choose the +y d1rect10n

- oSphencal surface:
Let o be the position vector to the center of the sphere in the obJect-centered
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coordmate system The prm01pa1 direction is defined by the normahzed fenn,
of this position vector: . .

-0

lo| . .
- Note that this principal direction is different in character from that defined for
‘a cyhndncal surface. We choose this form for @ because it is not pos31b1e to' _
G assoclate an orientation vector with a sphencal surface. : :
2 Quadrlc surface: v
A quadric surface has the form x’Ax+x-B+C =0.

a,

= la, |
" ‘where a, is the principal eigenvector of the matrix A.
-In general, eigenvector associated with the largest eigenvalue is the principal -
'elgenvector of A and the direction associated with this elgenvector usually
+ defines the major axis of a surface. Since a quadric description includes the
- cases of: planar, cylinderical and spherical surfaces defined above; the
~definition of the principal axis here must be used with care. The ‘quadric
- definition is used only if a surface cannot be cla551ﬁed as being erther planar, -
cyhndncal or spherical. :
@ Prirrnuve curves:
. Stralght line:
@ = line direction

The 180° ambiguity associated w1th the direction of a line is resolved us1ng the
same criterion as for the axis of a cyhnder ' -

. K Clrcular or ellnpsond curve:
® = surface normal of the curve’s plane :
- The 180° here, too, is resolved as for the case of the axis of a cylinder. -

3 Pomt features :
Let p be the position vector of a point feature with respect to the obJect—centered
coordinate system. The principal direction is defined by normahzmg the pos1t10n
~vector:

(I) = —p_
p!

~ Thei 1mportant thing to note is that the parameters used in the deﬁnltlons of princi-
pal directions are all extracted with relative ease from range maps. For example, if from
‘a given viewpoint in a range map about 40 percent of the round part of a cyhndr_lc_al
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surface is visible, in most cases it is possible to make a good estimate of the direction of
the axis of the cylinder. R R

3. 4.3.. Criteria for Feature -Matching

We w111 now provide matchmg criteria for the matching problem expressed in
equatron (3.1) and express these in terms of the three attribute classes. In other words,
we will express the conditions for each attribute class, conditions that must be satisfied
for a scene object to match a model object. Our conditions are applicable strictly only
under the noiseless case. For actual measurements, the comparisons 1mp11ed by our con- -
ditions would have to treated in relation to some user specified thresholds, the magni-

_ tudes of the thresholds depending upon the norse and other uncertainties in the system _

° Matchmg Criteria for Shape Attributes: : -
The reader will recall that we have two different types of shape attributes, those that
are viewpoint independent and those that are not. A viewpoint independent shape

" attribute sa of a scene object feature is said to match the corresponding shape attri-

‘bute of a model object feature if ' ~ : '

sa(S;) =sa(Me(): T )

- where the function sa(.) returns the value of the attribute sa for the feature that i 1s its
* argument; S; is a feature from the scene and M, ;) is the candidate model feature
. that is under test for matching with the scene feature. The above equalrty must be'
- satisfied for each sae SA (S;). For viewpoint dependent shape attributes, clearly we
cannot insist upon an equahty in the above equatron In general for such attnbutes,
T we requu'e : S -

 sa(Sy) <sa<Mc<,)>

Note that since all the viewpoint dependent shape attnbutes are numerlcal in- nature, :

we only have to use numerical inequalities and not, say, subsets, as would be case -

for symbohc features. For example, we would expect the length of a scene edge be-

~ equal to or less than the length of the corresponding model edge due to possible

occlusion. Therefore, the matching criterion for this attribute can only be expressed
. as ‘ ’ :

’ edge length (S ) < edge length (Mc(,))

. Matchmg Crlterla for Relatlon Attributes : o .
Relation attributes are also transformation invariant, thus 1f a scene feature S has,: |
. vrelatron ra with, say, scene feature S;, then the model feature M, ;) must have the
. same relation - ra w1th the model feature M- More precisely, for every '
ra € RA S ' : :
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c(a(S) C raMeg). . @3

To Jusufy the nature of this comparison, consider that the model ObJCCt is as shown' -
. in Fig. 3.10. Further, suppose that in the scene the model surfaces s2 and s3 are visi-
: ble and have been labeled as, say, S, and S, respectlvely Then, from the model
‘descrlptlon we have - ' - il

7' ' adjacent t0(s3) = {52, s4}
' and from the scene 1nformatxon
ad]acent ' t0(Sp) = (S, }

- Let’s say that during the hypothesis generation phase, an estimate was made for the
transformation that takes the model object into the scene object. Let’s further say
that using this tranformatlon we have already estabhshed the correspondence of the

- scene surface S, with the model surface s, and, now, we are testing the correspon-

‘, dence of the scene surface S, with the model surface §3. We see that since
adjacent_to(Sp) = S,, and since ¢(S,) =55, a substitution in equatlon (3.3) y1e1ds

for ra = ad jacent to '

{s2} c {s2 s4})

a Wthh belng true 1mp11es that the scene surface Sp can indeed be matched w1th the
model surface s3, at least from the standpoint of satisfying relational constramts
The pomt to note is that in the matchmg criterion of equation (3.3) the features par--
t101pat1ng in a relation at a given scene feature S; should be a subset of the features .

. partiCipating at corresponding model feature Mc(,), it is not p0551b1e to replace the o

"subset" comparison with a strict equahty because not all of the model surfaces may
be visible in the scene.

° Matchmg Criteria for Pos1t10n/0r1entatlon Attributes: :
- For a viewpoint independent position/orientation attribute la, such as the locauon of o
- avertex or the direction of an edge, the matching criterion is described by ’

'la(S,-) =R-lav(Mc(,-)) | " if lais an orientdtion vector, (3.4-a)
la(S)=R-laMp)+r = if la is a position vector. (3.4- b)

' for every la € LA(S;). These criteria play a v1tal role in the locahzatlon of a scene.
object. Recall that the matching process starts with Tr=RT" and should end up with

" a unique solution which is the location of the scene object, else it should fail.

g Before Tr has converged to a unique solution equation (3.4-a) or (3. 4- -b) prov1de a
system of equations to solve for T, but after that, they are nothing but two pred1- '
cates wh1ch conﬁrm or reject a match between the scene and model features ‘
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: Many 1mportant posmon attrlbutes are not viewpoint independent, yet they are
important For example, the position attributes point_on_ _axis and point_on _edge
shown in Section 4.1 are both viewpoint dependent since these points can be at arbitrary
locauons along their respective directions. Despite their arbitrary locations, these pomts '
. play a vital role during the verification phase of matching. For illustrating this impor-
tant pomt, let’s say a scene edge is under consideration for matching with a model edge
under a given pose transformation. Now, if the directions of the two are identical, that’s
fiot a sufficient criterion for the match to be valid, since the identity of directions
merely implies that the scene edge is parallel to the model edge. To 1mpose the addi-
_ tlonal constraint that the two edges be collinear, we need the point_on _edge attribute
- even if the point is arb1trar11y located on the edge in the model space. The
point_on_edge attribute is used in the following fashion: First the difference vector
between the vector to point_on_edge and a vector to some arbitrary point on the scene
,edge is computed Then the cross-product of the difference vector with the direction
attribute of, say, the model edge is calculated. The magnitude of this cross-product
should be close to zero for the match to be acceptable. Note that while the cross-product
‘ bemg Zero guarantees the collinearity of the model and scene edges, it still allows one
: degree-of -freedom between the two. It is impractical to completely constraln this
remaining degree-of-freedom since in the presence of occlusions the model edge may '
not be completely visible in the scene. e '

Before concludmg this subsectlon we should mention that, in a manner. snmlar to
edges, the position attribute associated with a planar surface, spec1ﬁed by g1v1ng the
coordmates of an arbitray point on the surface, can be used to make sure that a model
v surface is coplanar with the correspondmg surface from the scene; aga1n the identity of
surface orientations is not sufﬁc1ent and to cope w1th occlusmns, it 1s not poss1ble to
'constram the two any further ' : -

3 S. Matchmg Strategy

_ As mentloned in the 1ntroduct10n the recogmtlon method employed 1n 3D POLY
is based on hypothes1s generation and verification. In this section, we will explam how '

. hypotheses are generated and then how each hypothes1s is verified.

In what follows, we w1ll ﬁrst show that if hypotheses are generated by exhaustlve
search, meaning that a scene feature is tested against every possible model feature, then
the time _complexity of the recognition procedure is O (nxm**D), where n is the
number of scene features, m the number of model features, and 4 the number of features
used for th,e hypothesis generation. Unfortunately, this complexity reduction is not

sufficient for most practical purposes. We then proceed to show how by:using the
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“notion of local feature sets for generating hypotheses and us1ng the feature sphere data

- structure for venﬁcatlon the complex1ty can be improved to O (nxmxh!). Fmally, we

w111 show" that when we use the vertex features to orgamze the local feature sets, the
complex1ty is further 1mproved to O(nz) TR

3. 5 1 Hypothesns Generatlon and Verlﬁcatlon

It is rather well known that only a small number of features is necessary to: esu—
mate the - tranformatlon matnx Tr that gives the pose of a scene object in relation to. the

- correspondmg model object [St-86, Bo—84]. In our work this small number of

features will be referred to as a hypothesis generation feature set (HGF) Clearly, itis
the position/orientation attributes for the features in an HGF that must be used for the
~estimation of Tr. We have shown some possible HGF sets and the pos1tlon/onentatron
attributes-used for determining Tr in Table 3.1. Note that the table is not an exhaustlve
listing of all possible HGF sets, but only those which are rather frequently used. How '

o exactly a Tr may be constructed from the position/orientation attributes of the different

 possible HGF sets may, for example, be found in [St~86, Bo -84, G&L —84, F&H -86];
_each of these references discusses the method used to calculate a Tr for the type of HGF '

< .'used

Let s assume that a recogmtlon procedure needs a maximum of A features to con-’ ’

struct a hypothe51s for the pose transform Tr for a candidate model object. We will )

: further assume that we have somehow selected a subset of cardinality % of the scene‘
o features, th1s ‘subset  will constitute the HGF set and will be represented by

{Sl,Sz, ...... S,,} we wish to generate hypotheses by using the features in this subset.

-~ We may then divide the search tree in Fig. 3.6 into two parts as shown i in Flg 3 11, the
- division occurring at level & on the tree. Note that at the first level of the tree, we Ty to-
" match the. scene feature S; against all possible model features from the candldate -

- object. Then, at the second level, at each node generated by the first level, we try to .
match the scene feature So w1th every p0551b1e model feature; and so on S :

As deplcted in. the ﬁgure, after a hypothesrs is formed w1th h features we use the

‘ remaining n—h features for verification. In principle, if a hypothesis is correct ie. the

-scene object Oy is mdeed an instance of the candldate model O,, at locatlon Tr we -
should then be able to find all the remaining n—h matched feature pa1rs usmg ‘the
transformatlon Tr. This .implies that in the verification phase the scene feature at each

level will match with exactly one model feature. This uniqueness is guaranteed by the :
requirement that no two features of a model have the same description. To reiterate

‘what was said in Section 4, on account of the different position/orientation attnbutes o

this rcqulrement is easﬂy met even for those features that might otherwise be 1dent1ca1 ‘



" Table 3.1 Summary of HGF sets

| Conﬁg'uration of features

Posmon/onentauon attnbutes ‘

Three unique, noncollinear
’pomts e

The three pos1t10ns vectors assocmted w1th the: three

- points.

: .,:colhnea__r. point.

One stralght edge & one non-

The orientation attribute assoclated w1th the dlrectlon
of the edge, the position attribute assoclated ‘with a
point on the edge, and the position attribute ass001ated
with the noncollinear point. '

( One ellipsoidal edge & one
noncollinear point.

' The orientation attnbute associated with the edge, the |
| position attribute assoc1ated with.a point on the axis of

the ellipsoidal edge, and a position attribute assoc1ated

- with the noncollinear point.

A Two pnmltlve surfaces &
| one pomt

The two principal directions associated with the two
surfaces, and a posmon attnbute ass001ated w1th the

- extra pomt.

Three non-coplanar pnrmtlve :

The orientation attributes ass001ated w1th any two of

' »'surfaces

the surfaces, and three position attributes assoclated

| with some three pomts one on each surface

NOTES ON TABLE 1

- The reader mlght like to note that for each HGF set, the posltzon/orzentanon attrl-
‘butes shown constitute the least amount of information that is required for the cal-

o - culation of the pose transform using that set. That this is so should be obvious for

the first set. For the second set, we need to know the coordinates of at least one
. point that is arbitrarily located on the straight edge. Without this extra informa-
. ,tlon, the rotation transform computed from just the edge dlrecnons would not also -
" “move’ the edge from its model space to the scene space; the point on’ the strazght

o edge helps us make the model edge become collinear with the scene edge. Then, we -

- can use the extra non-collinear point to constrain the rotation of the object around
- .the edge The same argument applies to the third HGF entry. The attrlbutes listed
 for the fourth HGF set should be obvious, especially in light of Appendzx A
_ Finally, for the last HGF set, while two orientation vectors are sufficient to give us
" the rotation transform; coordznates to three points, located on each of the surfaces, -
. ‘are needed to constrain the translation vector. Note that these three points can be
- at arbztrary locations on the surfaces in the model space, the same being true in the
. “scene space. (See.the end of Section 4 for’ how a point located arbztrarlly can be v
o used to constram the Iocanon of a surface ) : :
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say; by virtue of their similar shapes
.
On the other hand if any one of the remaining n—h features can not be matched to

a model feature, that implies the current hypothesis is invalid, because either O, is not
~ the nght object model or Tr is not the correct transformation. Therefore, when a scene
feature, say, Si, k>h, does not match any model features under the candidate Tr, it
SErves no purpose to backtrack to level k-1 or higher. Instead, the system should go '
back into the hypothesis generation phase, by backtrackmg over the first 4 levels, and 7
try to generate another hypothesis for Tr, as illustrated by arc A in Fig 3.11. Clearly, if
vrepeated backtracking over the first h levels fails to produce a valid Tr, the candidate
model object should be discarded and new tree search begun with a new candidate
ob_]ect In the rest of this subsectlon we will explore the time complexity assocrated
with this type of search.

This search process is exhaust1ve over the model features in the sense that at every

" node shown in Fig. 3.11, a scene feature must be compared with all the features of the

candidate ‘model object. Therefore, at each node, the complexity is proportional to m,
~the number of features in the model objects. The number m is also the fan-out at each
node. encountered during the hypothes1s generation phase, i.e., in the first h-1 levels of

the search space. However, the fan-out in the verification phase equals 1 because ofour

Tequirement that a match fa11ure dunng verification 1mphes gomg back into hypothesrs
generat10n : o :

_ Smce backtracklng is allowed to be exhaustive dunng the hypothe51s generatlon .
phase, the time complex1ty associated with hypothesis generation is O(m") The time
complex1ty associated with the worst case verification scenario can be esumated by not-

‘ing that each venﬁcatron path has at most n—h nodes, and, since at each node we must
make m comparisons, the complexity of verification is O (m xn). Therefore, the overall

. complex1ty associated with th1s recogn1t10n process is

O(m") X O(mxn)
- wh1ch 1s the same as -

O(nth+l) »

For ng1d objects, h will typ1cally be equal to 3, although its precise value depends upon
how carefully the HGF sets are constructed Therefore, the express1on for the complex—
ity function becomes '

O(nXm4) |

1 Although one may consider th1s complexity funct10n to be a substanual 1mprovement;
over the O(m") funcuon associated with the search tree of F1g 3.6, 1t is sull not- o



g6 R chen/kak_.

acceptable for pracucal applications. In the next subsection, we will show how by con-
stra1n1ng the selection of model features for matching we can make further reducuons'
in the complex1ty :

3.5.2. How to Constrain the Selection of Model Features

In th1s subsection, we will explore the questlon of what constraints one should o
, mvoke to select model features for matching with a scene feature. Given that the com-

panson of attnbute values plays a central role in the matching process, the constraints =

jwe are looklng for should be denvable from the attnbutes But since we have three d1f-. '

that anses is Wthh of these attnbutes are best su1ted for the requlred constramts

To answer this question, we will take the reader through a two- d1mens1onal exam- _' ‘
ple shown in Fig. 3.12. With the help of this example we will convirice the reader that
the attributes used for constraining the selection of model features should depend upon
whether or not we know the tranform 7r. In other words, the constraints used in the
hypothe51s generation phase must, of necessity, be different from those used in the
'venﬁcatlon phase We will show that for hypothesis generation phase, we must take
recourse to an idea suggested and used by other researchers: the model feature that is
mvoked for comparison against a scene feature should depend upon its relations w1th _
the prev1ous ‘model features in the path traversed so far in the search space of F1g 3. 6
And, for the verification phase, we show that remarkable reductions in computational
complexity can be achieved by using constraints derived from the pnnc1pa1 directions
of features — recall that the principal direction of a feature is derivable from its
'posrtlon/onentatton features. We will then show that the invocation of constraints on
the prmc1pal directions is greatly facilitated if the features are organized accordlng toa
spe01a1 data structure we call the feature sphere. :

To help explain our pomts in Fig. 3.12 is shown a 2-D range 1mage ofa polygonal '
object. The viewpoint is from the top, as illustrated. Range mapping is orthogonal o
meaning that the lines of sight for the determination of range values are parallel; for -
example, the range at scene point 1 is equal to the distance d1, and d1 is parallel to’ d2 '
the range at scene point 2. The model polygon is shown in Fig. 3.13. The problem isto
recognize and locate the polygon in Fig. 3.12 given its model in Fig. 3.13. We will
assume that the recogmtlon system is using only vertex features (an example of primi-
tive point featiite type). Scene vertrces will be denoted by integers 1,2,3,:-: , and
those of the model by letters, a, b ¢, - - +. From the viewpoint shown, only the model _
vertices a, b, c, d, e, f, g, h, k, | are visible to the sensor. For the sake of argument '
we w111 assume that of these vertices, the model vertex d is not detectable therefore its
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Figuré 3.12. A 2-D range image of a polygon. The range values are proportional to the
perpendicular distance from line AB. For example, the range correspond-
ing to scene point 1 is equal to the distance d1.



88 ' : chen/kak

o

Figure 3.13. Thé model of the polygbn shown in Fig. 3.12.
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~ correspondent in Fi‘g."b3.12 has not been given a label. The undetectability of d in the
- sensor data could be due to the fact that the angle defining that vertex is not very sharp.
As a result, feature extraction from the sensor data will only yield the vertices
1,2,3,4,5,6,7,8,9. For the v1ewpomt shown, we must further assume the unavaila-
'b111ty of angle measurements at vertices 1,7 and 9. : '

_ We w111 sub_]ect the recogmuon of the polygonal object in F1g 3.12 to the kmd of
hypothésis and verify approach deplcted in Fig. 3.11, except that we will add con-
straints on the seléction of model features at each node. We will first examine the pos51-

v b1hty of us1ng constramts derived from shape attributes.

3. 5 2 1. Usmg Constramts Denved from Shape Attributes
Let s say each scene feature is - charactenzed by the followmg set of shape
' attrlbute-value pa1rs ' : '
S_A = <sa,, V>

In the absence of uncertalntles, perhaps the. most stralghtforward way of constramrng |
the selection. of model: features in the matchmg process is to invoke only those model. -

’features whose sa; values are the same as v;. For the 2-D example say that at a node in.

the search space the scene vertex 2 is under consideration. Now, a possible shape attri-
o bute for a 2-D vertex is the dihedral angle 6 shown for one of the vertices.in. Fig. 3.13.
: Let s say the measured dihedral angle at the scene vertex 2 is 65. Given this. shape
' 1nformatlon it should be necessary to invoke only those model vertices whose dihedral

Ny angles, denoted here by 6,, satisfy the constramt

{x 19 ,—0y 1<g},

| where € represents the uncertamty in angle measurement. G1ven a Judlclous ch01ce for'

&, such a constramt might only 1nvoke the model vertices b and k —a con51derable -
- 1mprovement over having to compare, in the worst case, of course, - the scene vertex '

' 2 w1th all the 16 model vertices. ‘ '

A pract1cal 1mp1ementat10n of the above idea. would requ1re that we orgamze the

. | : model features accord1ng to the shape attributes. One could do so, for example, by sort-

mg the model features by the values of the attributes. Then given a desired attnbute :
value for a scene feature, the cand1date model features could be retneved by.a binary
* search. Another way 1S to use an array w1th each array cell representmg an. 1nterval of
~ the attnbute value; a model feature could then be ass1gned to an appropriate cell on the_

| v basis of the value of the attribute. The latter method would, in general, be more
S demandmg on memory requlrement but the retrieval of candidate model features for a.
R g1ven scene feature attribute value would be more efﬁcrent
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Although in some cases, it would certamly be poss1ble to beneﬁt from the 1deasu e

"outhned in the previous two paragraphs, we have chosen to not use shape attrtbutes for
constralmng the selection of model features. Our most 1mportant reasons are that the

‘viewpoint mdependent shape attributes, for the most part, do not contain sufﬁcrent o

d1scnm1natory power for adequately constraining the selection of model features; ‘and
~ the vrewpomt dependent shape attributes are too prone to gettlng the1r values distorted
L by occlus1on and, of course, the change in v1ewpomt S - '

For example, plananty of a surface is a viewpoint mdependent shape atmbute _
Now cons1der the example illustrated in Fig. 3.10 and assume that we. are matchmg' :
scene surfaces with model surfaces using planarity as a shape attrlbute Clearly, all the

- model surfaces but 52 would become candidates for scene surface sp, and. there- would '

be almost no gains in‘ the computatlonal complexity. On the other hand, a v1ewp01nt ’
dependent shape attribute, like the area of a surface would obv1ously be useless because

.~ the problems that could be caused by occlusion. For another 1llustrat10n of the'

difficulties caused by using viewpoint dependent shape attributes, lets go back to the
matching of vertices in Fig. 3.12. Although it may not seem so, the dihedral angle is
v1ewpomt dependent as, for example, evidenced by the vertices - 1, 7 ‘and 9, The

dihedral angles at these vernces can not be measured from the viewpoint shown in Fig. |
312 because of self-occlusron Therefore, it would be impossible to use the most obvi-
ous shape attribute — the dihedral angle — for constraining search, as any of the nodes ‘
could suffer from self-occluslon dependmg upon the pose of the Ob_]CCt R '

3 5 2 2 Usmg Constramts Derlved from Relatlon Attnbutes :

Let s say a scene feature S has the follow1ng relatlon attnbute value pa1r

<ra {S1,S2,.. Sk}> meamng that the scene features Sl, Ss, .. . Sk are part1c1pat- i

. ing with S in the relation named ra. We will assume that of S 1> 8250y Sk, the features

- S through S , p<k have already been matched w1th model features Then we may |
_ with the model features that match S, through S More formally, a model feature M

' w1ll be selected for matching with S provided one of the relation attribute for M is

<ra: {Mcqy, Mcgy, - .., Mg(py}>. Remember, the mapping function ¢ grves us the '

_correspondences between the scene features and the model features e '

In the example of F1g 3. 12 assume that the scene vertrces 4 and 5 have already: o
been matched with the model vertices e and /. and that the scene vertex 6 is now under
test for possxble match with a model vertex. Since vertex 6 has relatron attnbute

; <adjacent 10:(5,7}>, a candidate model feature for matchmg wrth vertex 6 should' -
; i posses the relauon attrlbute <adjacent to: { f *1>, Where we have used an asterlsk to
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| act as a place-holder for the yet unknown correspondlng model vertex of vertex 7. For’
symmetnc relatlons, such as adjacent_to, a search for those model features that satisfy
~ the des1red constralnt can be easily conducted by examlmng the relations at the vertex
: ’ f we may thus conclude that the model vertex g is a candidate model feature for the
- scene. vertex 6. For non-symmetrical relations, unless care is exercised in organlzmg
‘the model feature: with respect to. the1r relations, in the worst case one may have to
- search through all the model features to determine those which satisfy the requlred con-
stramts However, even with such a search, one would gain from the subsequent savings
Cin, not having to match all the model features with a scene feature. In addition to having
to search for the model features, there are other issues that play an unportant role in
matchlng scene features with model features under relational constraints, especially
_ when one also. has to contend with the- uncertamtles associated with real data. Over the
- years, . much has been done in this area and the reader is referred to [S&H =81,
' _K&et —87 W&L —83] for futher details. '

Although what we have said so far in this subsection may be construed as 1mply-
ing the appropnateness of relatronal constraints, the reader beware. We w1ll now show

' 'that there can be srtuatlons when relational constraints may not help at all ‘with the

~prun1ng of model features, and, further in some cases they can lead to results that may
) be downnght incorrect. ~

, Gomg back to our example of Fig. 3. 12 we just showed how the pnor matches at
. scene vertlces 4 and 5 help us constrain the search at vertex 6. One may sumlarly show
that the matches at the vertices 5 and 6 help us with the selection of candldate model
vert1ces at 7. Now, let’s say, that the scene vertex 7 has been successfully matched with
L the model vertex h. Our next task is to’ find a list of candidate model vertlces for the
scene vertex 8. However, because of self-occlus1on, there does not exist at vertex 8 the
relatlon attrrbute <adjacent to:..,7,..>. This means that prior matchlng h1story along
the path. being traversed in the search space would not help us at all at the scene vertex

Now to show that relational constramts may lead to erroneous matches con51der
’ the scene vertex 3, where we have the relatlon <adjacent t0 :2,4>. We will assume
~ that the vertex 4, being closest to the v1ewp01nt line AB, has- already been matched with
model vertex e. The cand1date model vertices for-the scene vertex 3 must sat1sfy the
relation <ad jacent_to ¥ e>, since eis the. correspondent of 4 and since the vertex 2 has
not been ‘matched yet. ThlS constraint would cause 3 to be matched with the model ver-
tex d - an obvrously mcorrect result Wthh would eventually cause an erroneous re_]ec-
. tlon of the model obJect S '
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35, 2 3. Usmg Constramts Derlved from Posntnon/Orlentatlon Attrlbutes |

If a scene feature possesses ' a posmon/onentatlon attrlbute-value pa1r <Ia W,

" then it follows from equations (3.4-a) and (3.4-b) that a potentlal cand1date model ‘
_ feature must be charactenzed by the either or both of the followmg posmon/onentauon
attrlbute-value pairs ~ S

<Ia R‘1 - ifvisan ovrie'ntation'wc"tor" v E '(3'5-a)
<Ia R~ 1(v—t)> ifvis aposmon vector o - (35b)

where R and t are the rotat1on and translation components respectrvely, of the tranfor-
‘mation Tr. that takes the model object into the scene object. Clearly, _an esumate of the
;tranformauon Tr is required before a locat10n constraint can be 1nvoked o

We must agam address the issue of how one rmght orgamze model features in
order to efﬁc1ently invoke the location constraints. One approach would be to part1tlon -
: the space of all possible locations into cells and to assign model features to appropnate |
« cells based on their locations. - Since it takes three parameters to spec1fy an onentat10n, :
two to’ spe01fy the direction’ of the axis of rotation and another one to spe01fy rotat1on s

- around th1s axis, the locat10n space for orientation vectors will consist of either the

i volume of a unit sphere, or, using the quaternion notation, the surface of a four-
. d1mens1onal unit sphere. On the other hand the location space for posmon vectors w111. :
be the 3 D Cartesian space S

Whlle it would 1ndeed be possible to use the posmon/onentatron constramts in this

* manner to prune the list of candidate model features, difficulties arise in pract1ce on

'account of the fact that it may not be poss1b1e to develop a unified orgamzatlon of
_ model features on ‘the basis of position/orientation information, s1nce some features’ -
: pmay have only pos1t10n attrrbutes other only orientation attributes, and still others both

Fortunately, there is a way out of this impasse, by the use of prmc1pa1 d1rect10ns

_ defined i in Section 4. For every feature, as shown in that section, we can derive its pnn- _
cipal d1rectlon from e1ther the position information or the orientation information. The
- »pnnc1pal direction can then be used, by the method discussed below, to orgamze the
model features for efficient retrieval subsequently. In the rest of this subsectlon we

will use the 2-D example of Fig. 3.14 to introduce the idea of a feature czrcle, wh1ch is

a means to organize, on the basis of their principal d1rect1ons the model features for the' ‘
2-D case. ' ‘ : ’

For the 2-D example we ﬁrst compute - the pnnc1pal direction of each model ver-
tex accord1ng to the definition in section 3-2. Since the space of direction vectors in 2-
D space is a cn‘cle, we orgamze the model vertices along a un1t c1rc1e as shown in F1g
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Figure 3.14. The vertices of the model polygon are pushed out to a unit circle which is
the feature circle of the model.
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314 Th1s constitutes the feature crrcle for the model ObJCCt Suppose that the onenta--
tion R and position ¢ of the scene polygon has been hypothesized by matching vertices -
4 and S to model vertices e and f, respectively. Now, suppose we want to find the candi-

~ date model vertices for the scene vertex 3. Using equation (3.5-b), the position vector o

of a candldate model vertex for pos51b1e matchmg with the scene vertex 3 should be
~ : ._1

- P =R p3.—t ‘
 The pr'ineipal direction associated with this position vector is
Cpl

We can then access the feature circle of Fig. 3.14 and pull out those model features '
whose pnn01pa1 directions lie in the interval [®-¢, ®+€], where € depends upon the
magnltude of uncertainty in the sensed data.

- Of course, for the 3-D case, the organization of the model features would not be as
simple as what is shown in Fig. 3.14, since the features would now have to be mapped
onto the surface of a sphere on the basis of their principal directions. To handle the
resulting complications, in Section 6, we will introduce the notion of a feature Sphere
which used a special indexing scheme for the tessellations on the surface of the spherl'e
The 1ndex1ng scheme chosen reduces the complexity associated with ﬁndmg the ne1gh-
bors of a partlcular cell on the surface of a sphere :

3.5.2.4. 'ConcluSiOn Regarding the Choice of Constraints

_ Before we present our complete feature matching strategy, we would like to sum— "
‘marize the conclusions that can be drawn from the preceding three subsectlons

o Relatively speaking, shape attributes are not that useful for the purpose of selectmg
cand1date model features because, when they are view independent, they often do
not carry enough discriminatory power, and, when they are view dependent, they -

- cannot be used for obvious reasons. :

e - When the pose transformation Tris unknown, relation attributes can prov1de strong
constraints for selecting model features; however, extraction of. relatlon attributes
may be too prone to artifacts. : S

. When the pose transformation Tr is given, the principal direction attribute, which

~ can be derived from the position/orientation attributes, probably provides the best

constraint for selecting model features. We use the adjective "best" to emphasize, in

a qualitative sense admittedly, the fact that this attribute can be calculated in a fairly
‘robust manner for most features, and, to emphasize its ability to prov1de strong
drscnmlnatlon amongst competing model features :
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These conclusrons form the foundation of our overall matching strategy, wh1ch we now

present :
Durmg hypothesis generatton -

~ In this phase, we will use constraints on relation attrzbutes to prune the

list of model features. To get around the problems assoczated with

exhaustive backtracking in the upper h levels of the search space shown

in Fig. 3.11, we will group immediately related model features into sets,

to be called Local Feature Sets (LFS). Each LFS will be capable of gen-

~ erating a value for the transformation matrix Tr. The idea of using

feature sets for constructing hypotheses about pose transformations is

akin to the local feature focus idea used by Bolles and Cain [B&C -82]

for the 2-D case and to the notion of kernel features used by Oshtma and

‘Shirai [0&S -83] for the 3-D case. - - :

Durmg verification:

In this phase, we will use the prmczpal dtrectton constraint to select |

.model features. For efficient retrieval on the basis of their principal
dzrecttons, the model features will be organized on feature spheres

In the next subsect1on we will elaborate on the notion of Local Feature Sets for_
hypothe51s generation. In the follow1ng subsection, we will then . present a formal
‘definition of the feature sphere data structure and present expressions for the complex—
| ity functlons assoc1ated with our matchmg strategy : : '

: 3 5 3. Local Feature Sets for Hypothesns Generatlon

Ideally, an LFS is a minimal groupmg of features that is capable of y1eld1ng a -

unique value for the pose transform which takes the model object into the scene object.
The features in such a minimal group1ng could for example, correspond to one of the
rows in Table 3.1. : ' L

‘ More pract1cally, it is desirable that the features in an LES be in close prox1m1ty to
- one another so that the probablhty of their being simultaneously visible from a given
viewpoint would be high. In our implementation, we have found useful the following |
vanatlon on the above idea, which seems to lead to particularly efﬁc1ent hypothe51s
generatlon strategies for objects that are nch in vertices, such as the objects of F1g 3.2. |
We allow our LFS’s to be larger than minimal groupings and insist that each groupmg
contain a vertex and all the surfaces meeting at that vertex. [1t would be equally easy to
. use edges in place of surfaces.] In Fig. 3.15, we first show labeled features for one of
L the obJects of F1g 3.2. For that object, the LFS’s. generated with this spec1ﬁcatlon are
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Figure 3.15. The labels of surfaces and vertices of the object in Fig 3.2 (a).
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shown in Table 3.2. To explam the advantages of our approach, consider the LFS
corresponding to:the vertex d of the ob_]ect in Fig. 3.15. The. data record for this LFS
w111 look hke

Vertex ¢
flag:-1
Coxyz ¥
_surfaces:2 10 3
adjacent_vertices: a e d
edge_type: v v-C

The ﬂag value of -1 means that one of the three edges meeting at the vertex is concave
* The variable xyz is instantiated to the coordinates of the vertex in the model coordinate
system. In edge_ type, v denotes convex and ¢ concave, as there are two concave and

one convex edges meeting at this vertex. This LFS subsumes at least three minimal '

feature groupings that are also capable of generating a unique value for the pose
transform. For example, the grouping consisting of the surfaces 2 and 10, together with
- the coordinates of the vertex a, can yield a unique value for Tr. To answer the questlon
why we use this partlcular construction for LFS’s, we will first define a completely visi-
~ ble vertex.. . :

In the scene, a vertex will be called completely visible if no occludmg edges meet
at the vertex. An example of a completely visible vertex is shown in Fig. 3.16-(a), while
(b) shows the same vertex when it is not completely visible. Note that occluding edges
in a range map are characterized by range discontinuities.. '

We believe that a completely visible vertex in a scene provides the strongest con- -
strarnts for calculatmg the Tr associated with an object in a scene. Of course, theoreti-
cally, any two of the non- -parallel surfaces coming together at the vertex, in con_]unctlon
with the vertex itself, are capable of specifying uniquely the Tr associated with a scene
ObJCCt Therefore theoretlcally at least, for the vertex shown in Fig. 3.16-(a), any two of
the surfaces, together with the coordinates of the vertex, can yield Tr. However, in prac-
tice, it is deﬁcult to calculate with great precision the position of the vertex 1tse1f pri-
marrly because of the nature of discontinuities of some of the spatial derivatives at such
a point. “Therefore, our approach is that if a completely visible vertex can be found in a
scene, 1t should unmedlately be used to calculate a Tr.

v Of course, it is entlrely likely that we may not ﬁnd any completely v1srb1e veruces "
» in a scene, meanmg that for a vertex like the one shown in Fig. 3. 16 (b), because ofi
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Table 3.2 Local feature sets (LFS) of the object in Fig 3.15.

vertex - surfaces
T a 1,9,2
b 0 1,2,8
c 2,10,3
d 2,3,8
e 3,10,4 -
f 3,4,8
g 7,12, 4
h 7,10,12 |
i 4,10,7
j " 4,7,8
ko 1,8,9
1 9,8,12
m 1,9,10
o 10,9, 12
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®

Figure 3.16. A completely visible vertex of a object in one view becomes partially visi- -
~ ble in another view. o S



o self-occlusion we may be able to-see only two of the three surfaces In such a case, the;“
LFS for the vertex can still be used by assigning’ appropriate labels. to the scene surfaces.

' from the entnes in the LFS. In general, if h surfaces meet at a vertex and only: k of ese‘
are. v1s1ble in a scene, then there are only h possibilities for matchlng the k scene sur- =

- 'faces, th1s happens because of the rotational adJacen01es that have to.be mamtamed For -

f,vexample, agam as illustrated in F1g 3.16, the vertex a is formed by three surfaces 1, 10: -
and 2, if we see only two of the surfaces o and B as m (b), there are only three d1fferent ,
labehng pattems for the two surfaces, namely, o R :

{(1—>oc 10—)]3 2—>ml), (10-a, 2—)[3 l—mzl) (2—>a 1—9[3 10—>ml)}

‘ ’In each of these pattems the labels must maintain the same adjacencies. that are 1n the

,model ‘Therefore, we can say that in matching k scene features with the A features of
A an LFS the overhead is k, which is incurred in matching the k scene: features with the
: potenual correspondents from the LFS. Since this can only be done in h ways, the _' v
~overall complex1ty associated w1th matchmg with an LFS is O(hxk) "

S Therefore the - complex1ty ‘associated w1th generatlng hypotheses for an obJect :

wh1ch has NLFS LES’s is N psXO (hxk).  In practice, Nppg = O(m), where m is the total -
number of model features Therefore, the overall complex1ty assomated with generating
_all the hypotheses is

O(mxhxk) 0 (m)

- Before we: conclude this subsect10n we would like the reader to note that the galns
achieved with the use LFS’s as non-minimal feature groupings is at the cost of more -

_ complex flow of control during hypothesis generation. While with rmmmal groupmgs, ‘
it is possible to institute uniform control, with non-minimal grouplngs spe01a1 cases -
must be handled separately dependlng upon how many of the features in an LFS canbe
matched w1th the scene features. : : L

Also, we have said nothmg about the mathematics of how to actually compute a Tr
given that ‘we have a match between some scene features and model features. In Appen- :
dix A, we provide formulatlons for esumatlng the transformation based on quatemlon o
, representatlon o : : : -

. 3. 5 4. Feature Sphere for Verlﬁcatlon

We want to orgamze model features of an ObJCCt such that, glven a candldate prln- :

01pa1 direction @ computed from a scene feature, all the model features with the princi- -
pal direction ) can be accessed efficiently. Since a particular dJrectlon corresponds to

a unique polnt on the surface of a unit sphere, similar to the way of organizing vertices-
on a circle in the 2-D example a natural way is to record the model features on a unit:
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sphere as a function of the1r principal d1rect10ns We shall call such a sphere a feature
. .sphere. There can, of course, be multiple number of features correspondlng to a given
point on. the feature sphere, especially if more than one feature class is used for describ-
ing- models. In our. experience, programmmg becomes . more efﬁclent if a separate
feature sphere is used for each class, meaning that we represent all the prlmmve surface .
features on one sphere, all the pnm1t1ve edge features on another sphere -and ‘all the
’ pnmmve pomt features on yet another. Fig. 3.17 shows the vertex feature sphere and
, the surface feature sphere for the 3-D model object in F1g 3. 10 ‘

» After a hypothes1s about the obJect s location Tr is generated we want to venfy or:
reject the hypothe51s by matching the rest of the scene features to model features under

. Tr. Of the d1fferent scene features which will be used for. verification, consider a scene '

- feature S. Accordmg to equatlons (3.4- a) and (3. 4-b), a model feature that is a candi-
date for matching with the scene feature S should be charactenzed by a pr1nc1pa1 direc-

i tion <I> that is equal to the followmg for the different types of S. :
o IfS is a pnmltlve surface (sphencal surface excluded) ora pr1m1t1ve curve

d> R‘l*v(S), | I . S (36-a)
7' ”‘rf,where R is the rotation component of Tr, and v(S ) is the orientation d1rect10n of
v feature S, deﬁned s1mllar1y as its pnnc1pa1 d1rect10n but with respect to the world
*coordinate system. : T . '
e IfSis point feature or a sphencal surface
‘ “Let p(S). be the posmon vector of feature S w1th respect toa world coordlnate sys-
- ',‘t?mf@; SR e
R l*P(S) R‘l*(p(S)—t), R I TR  36)

"§>

&>
51

. ‘where t 1s the translatlon component of Tr

'ﬁ»

As prev1ously mentloned pnnc1pal d1rectlonoprov1de a very strong constralnt for

* selection of candidate model features, i.e. each candidate principal direction computed

from: equatlon (3.6-a) or (3.6- b) will lead to a small number of candrdate features This

" is especially true for point features as we observed in the 2-D example in which a can-

~ didate principal d1rect10n addresses to only one candidate model vertex. For primitive

surface or primitive edges, that number may depend on the conﬁguratlon of object sur- -
faces. In' general we may assume. that the principal d1rectlons of a model’s features are -
B randomly distributed over the unit sphere. Although, the probablhty of any two features

L occupymg the same spot on the unit' sphere will be very low, for the sake of argument
. '»,"we may assume that on the average ‘there will be k features for each principal d1rect10n




Suface feature sphere N Vertex feature sphere -

Figure 3.17.. The surface and vertex feature spheresof the model o_bj'ect.‘ o -
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where k<m. Then the worst case time complexity for matching for verification will be
O(nxk) = O(n) When combined with the complexity of hypothesis generation, as dis-
cussed in Section 5.3, this implies an overall complex1ty level of O(mn). Since,
m=0 (n), we can then conclude that the overall complexity w1th our approach for sin-
gle obJect recogmtlon to be O(nz)

“In the next sectlon we w111 present the implementation of feature sphere in com-
E ‘puter in detail. Tt is interesting to note that if'a model object is a convex polyhedron
- thenits surface feature sphere representation is equivalent to its EGI (extended Gaus-
) sian 1mage) [Ho—84], [Ik-83], and if a primitive curved surface is allowed to be added
-~ to a polyhedron then the surface feature sphere is similar to CSG-EESI representation
proposed by Xie and Calvert [X&C —88]. In addition, if every surface point is regarded
as a point feature, then the point feature sphere of a. star-shape object is equivalent to
the well-tessellated surface representatlon proposed by Brown [Br —79]

3 6 A Data Structure for Representmg Feature Spheres :

In order to 1mp1ement feature spheres in a computer, we first need to tessellate the
sphere and then create an appropnate data structure for representing the tessellations. _
- In our case, each cell on the sphere will be represented by its center pornt and the pur-

‘pose of the data structure will be to allow us to efficiently access these pomts In what -

follows, we will use the term fessel to tefer to both a cell created’ by tessellatmg a
_ sphere and to the central point of the cell. Before a data structure can be created for

_representlng the tessels, we must bear in mind the following two kinds. of operauons
that w111 be performed on the data structure for the purposes of feature matchmg

, FlI'St durmg the model bu11d1ng process model features ‘must be a551gned to their
respectlve tessels on the bases of their prmcrpal directions. Clearly, it is ‘unlikely that
" the du'ectlon correspondmg to one of the tessels would correspond exactly to that of a
: feature For a given model feature,” we must, therefore, locate the nearest tessel. In

other words we need a tessel assignment function, wh1ch will be denoted by L(®), that

~ should return the label of a tessel to which a model feature of principal direction. Dis
ass1gned IR — T

Second glven a scene feature S in the verification process, we want to examlne. ’
whether there i a corresponding 1 model feature with direction ®* = Tr™! (d>(S )) in the
‘model under cons1deratlon Assummg the hypothes1s is correct, idealy, we should be
- able to ﬁnd such a ‘model feature at. L(<I> ) on the feature sphere of the model How-

. ever, due’ to nolse and other artifacts assomated with the estimation of T7, <I> will only

. be accurate to within some uncertalnty interval. This directional uncertamty assocrated

o w1th d> can. be expressed as.a cone whose axis is the computed d1rectlon 1tse1f as.
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shown in Frg 3. 18 This 1mp11es that potentral model features for matchmg w1th s

- should be all those that are within this cone. If we could assume the error processes

associated ‘with the uncertainties in (I> to be of zero-mean type, from w1th1n the cone
one would first select that feature which was closest to L(®"), and, if that match were
to fail, select the niext closest, etc. Clearly, this is a breadth first search rooted at L(Q ),

“and the depth of search (the farthest neighbors to examine) should correspond to the SRR |

* maximal allowable direction uncertainty.

It should be obvious that for 1mp1ementmg the above strategy for the selectlon of :
,model features, we need a function that would be- capable of directly accessrng the ‘
1mmed1ate neighbors of a given tessel we consider two tessels to be neighbors if they _
- share a common edge in the tessellation. This functlon will be called ﬁnd—nezghbors :

' functlon and will be denoted by N. So, we want '

N(LO) {Ll’L2,°°'7-Lk} . .
where Ly, Ly, ..., Ly are the labels of the immediate neighbors of the tessel labeled
Ly : : , . e

3.6.1. Prevnous Approaches To Data Structurmg of Sphere Tessellatlons '

In the1r work on EGI representation, Horn [Ho —84] and Ikeuchl [Ik 83] have d1s- e

cussed a h1erarchlcal tree structure for representing a tessellated sphere based on
1cosahedron or dodecahedron. A drawback of this hierarchical data structure is that the -
: adJacency relationship between nelghbonng tessels is not preserved. To get around this _
difficulty, Fekete and Davis [F&D —84] used a fairly complex labeling scheme, in this
scheme each tessel is labeled by the pathname of its corresponding node in the tree.
The neighbors of a tessél within one of twenty main icosahedral triangles are found by
exammrng the pathname of the tessel, symbol by symbol, and synthesizing the path-
names of its neighboring tessels by the use of complicated state- trans1tlon rules and
lookup tables. This procedure requires at least O (n) operations, where » is the number

. of levels in the. h1erarchy When the neighbors lie in an adjacent triangle, a dlfferent o

procedure is needed.  Korn and Dyer {K&D -87] have also proposed a data structure for
a tessellated sphere with a fixed number of subdivision levels. Twenty one-dimensional
arrays, each of size 4", are used to represent the sampling points on the sphere, which

implies that a sampling point is labeled by a number from 0 to 4"-1. Their ﬁnd- o

nelghbors algonthm is essentially the same as that of Fekete and Davis.

In this section we will present a new data structure for representing a tessellated
sphere based on icosahedron. Its main merit is that logical adjacency between elements
of the data structure corresponds to physical adjacency between sampling points on the
sphere. We will show that the neighbors of a given tessel can be found with a constant
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Figure 3.18. A cone represents directional uncertainty of the computed‘: direction <I>*,
- and the sampling points on the sphere lie within the uncertainty cone. .
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»t1me complex1ty algonthm regardless of samphng resoluuon Furthermore by usmg

| the ﬁnd-nelghbors functlon the tessel ass1gnment funct1on L can be 1mplemented Co

- ’efﬁc1ently, too
~ 3.6. 2. Tessellatmg a Unit Sphere |

, In thrs subsectlon we will present the tesselatlons on wh1ch our data structunng is
.based Subsequently, it should become evident to the reader that the regulanty of. the:
:nelghborhood patterns in the tesselations used allows us to dev1se a s1mple scheme for.

. nelghbor finding. However, first we w1ll quickly review the cons1derauons that go 1nto -

the desrgn of tesselatlons

When a sphere is tesselated into cells, 1deally we. would like the cells to be sym— .
»metncal be identical in ‘shape, and possess equal areas; also, ideally, the tesselatlon
_ scheme should maintain these attributes over a wide range of cell. resolutions. How- }
ever it is well known that a tesselation scheme with these attributes does not exist. The ‘
best one can do is to use the techniques of geodesic dome constructlons [Ke —76] o

o [Pu ~76); these techmques lead to triangular cells that are approx1mately equal m area “

_and shape. The geodesic tesselations are obtained via the following three steps .

' (1) Chose a regular polyhedron, which usually is an icosahedron or a dodecahedron _
and 1nscnbe it in a sphere to be tessellated. If a dodecahedron is used, each of i its
’pentagonal faces i is d1v1ded into five triangular faces around its center to form a
' penta.kls dodecahedron Thus each face of the regular polyhedron w111 be a tnan- ’
, "'f'gle; g - :
Q) ,Subd1V1de each mangular face of either the icosohedran or the pentakls dode-
© ‘cahedron into subfaces by dividing each edge of a triangular face into @ sections,
Where Q is called the frequency of geodesic division. As a result, each triangular
face is divided into Q2 triangular subfaces. Finer resolutlon can:be obtalned sim-

ply by i 1ncreasmg the frequency of geodes1c d1v1s1on Usually, . Q is a power of

two. . :
3 Pro_]ect the subd1v1ded faces onto the sphere In order to make the pI‘OJCCth trian-
o gle sizes more consistent, the edges of the triangles should be d1v1ded into sections
~ such that each section subtends the same angle at the center of the sphere; as a
~_ consequence the lengths will be the same for the edge sections after they are pro-
R ]ected onto the sphere [Ke ~76]. '
1 To generate the tesselatlons used by us, we start out by 1mplement1ng the. above
approach with an icosahedron. The geodesm polyhedron thus produced containg 20 Q2
cells and 10 Q2+2 vertices. Fig 3.19 shows an icosahedron and a tessellated sphere
based on the icosahedron with frequency 0=4 of geodes1c d1v1s1on .
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o | Fi.guref_3”.1f9.:' An iCOSﬁhEdféﬁ"and atcs_s;ﬁlb:ila‘ted sphere based on the icosahedroﬁ. R
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Our next step is to construct a dual of the geodes1c polyhedron produced by the
jabove miethod. ‘Note the dual of a polyhedron is also a polyhedron’ whose vertices B
‘correspond: to the faces. of the original polyhedron and whose- faces correspond 10 the _
'vemces of the original polyhedron. For example, a pentagon is the dual of an -

= v icosahedron The dual ‘geodesic polyhedron thus produced consists of 10 @22 cells, of

’WhICh 10 (Qz.— 1) are hexagonal and the rest 12 are pentagonal The 12. pentagonal

B - cells of the dual polyhedron correspond to the 12 vertices of the ongmal 1cosahedron _

This dual polyhedron is then projected onto the unit sphere to produce the desired tesse-

' lations. As shown 1in Fig. 3.20, the center of each tessél servés as the sampling point for -

‘that tessel for the purpose of discretization. It is important to note that these: sampling

- points correspond to the vertices of the' original polyhedron, the oné before ‘the: dual was
' .constructed ThlS fact will prove to be most important toour denvauons later :

v As 1llustrated in Fig. 3 20, our tessels can be either pentagonal ‘or hexagonal the
o former has’ ﬁve neighbors, and the latter six. The average area of a tessel i is glven by ‘
' '41r/( 10 Q2+2) The radial angle between ad_]acent sampling 1 po1nts, Wthh isan 1nd1ca- '

. t10n of samphng resolut10n ‘can be roughly esumated by - '

atan (2) / o _
where atan (2) is the angular spread of an 1cosahedron s edge

o 3 6. 3 A Sphencal Array for Representmg the Tessellatlon '

We will now present a spherical array data structure for the computer representa—

' tion of the tesselation. This array will lead to easy and efficient unplementauons ofthe =

ﬁnd—nelghbors function N and tessel-ass1gnment function L. The data structure will be.
o constructed by first noting that the vertices of the- -geodesic polyhedron are the samphng
. points of the dual polyhedron flattening ‘out, as ‘shown ‘in Fig 3.21, the 20 tnangular .
faces of the underlymg icosahedron; and, finally, paralleling the development of the
~geodesic polyhedron on this flattened form. The flattened-out representation of the'
1cosahedron consists of five connected parallelograms, each of them consisting ‘'of four
tnangular faces, each triangular face corresponding to one of the 20 tmangles ‘on the -

icosahedron. Each parallelogram is subdivided into 4xQ? triangular cells us1ng Q for

the frequency of geodes1c division (Fig. 3.22). The vertices shown in Fig. 3. 22
: correspond to the vértices of the geodesic polyhedron, and also, therefore, to the ‘sam-
plmg points of our tesselation for the case of Q = 4. The flattened-out 1 representatlon, of'_ '
which Flg 3 22,is an example will be referred to as the spherlcal array '

- Each parallelogram ina sphencal array consists of (Q+Dx(2Q +1) vemces Obv1- _
ously, the vertices in each parallelogram separately could be represented by a two
d1mens1onal array; however, note that the veruces on the border of the parallelograms
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. Flgure 3 20 The dash lmes 1ndlcate part of the dual polyhedron the sampllng pomts
 are defined at the vertlces of the onglnal polyhedron outlined by solid
lmes e S SR N .



110 chenkak

Flgure 3.21. The original icosahedron i is flattened out to form five connected parallelo-
grams, each of them consisting of 4 triangular faces.
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' Figure 3.22. The assignment of the elemcnté» of a Q%20 array on aparétﬂelogrém. - B
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- are shared meaning, for example, that the vertices a and a’ on the edges A and A’,
respectively, are really the same vertex on the geodes1c polyhedron In other words,

before the icosahedron is unfolded to form the spherical array, edge A is connected to
edge A' edge B to edge B’, edge E to edge E’, and so on (Fig. 3.21). -

The fact that each border vertex should appear only once in an overall 1ndex1ng'
scheme for the vertices in a spherical array implies that the size of the index array for
representmg each parallelogram need only be Qx2Q. For example, for the case shown ‘

in F1g 3. 22, each parallelogram need only be represented by a 4x8 array. The a551gn- o

ment of array indices for the parallelograms is depicted in Fig 3.22 for the Q =4 case.
The index i specifies a parallelogram and the indices i J and k specify a vertex within the
parallelogram Clearly, we have five 0x2(Q arrays, for a total of 10><Q2 indexed points
on the spherical array, this number being two less than the total 10xQ2+2 vertices on
the geodesic polyhedron.  The two missing vertices correspond to the two common ver-

tices of the five parallelograms, one at the top and the other at the bottom. We shall o

allocate two additional distinguished sets of indices to represent these two vertices and
referred to them as the the zenith and the nadir (see section 6.3.2 for explanatlon) of the' o
tessellated sphere. '

The proposed 1ndex1ng 1mpl1es the followin g ranges for i,jand k:
i, g k) | . 1<i<5, 1<_]<Q 1<k<2Q

The zenith and the nadir are assigned the dlst1ngulshed indices [0, 0, 0] and [—1 0, O]
respectlvely

3.6.3.1. The Find-Neighbors Function

As pointed out. before, the simplicity of the proposed data structure lies in its
preserving the physical adjacencies between the tessels. We will now show that simple
relationships exist that yield a tessels’s neighbors, regardless of the location of the
tessel, and, more important, regardless of whether the tessel possesses six or five neigh-
bors. Most tessels posses six neighbors, except for the 12 that correspond to the 12 ver-
tices of the original icosahedron, each of latter type possessing five neighbors only. In
general, the six neighbors of a tessel [i, j, k] that is not on the border of any of the five
parallelograms are given by '
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'r[i, J, k+1],

[, j+1, k],

J O j#1, k-1,

[, j, k=11,

G, -1, k),
'L[z, j=1, k+11.

6D |

Therefore, for the above set of indices to g1ve us the nerghbors, the indices J and k must - |

; obey the constraints 1<j<Qand1<k<2Q. If also used to find the neighbors of a border
tessel, some of the above indices would take out of range values, implying that those

nerghbonng tessels are vertices shared by another parallelogram and should really be

ass1gned to the array for that parallelogram. To convert the out- f-range labels to the

- legrtrmate ones, we apply the following substitution rules:

,[1,1,0]=>[z 13,1, j1 j
i, 0+1,k] = [i-1™5,1,0+]1 &k
i, 0+1, k] = [i-1"°,k-Q, 201 &
[0, k] = [+, k-1,11 k=2, ..,0 B B
| » S Tt (3.8)
[i, 0, k] = [i+1™,Q, k-Q] k o
i, j, 20+1] = [[i+1%,Q, j+Q+1]
[,0,1] = [0,0, 0]
[i, 0, 20+1] = [-1,0,0]

forz = 1 5 wherel = (i—l)mod(S) +1

' Except for the zenith and the nadir tessels, it can be verified that equanons 3.7
and (3.8) are also applicable to 10 of the 12 five-neighbor tessels. Ata ﬁve-nelghbor
tessel, two of the six labels returned by equation (3.7) will turn out to be identical after
applyrng the substrtutron rules in (3.8). The five neighbors for the zenith and the nadir
are ‘ ~

G 1 1) i=1 .,5 and
[1 0, 2Q] i=1,...,5

respectrvely

. The following two examples will 111ustrate the neighbor ﬁndmg scheme descnbed
above The example are for the case of Q =4. '
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Example 1:

‘ Find the nelghbors of tessel [l 3,1]
[ : .
13,2 (3,2
| [1, 4, 1] (1, 4, 1]

o maa=51,4 514
»:[1,3,1] - J[1,3’0]=[5, 1, 3] e J[S, 1’3]'.

1,21 | 1,2, 1]
12,2 [1, 2, 2]
Example 2: ,
- Find the nelghbors of tessel [2,4, 5]
fess
|12,5,5]=]1, 1, 8] (ﬁig
. [23.5a 4] = [1, 1, 8] » 1,
[2,45] - J 244 - 1{12,4,4]
[2, 3, 5] [2, 3, 5]
[2, 3, 6] [2.3, 6]

It is worth notmg that [2,4,5] happens to be a vertex of the original icosahedron and has
only five nelghbonng tessels, exactly what the rules returned. ’

3.6.3.2. Directions of Sampling Points

In order to spemfy the tessel-assignment function, we will need formulas for the
d1rect10ns of the tessels, meaning the directions associated with each of the vertices on
‘the spherical array. For that purpose, we will take advantage of the symmetry of the
icosahedron and use a sphere-centered coordinate system whose positive z axis passes
the zenith at ([0, 0, 0]) and whose z-x plane passes an icosahedral vertex [1, 0, 1] as
shown in Fig 3.23. The direction of each tessel, denoted by @i, j, k], in this coordi-
nate system will be expressed in terms of the longltude and latltude angles 4, 0).
Because of the symmetry of the icosahedron, we have = :

:_ 0L, j, k1=6li-1, j, k]
' ¢[i,_j; k] =(%+¢[i—1, Jj» k]) mod (2x)

o
!

for i=2,..,5 j=1,.,0, k=1, ..20. .
therefore we only need to compute the direction of the tessels in the first parallelogram

(3.9
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e

Figure 3.23. A spherical coordihate' Systém defined on the original icosahedron.
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. (array).

- Itis easy to see that the dll'CCthIl of the five vertices of the ﬁrst parallelogram are
®[1,0, 11" =(0, -)
®[1, Q, 11=(atan(2), 0)

(1,0, 0+1]" = (atan (2), %) -

@[, 0, Q+1] = (n-atan (2), 1),

g ¥ 3n
SD[1, 0, 20+1] = (n—atan 2), —)
@1, Q, 20+1]" =(x, ) |
Recall that in the derivation of the geodesic polyhedron we subd1v1ded each edge of
the triangles of the inscribed icosahedron into Q sections of equal rad1a1 angle. When
Q=2’, the result is equivalent to recursrvely subdividing 7 times a triangle into four tri-
angles. Therefore, we can compute the direction of a new tessel by taking the averages '
of the known directions of the two tessels which are the end-points of the edge whose
division led to the formation of the new tessel. This procedure can be applied recur-
sively to compute the direction of every tessel. As an example, the three tessels Wthh
are the rmdpomts of the three edges of the upper triangle have directions:

’.(I’[l, %, 1}=Mid(®[1, 0, 11,®[1, O, 1])
e, £, L m=mia@n, 0. 0+11,011, 0, 1)
®[1, 0, £41] = Mid(@[1, 0, 0+11,0(1, 0, 1),

Here Mid(®,,®,) means to take the average direction of the two direction on the unit
sphere. To save runtime computation, we may pre- compute the d1rect10n for all the
tessels and store them in a lookup table. :

3.6.3.3. The Tessel-Assignment Function

Given a particular direction ®”, its correspondmg tessel in the spherical array o

-'should be the one whose direction is closest to ®*. The functron L* w1ll return the
indices of thls tessel. : .

~ * Note that these labels are not legmmate in the spherical array data structure, we use them just
to make the derivations clearer. The legitimate versions of these labels can be obtained by using .
the substitution formulas in equatlon (3.8).
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®[L"] D" = max ((D[L] d>)

The finding of the tessel L* would thus involve a search process for the maximal dot
product. Because the dot product is a monotonically increasing function toward the
desired tessel, a local maximum must also be the global maximum. The local maximum
can be found by an iterative climbing method from any tessel guessed initially. Since a
good initial guess can reduce considerably the computations required to reach the max-
1mum we have prov1ded in Appendix B

‘a 11near approx1mat10n that translates a given ® into a triple (i,j,k). Since the approxi-
mation has proved to be fairly good, the resulting indices are qulte close to their actual
values. Starting with these indices, one can then find the actual ones by conducting
local search, as depicted by the following algorithm. :

assign_tessel( @) {
"~ L9 = get_initial_guess( ®")
L™ =get_closer(L’, @ .
return L")

~get_closer(L, @) {
“among all L inN(L) ,
* find L which maximizes (@) - ®")
(@)@ > OL) DY)
o gety closer(L o)
else -
' return L}

3.6.3.4. Bulldmg Feature Spheres on the Spherlcal Array

Note that since a feature is described by sets of attrlbutes a frame structure is used ,
to store the attribute-value-pairs. Each such frame structure is identified by a pointer
‘which is stored at the corresponding tessel in the spherical array. The tessel address, as
represented by the indices 1, and k, is computed by applying the tessel-assignment-
function to the principal direction of the future. It may happen that two or more ne1gh- .

boring features, neighboring in the sense of their possessing nearly identical principal -

directions, may have their points assigned to the same tessel. This conflict can be
resolved by recordmg in the first reglstered feature a list of pointers for the features that
, share the same tessel address.
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'3.7 ’ Reco'gnition' of Objects in the Presence of Occlusions

The discussion presented so far could be used directly for the recognmon of single
isolated' objects. However, our main interest in 3D-POLY lies in recognizing objects
under occluded conditions, as ‘would be the case when the obJects are presented to the
sensory. system in the form of heaps. ' = o

In general, when the range unages to be interpreted are of scenes conta1n1ng p1les
of overlapplng objects, one has to contend with the following two problems 1) The
number of features extracted from a scene will usually be very large; and, -2) since d1f-
ferent objects may be made of similar features, it would generally not be poss1ble to set
up 51mple assoc1at10ns between the scene features’ and the objects. To get around these
problems in dealmg with multlple object scenes, researchers previously have either per—
formed ObJCCt segmentation l;y explo1t1ng range d1scont1nu1ty information [F &et —88]
or have used a model driven approach to group together scene features belonglng to.
s1ngle obJects [F&H —86], [B&H —86]. However, the former approach usually falls to
work especially when the juxatopositions of multiple objects are such that there are no
range discontinuities between them; and the latter is inefficient for reasons descnbed in
Section 2.

We will now present a data-driven approach for aggregating from a complex scene
features belonging to single objects. The cornerstone of our approach is the idea that
only physically adjacent scene features need be invoked for matching with a candidate
object model. For this purpose, the notion of physical adjacency will be apphed in'the
image space as opposed to the object space, implying, for example, that two surface
regions sharing a common boundary, even if it is a jump boundary, will be considered
adjacent to each other Usmg this idea, we will now describe the complete method

The algorithms uses two sets, UMSFS and MSFS, the former standing for the
unmatched scene feature set and the latter for matched scene feature set. In1t1a11y, the
algorithm assigns all the scene features to the set UMSES. The process of object recog-
nition starts with a local feature set (LFS) extracted from the UMSFS The matching of
this scene LFS with a model LFS generates a hypothesis about object identity and a
pose transformation. The features in the scene LFS are then taken off from the UMSFS
and assigned to MSFS; note that MSFS keeps a record of all the scene features matched
so far with the current candidate model. Then during the verification stage, only those .
scene features in the UMSFS that are adjacent to the features in MSFS are selected for
matching with the candidate model. During the verification state, 1f a UMSFS feature

——
Tobe contrasted wu:h the data driven procedure to be described in this section.
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does match the candidate model feature, the scene feature is taken out of the UMSEFS
and added to the MSFS; otherwise the feature is marked as tested under the current
hypothe81s and left in the UMSFS. S

. The verlﬁcatlon stage terminates when MSFS stop growing. Once the verification
process terminates, the algorithm determines whether or not the features in the MFS
constitute enough evidence to support the hypothesis on the basis of some. predeﬁned
1 criterion. This criterion may be as simple as requiring a percentage, say, 30 %, of
model features to be seen in the MSFS; or, as complicated as requiring a particular set :
of model features to appear in the MSFS; or, at a still more complex level, some combi-
nation of the two. If a hypothesis is considered verified, the features currently in MSFS
are labeled by the name of the model and taken out of further consideration; otherwise,
the hypothesis is rejected and every feature in the MSFS is put back into the UMSFS
and the process continued with a new LFS. The entire process terminates after all the
LFS’ s have been exammed The algorithm is presented below i in pseudo C language

Inte'rprete_scene I {
extract feature set {S} from 7
- UMSFS = {S}
while ( there exists a local feature set LFS, in- UMSFS )
~for each LFS,, in the model library
if (LFS; matches LFS,, ) {

estimate Tr by matching LFS; with LFS,, :
candidate model O, is the model correspondmg to, LFS
MSFS =LFS
Venfy (0,,, MSFS, UMSFS, Tr) } }

‘ Ver1fy (0,,,, MSFS UMSFS, Tr){
tagfor each untested S; in UMSFS adjacent to MSFS {
compute prinicipal direction @ of Tr~ ~1¢s; )
-for each M; registered in the nelghborhood of L (®) on the feature sphere of 0,,
‘ if ( Tr’1 (S;) matches M;) {
add S; to MSFS
goto tag }
~else
' mark S; tested
cif »( MSEFS satisfies the recognition criterion ) {
- UMSFS = UMSFS — MSFS
label every S in MSFS by the name 0
- write_result (O, Tr)
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return (true) }.
else
~ -return (false) }

In our current implementation of this algorithm, the reeogninon criterion requires
that at least 33% of a candidate model’s features be present in the MSFS for a
* hypothesis to be cons1dered valid. Note that the acceptance threshold can be no greater '
than 50% for most objects, especially those that have features distributed all around,
smce ﬁ'om a single v1ewp01nt only half of an object will be scene. Therefore, 50% i isa
_loose upper limit on the acceptance threshold. ‘On the lower side, the threshold cannot

be set to be too low, since that would cause mlsrecogmtlon of objects. We have found R

33%- to be a good comprormse

38 Experimenta‘l ReSults ’

Th1s section presents experimental results obtained thh our matchmg strategy, the
~ results w111 also demonstrate in action the algorithm for recognizing objects in heaps.
Although we have done experiments on a large number of scenes with 3D- POLY, only
two such expenments will be presented to discuss the behavior of the algonthms

38. 1. “The Models

The model hbrary used consisted of two object models shown in Fig. 3. 2 ‘The

R ohject in F1g 3.2-(a) is given the name "square" and the one in (b) "round". The model

knowledge was obtamed by a “learnmg system con51st1ng of a spec1a1 scanner in

laser beams. The data thus generated from many viewpoints is 1ntegrated and d1rectly

transformed into a feature sphere representation. Further details on the methods used for

| viewpoint integration and the transformations involved are presented in Chapter 4. For-
the two expenments discussed here, model data was generated by mtegratmg six views
for "square" and five for "round". For "square" object this resulted in a feature repreSen- _
tation consisting of 14 vertex and 12 surface features. The model representatlon denved :

for "round" ob_]ect consisted of 12 vertices and 10 surfaces. : : -

Two feature spheres were derived for each model, one for surface features andthe
-~ other for vertex features. The frequency of geodesic division, Q, of the spherical array

discussed in Section 6.3 was chosen to be 16; this gave a resolution of about 4° per :

tessel in the spherical array representation. The vertex and surface features were used
for the generation of hypotheses, while only the surface features were used for
verification. '
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v As described in Section 5.3, each object model must be associated with_ﬁa list of
LFS’s for the purpose of hypothesis generation, an LFS being a set of surface features
meetmg at a vertex. In this prototype system, we have chosen to organize LFS’s around

“convex vertlces only, that is those whose edges are all convex. For "square" object,
there are 12 LES’s which correspond to the 12 convex vertices, and for ' round" object
there are only four LFS’s corresponding to the convex vertices ¢, d, e, 1.

‘3 8.2. The Data

v For the results that will be shown here we had 10 overlapplng ob_]ects, ﬁve of each
type, in each of the two scenes. The objects were placed in a tray and, before data col-
-~ lection, the tray shaken vigorously to randomize the object placements. A typical scene
“was as was shown earlier in Fig. 3.1. Range images of the two scenes, shown in Figs.

3.24 and 3.25, were acquired by using a structured-hght range sensing unit which is

held by a PUMA robot for dynamic scanning; these images will be referred to as ‘stripe
- images. Each stripe image consists of 150 stripes, with the inter-stripe spacmg being
- 0.1% thlS spacing is the distance the robot end-effector travels between success1ve pro-i
_ _]CCthHS ' -

' “'__Range maps for the scenes are obtained by converting each stripe point, which
exists in image coordinates, into world coordinates using a calibration matrix by the
method discussed in Chapter 1. Features are extracted from the range maps by a battery-
of low level procedures developed specifically for this research project. These pro-
cedures carry out surface normal computations, segmentations of surfaces of different .
types, surface classrﬁcatlons, etc., and are discussed in greater detail in Chapter 2. The
output’ of preprocessmg for the range map corresponding to the stnpe image of Fig.

o 3.24 is shown in Fig. 3.5 in the form of a needle diagram and segmented surfaces. Fig.

3 26 shows the results for the stripe image of Fig. 3.25. Figs. 3.5 and 3. 26 also dlsplay'
the labels glven to the drfferent surfaces

3.8.3; Hy’_p_othebsis Generation

-~ For the purpose of hypothesis generation, each detected vertex in a scene is given
a rank depending upon the number of surfaces meeting at the vertex and the
convex1ty/concav1ty of the edges convergent at the vertex. The rank is greater the
larger the number of surfaces meeting at a vertex Also, since we only use convex ver-
- tices for constructrng the LFS’s of a model, if a concave edge is found to be 1nc1dent at

a vertex the rank of the vertex is made negatlve ’ ~

\

7 To generate hypotheses, the system ﬁrst chooses the highest pos1t1ve1y ranked ver-- _
- tex and then constructs an LFS by collectmg all the surfaces meeting at the vertex The
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Figure 3.26.

Result on feature extraction of scene #2.
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‘scene LFS thus generated is matched with the LFS’s of all the models, one by one.
~ This matching between a scene LFS and a model LFS is carried out by a special pro-
cedure which tests the compatibility of the shape and relation attributes of the
correspondmg features in the two LFS’s. Note that the maximal number of surfaces in

~_an LFS for the objects in the experiments reported here is 3, thus there are three possi-

. ble ways of establishing the correspondences between a scene LFS and a model LFS; -
all the three poss1b111t1es must be tested each accepted poss1b111ty ‘will lead to a d1f-* o

) ferent pose hypothes1s

For a g1ven match between a scene LFS and a model LFS the v1ewp01nt 1ndepen- ‘
dent position/orientation attributes of the features in the two LFS’s are used for generat-
. ing a candidate pose Tr for the scene object; further details on how exactly this is done

~ can be found. in Append1x A. For a candidate pose to translate into a pose hypothesis,
the system checks the fitting error computed from the estimation of T7r; the error must

- '_ be less than a predefined threshold. -

‘ In the preprocessed output shown in F1g 3 5, there are 68 vertlces, but only 36 of

them are of convex type; in the output shown in F1g 3.26 there are 22 convex vertices |

- out of a total of 49 vertices. So, supposedly, in the worst case one would have to check
36 LFS s in the former case, and 22 in the latter. Slnce there are a total of 16 LFS’s in
the model hbrary, 12 for "square' " and 4 for ' "round"”, in the Wworst case one would have

g to carry, out 16x36x3 = 1728 LFS matches for the scene of Fig. 3 5, where the number 3 -

. takes care of the aforementioned different ways of establishing correspondences

~ betweena model LFS and a scene LFS. Similarly, in the worst case situation, there may

“be 16><22x3 = 1056 LFS matchings to be tested for the scene of Fig. 3. 26.. In ‘practice,

| , however the number of LFS matches actually carried is far fewer on account of the fol-

lowing reason: An object hypothe51s can be generated by any one of many LES’s, and
when a hypothes1s thus generated i is venﬁed the system does not need to mvoke any of
the other LFS s for that ObJCCt : '

, “To give t the reader an idea of the number of hypotheses generated, the system gen-
' _erated 156 hypotheses for the scene of Flg 3.5, and 75 for the scene of Flg 3.26. '

’ 3 8 4 Verlﬁcatlon '

leen the pose transformatlon Tr assoc1ated w1th a hypothests, venﬁcatlon 1s car-ﬁ .v

’ ned out by computing the feature sphere tessel indices of those scene features that are |
physmally adJacent" to the LFS features, the notion of physical adJacency bemg as

‘explamed before, and matchmg each such scene feature with a model feature assigned

“to that tessel assuming such a model feature can be found. [If more than one model

feature may be ass1gned toa tessel the scene feature must be matched with all of them ] o N
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- Of course, since measurement noise and other artlfacts w111 always be present to d1stort '
- the attnbute values of a scene feature, the scene feature must be matched with all the ’

B ‘model features belonglng to tessels within a certain nelghborhood of the. tessel com-

~puted from the scene feature principal direction. The size of the ne1ghborhood reﬂects»

the uncertalnty in the feature measurements For most of our expenments ‘we use all

the model features within two tessels of the tessel assigned to a scene feature,
;correspondmg approxnnately to a directional uncertamty of 8.0-°. e

- To 111ustrate the behavior of the algonthm Table 3.3 shows the hypothes1s genera-'
‘tion and verification procedure i in action. Each line entry, printed out upon the forma-
tion of a hypothes1s, identifies the LFS used by the vertex chosen, and shows the sur-
“face correspondences established when the scene LFS was matched with model LFS.
For- example for the first hypothesrs, marked hyp#1 in the table, the LES matchmg esta-
-bhshed correspondences between scene surface 7 and model surface. 2; and between
scene surface 5 and model surface 1. The number 2 at the end of the hne in the table
'. indicates that the first hypothesis was failed during the verification stage after: fallures
' along two different paths.in the search space, each failure caused by a mismatch- ofa.
scene feature physically adjacent to one of the hypothesis generating’ LFS features and
‘the model feature located within the uncertamty range of the tessel correspondmg to the’

- fscene feature. This is not to imply a fan-out of only 2 at the end of the hypoths1s gen- v
' _ eratmg segment for hyp#1; only that for the other branches the scene fedtures, again

physically ad_]acent to one-of the LFS features, had no correspondmg model features on
~ the feature sphere This is also the reason for 0 at the end of many of the hne entnes in
the table ' ' '

As mentroned in Sectlon 7, the acceptance of a hypothes1s is predlcated upon our :

o ﬁndmg at least 33% of the model features from amongst those that are adJacent to the

features in an LFS. As shown in the table, from among the 75 generated hypotheses
| only the hypothses #23 and #75 are verified and lead to the recognition of an instance of
“‘square” in the first case, and to that of ‘‘round" in the other. During the verification of
- hypothesis #23, scene surface 16 fails to match model surface 3 of the square model ,
although scene regions 18 and 21 do match model regions 4 and 5, respectlvely Asis
cevident from the stripe image of Fig. 3.25, the difficulties with scene surface 16 are due
to problems with the robust detection of stripes over that surface; these problems are
probably caused by the rather very acute angle between the stripe pro_]ectlon direction

and the surface. It is entirely possible that the surface labeled 16 in the scene is made S

~of reflections of the stripes seen in adjoining surfaces. In other words, surface 16 is
most 11ke1y a spurious surface and not matchable with its potential candldate model sur-

~face 3.’ Dunng the verification of hypothesis 75, scene region 23 is not matched to any
model reglon This is because only a small portion (less than 25%) of the cyhndncalu '
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’

Table 3 3 Output hstlng of the mterpretauon of scene #2

- Verify hyp #1 Model square Vert: 12 Reg (7->2) (5->1) falled 2
. Verify hyp #2 Model: square Vert: 12 Reg: (7->1) (5->2) .. . failed - 2
Verify hyp #3 Model: square Vert: 12 Reg: (7->10)(5->4) ... failed - 2

 Verify hyp #4 Model: square Vert: 12 Reg: (7->4) (5->8) ... failed - 1
" Verify hyp #5 Model: square Vert: 12 Reg: (7->10) (5->12) ... failed - 1 -

. = Verify hyp #6 Model: square Vert: 12 Reg: (7->4) (5->10) ... failed - 1
'Verify hyp #7 Model: square’ Vert: 12 Reg: (7->12) (5->9) ... failed - 1

. Verify hyp #8 Model: square Vert: 12 Reg: (7->9) (5->10) ... failed - 1
-+ Verify hyp #9 Model: square Vert: 12 Reg: (7->9) (5->12) ... failed - 1
© Verify hyp #10 Model: square Veért: 12 Reg: (7->12) (5->10) ... failed - 1 -

. Verify hyp #11 Model: square Vert: 12 Reg: (7->10) (5->9) ... failed - 1*
Verify hyp #12 Model: round Vert: 18 Reg: (17->9) (11->7) ... failed - 0 -
2 Verify hyp #13 Model: round Vert: 18 Reg: (17->9) (11->1) ... failed - 0
- Verify hyp #14 ‘Model: round Vert: 18 Reg: (17->7) (11->9) ... failed -0 - .

- . Verify hyp #15 Model: round Vert: 18 Reg: (17->1) (11->6) ... failed - 0

Verify hyp #16 Model: round Vert: 18 Reg: (17->6) (11->7) ... failed -0

Verify hyp #17 Model: round Vert: 18 Reg: (17->7) (11->6) ... failed - 0

-Verify hyp #18 Model: square Vert: 18 Reg: (17->2) (11->1) ... failed - 0

Verify hyp #19. Model: square Vert: 18 Reg: (17->1) (11->10)

- scene region 18 matched to model region 4 ... failed - 2

Venfy hyp #20° Model: square Vert: 18 Reg: (17->10) (11->2) . failed - 0

Verify hyp #21 Model: square Vert: 18 Reg: '(17->8) (11->1) ... failed - 0

"~ Verify hyp #22 Model: square Vert: 18 Reg: (17->1) (11->2) ... failed - 0

. Venfy hyp #23 Model: square Vert: 18 Reg: (17->2) (11->8) '

' . . scene region 18 matched to model region 4 - :

.scene reglon 21 matched to model reglon 5. SUCCEED"' -2

- Venfy hyp #24 Model square Vert: 26 Reg (19->4) (l3->3) 'falled 0

;- Verify hyp #25 Model: square Vert: 26 Reg: (19->3) (13->4) ... failed -0

- Verify hyp #26 Model: square - Vert: 26 Reg: (19->7) (13->4) ... failed - 0 i
- Verify hyp #27 Model: square Vert: 27 Reg: (13->4) (19->3) .. failed - 0 .
" Verify hyp #28 Model: square Vert: 27 Reg: (13->3) (19->4) ... failed - 0

- Verify hyp #29 Model: square Vert: 27 Reg: (13->7) (19->4) ... failed - 0

- Verify hyp #30 Model: round Vert: 36 Reg: (24->7) (20->10)-... failed - 0
- Verify hyp #31 Model: round Vert: 36 Reg: (24->10) (20->9) .failed-2 . -

- Verify hyp #32 Model: round Vert: 36 Reg: (24->9) (20->7) ... failed -0 .
Verify hyp #33 Model: round Vert: 36 Reg: (24->9) (20->1) ... failed - 0 -

" Verify hyp #34 Model: round Vert: 36 Reg: (24->1) (20->7) ... failed - 2

Verify hyp #35 Model: round Vert: 36 Reg: (24->7) (20->9) ... failed -0
Verify hyp #36 ‘Model: round Vert: 36 Reg: (24->7) (20->1) ... failed - 0 -
Verify hyp #37. Model: round Vert: 36 Reg: (24->1) (20->6) ... failed - 2

Verify hyp #38 Model: round Vert: 36 Reg (24->6) (20->7) ... failed - 0
-+ Verify hyp #39° Model: round Vert: 36 Reg: (24->6) (20->10) ... failed - 0..
. Venfy hyp #40: Model: round Vert: 36 Reg: (24->10) (20->7)

- . scene region 28 matched to model region 4 ... failed - 3
'-_Venfy hyp #41 Model: round Vert: 36 Reg: (24->7) (20->6) . failed - 0
' Vgnfy hyp #42 -Model: square Velft_ 36 Reg: (24->2) (20->1) ... failed -0




Table 3.3 Continued

o Venfy hyp #43 Model:

Verify hyp #44 Model:

Venfy hyp #45 Model:
- Verify hyp #46 Model:
* Verify hyp #47 Model:
Verify. hyp #48 Model:
,Venfy hyp #49 Model:
;Venfy hyp #50 Model:

- Verify- hyp #51 Modet:
Verify hyp #52 -Model:
Verify hyp #53 Model:
Verify hyp #54 Model:
Verify hyp #55 Model:
Verify hyp #56 Model:
Verify hyp #57 Model:

- Verify hyp #58 Model:
- Verify hyp #59 Model:
-Verify hyp #60 Model:

- Verify hyp #61 Model:
Verify hyp #62 Model:
- Verify hyp#63 Model:
Verify hyp #64 Model:
Verify hyp #65 Model:

- Verify hyp #66 Model:
.- Verify hyp #67 Model:
Verify hyp #68. Model:

" Verify hyp #69 Model:
'Verify hyp #70 Model:
Verify hyp #71 Model:
Verify hyp #72 Model:
- Verify hyp #73 Model:

" Verify hyp #74 Model:
Verify hyp #75 Model:

square . Vert: 36 Reg: (24->1) (20->10) ... failed -0~ .
'square - Vert: 36 Reg: (24->10) (20->2) .. .failed-0 -
square Vert: 36 Reg: (24->8) (20->1) .. . failed - -0
square Vert: 36 Reg: (24->1) (20->2) ... failed - 0
square Vert: 36 Reg: (24->2) (20->8).... failed -0
square Vert: 36 Reg: (24->3) (20->10) ... failed - 0
square Vert: 36 Reg: (24->10) (207>4) . failed - 0
square Vert: 36 Reg: (24->4) (20->8) ... failed - 0 - -
square Vert: 36 Reg: (24->8) (20->3) ... failed -0 ,
square Vert: 36 Reg: (24->12)'(20->7) ... failed -0 -
square Vert: 36 Reg: (24->7) (20->10) ... failed - 0
square Vert: 36 Reg: (24->10) (20->12) ... failed - 0
square Vert: 36 Reg: (24->4) (20-510) ... failed -0 -
square Vert: 36 Reg: (24->10) (20->7) ... failed -0 -
square Vert: 36 Reg: (24->9) (20->1) ... failed - 0

square - Vert: 36 Reg: (24->1) (20->8) ... failed - 0

square Vert: 36 Reg: (24->8) (20->9) ... failed - 0
square Vert: 36 Reg: (24->12) (20->9) ... failed - 0
square Vert: 36 Reg: (24->9) (20->8) ... failed - 0
square Vert: 36 Reg: (24->8) (20->12) ... failed - 0.
square Vert: 36 Reg: (24->10) (20->1) .: failed - 0
square Vert: 36 Reg: (24->1) (20->9) ... failed - 0 e
square -Vert: 36 Reg: (24->9) (20->10) ... failed -0 - =
square Vert: 36 Reg: (24->9) (20->12) ... failed -0 -
square Vert: 36 Reg: (24->12) (20->10) ... failed - 0
square Vert: 36 Reg: (24->10) (20->9) ... failed -0~
round Vert: 37 Reg: (20->7) (24->10) ... failed =2 ~
round Vert: 37 Reg: (20->10) (24->9) ... failed -0 -
round Vert: 37 Reg: (20->9) (24->7) ... failed - 0
round Vert: 37 Reg: (20->9) (24->1) ... failed - 2
round Vert: 37 Reg: (20->1) (24->7) ... failed - 0
round Vert: 37 Reg: (20->7) (24->9) ... failed - 0
round Vert: 37 Reg: (20->7) (24->1) - :

scene region 28 matched to model region 4
~ .- scene region 31 matched to model region 2 - ' E
'sce'ne region 25 matched to model region 8 ... SUCCEED!!! -6 .

o Total number of feature matchmg tests for venﬁcatlon 29

.~ Process completed
Reoogmzed obJects
- square

-round
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: surface is v1s1b1e in the scene, and the computed radlus is off too much from 1ts correct '
value to match to the candldate model regron 5. ' ‘

v Note from Table 3.3 that most of the 75 hypotheses are reJected 1mmed1ately dur-
ing venﬁcatlon without the computatlonal burden of any feature matching. For each
‘hne entry in the table that ends in a 0, no features had to be matched during the
verification stage; the hypothesis- falled srmply because no model features could be
vfound in the vicinity of the tessels for the scene features used during. verifications. In
‘ fact as deplcted at the end of the table, for the scene of Fig. 3.26, only 29 features had
- to be matched during the entire verification process. So, on the average, the system had
. to match only 0.387 features durmg each hypothesis verification. The largest number of
" features matched during any verification was 6, this was for hypothesis #75 conﬁrrmng
' our 0 (n) measure for the time complex1ty of verification. C

, Th1s prototype system is programed in C language and runs ona SUN—3 worksta-
tlon 'The CPU time for interpreting a processed range image was 9 seconds for the
’scene of F1g 3.5 and 4 seconds for the scene of Fig. 3.26. The CPU time is approxi-

'mately propotional to the number of generated hypotheses wh1ch in turn depends on
athe complex1ty of the scene. ’ -

. '.3.9. C'onclusionsi '

, In th1s chapter we have presented feature matchmg and recognltlon strategles in

.3D-POLY For recognition, the system used an approach based on hypothe51s genera- '
tion and venﬁcatlon The strategies used in the system lead toa polynomral tlme algo- ‘
' nthm for the 1nte1pretat10n of range 1mages -

‘ The polynormal bound on the time complexity was made poss1ble by two key

1deas, one for hypothesis generation and the other for verification. The key idea in the
‘former was the use of special feature sets, the spatlal relationships between the features
in these sets being such that the number of possible ways in which the scene feature

- could be matched to these in the sets was substantlally curtailed. The key idea in the

venﬁcatlon stage was the association of a principal d1rectlon with a feature and, after
: the estabhshment of a pose tranform comparing a scene feature with a model feature
‘ _'only if the two agreed on the basis of their principal directions. This sharply reduced -
~ the number of scene and model features that had to be actually ‘matched, leadlng to :
' great sav1ngs 1n the. computatlons 1nvolved ’ SR . : o

_ To embed the notion of feature pnnapal—dlrectlon in a computatlonally efﬁ01ent
framework we represented the model features on a feature sphere. We advanced a data
'structure for feature spheres - and presented efﬁclent algonthms for ﬁndmg
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neighborhoods on the sphere and for assigning a tessel on the Spheré to a measured
principal direction.

We showed how our object recognition framework should be applied to scenes
consisting of multiple objects in a heap. Finally, we discussed experimental results vali-

-dating our complexity measures.
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R » CHAPTER4 E o |
| LEARNING 3D MODELS FROM MULTIPLE VIEWS OF Q QBJECTS

To be completely functronal a robot vision system must have access to l1brary of :
‘model representanons of all ‘possible: ObjCCtS that ' we want the system 0 recogmze o
‘Models may ‘be specified- either via CAD descriptions or‘the system may ‘be: pr0v1ded‘ -
with'a capablhty to generate its own models ‘‘by showing." In this chapter, we ¥ 7ill
take the lattér approach and present a procedure: which consists 6f placmg an ob_]ect in‘a
"computer controlled structured—hght scanner capable of generatmg range maps of ‘the
‘objéct from many dlfferent vlewpomts We will show how the surface’ mformatlop from
~the different viewpoints is integrated into a full 3-D representation ‘of the ‘Object. ‘The

~ learned represefitation thus ‘;geherated consists ‘of a feature sphere, which ‘can-then be
| directly used by ‘the recognition procedure described earlier. In addition, it is also POs-
sible to draw wite-frame and full boundary representations from the feature spheres SO

'obtamed although in’ thlS chapter we 'will only show the’ former. v

’_ 4 1 Introductlon

’ob_]ects that we want the robot vision system to recognize, and these models should ‘
preferably utlhze the feature sphere representation. ‘Of course, a superior- -goal would be
‘drive the fecognition system directly from the available CAD models of ObJCCtS, how-
- ever, “CAD models cannot be used directly for vision applications because features ‘that
~ one: may be able to pull ‘out ‘of ‘an image are not explicitly definéd in such ‘models.

’Therefore, one must always install an intermediate representation o’ bndge ‘CAD w1th'
“vision, -a‘point that was’ eloquently made in [K &et —-87]

‘For the purpose of this: chapter we will assume that we want. our: ‘models "to be in o
the ‘feature sphere form. Clearly, for someone 'to ‘drive our ‘recognition ‘method ‘with -
CAD, they will have to write their own ‘‘translator” to'convert CAD data structutes into.

feature sphere data ‘structures. Much ‘work ‘has “been -done by ‘other researchers in
developing these types-of translators, translators ‘that convert CAD representations into
those which are more suitable for use by vision ‘algorithms. The most notable work
“along these lines was ‘done ‘by Bhanu and Ho [B&H —-87]; they have discussed
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' procedures for convertmg a CAD boundary representatlon into vision- onented
- representations such as EGI, octrees, etc. Similarly, Xie and Calvert [X&C —88] have
presented a rule-based system that can convert a boundary representation of an object to
their so called "CGS-EESI" (constructive geometric solid-extended enhanced spherical
~_image) representatlon In the works of Hansen and Henderson [H&H —87] and Ikeuchi
Uk-871, an 1nterpretatlon tree is built’ from a CAD model of the ObJCCt '

As was mentioned before, the focus of this chapter is on presenting a techmque in

. | wh1ch the model of an object is learned by showing, the learned model being directly in
‘the form that can be used in the recognition procedure To construct a full 3-D model,
an obJect must be shown to the system in many different orientations and the informa-

'v_uon obtamed from all the orientations somehow integrated, leading to the notion of
v1ewpornt integration. At the simplest level, as was done by Oshima and Shirai

[0&S —83], viewpoint integration may consist of simply collecting every pos31ble view

~ of an object, each view being represented by a graph of the surface-features extracted
from that view. Similar approaches for model constructlon are also typlcal of those
used in'the recogn1t10n of 3-D objects from 2-D i 1magery An obvious drawback of such
approaches is the large size of the resultmg model hbrary -which can degrade the per-

: formance of the recognition. system

v At a more sophlstlcated level, leammg a model cons1sts of actually merging the S
’feature information gleaned from different viewpoints. As an example of th1s approach
~ Baker [Ba —77] has presented a scheme for model building in which pomts of curvature
’ uregulanty extracted from different views of an object are correlated Martin and
Aggarwal [M&A —83] have presented a method in which a volumetric model of an
object is constructed by intersecting the bounding volumes, each such volume being
specrﬁed by the silhouette in a view. In the scheme advanced by Potmesil [Po —83],
b1-cub1c surface segments from various views of an object are mtegrated into a com-
’plete boundary representation of the object. Another scheme has been presented by
Herman and Kanade [H&K —86] 1n which 3-D models of burldmgs are built incremen-
| tally from sequences of stereo 1mages A similar approach has been presented by Xie

. and Calvert [X&C —86] for generating 3-D models of office scenes. To the best of our

knowledge, the models constructed by all these methods were used only for d1splay1ng
the Ob]CCtS thus synthesized and not for dnvmg a recognition system. In fact, it is not
obv1ous that it would at all be easy to use the model representations constructed in these
works for recognition. How the generated models may be used for recognition is more
obvious ‘in the't'contl'ibutions_‘,made by Underwood and Coates [U&C—-75] and Dane
[Da-82). Underwood and Coates [U&C-75] have presented an agorithm for con-

structlng graph representations of convex, polyhedra from multiple views of the objects,

a node in the graph bemg a planar face and an arc expressmg adJacency between two.
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' faces In the mothod of Dane [Da —82] v1ewpolnt 1nformat10n is merged to generate '
planar and quadnc surfaces :

R *An ,:important issue, in multiview*integration is the determination of whether a-
feature seen in a new view has been seen in any previous views. Clearly, this problem is
a variation on the feature matching problem in object recognition. In [U&C~75] and

~ [Da—-82}, this type of feature matching is carried out by exhaustive search, 'meaning' :

that a feature seen in a new view has to be tested against every feature seen in all prev1- '

ous views. In this chapter we show that the highly efficient feature: matchmg strategy .

presented in Chapter 3 can be applied to this problem with little modrﬁcauon Another

important issue in mu1t1v1ew integration is how to merge two pieces of information car-
ried by two features in two different views when they are in effect the same feature We

w1lI propose solutlons to both problems in th1s chapter S

~ -The. physlcal setup of our model learnlng system, shown in Fig. 4.1, consists of a
- computer-controlled turntable and a structured light range scanner. The feature extrac-
~tion component of this system is the same as that described for the object recogn1t10n, '
system described earlier. The feature - matching and merging component is a
modification of the feature matchlng routine employed earlier. In the next section, we
will give an overview of the setup and the system. Then in Section 3, we show how one
must establish an- object-centered coordinate system in which the 3-D model is ulti-
mately systhesized; the manner in which the coordinates are selected must take into
account considerations such as any wobble in the turntable. In Sections: 4.and 5, we
will then discuss how to 1n1t1ate a model from the first view of the ob_]ect and, subse-
quently, how to update a partial model with data from successive views. Fmally, in
Section 6, we will use an expenmental example to illustrate the working of the entire
model learning system : ' '

4.2. General Stratéfg’yland System Overview

In multiview integration for model building, the number of views from which an
object is viewed must satisfy two requirements, which we will now state. (As the reader
w1ll notice, the second requirement will subsume the first.) For the first requirement, it -
is necessary that every object feature be visible in at least one view. And, for the second
requirement, .features must overlap between successive views for the purpose of estab-
lishing the adjacency relationships between the features. Obviously, if a given feature
~ was visible in only a single view, it would be impossible to discover what other features -
the given feature might be adjacent to. The second requirement also points to the fun-
damental problem in model building by multiview integration, viz., how to relate . -
features in one view to features in another view, keeping in mind the likelihood that
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Figure4.1. A model learmng system The i 1mage acqulsmon and the feature extractlon
o " components of th1s system are the same as in Fig. 0.1. '
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- some of the features in the two views are the same. Our strategy to solvmg this. prob-
lem is a modified version of the strategy for obJect recognition described in Chapter 3
and consists of the following steps: From the first view of the object, we first define an
‘object-centered coordinate system. We then establish a feature sphere (or, feature
spheres, if more than one feature type is being considered) corresponding to this coordi-
nate system and assign the extracted features to the appropriate tessels on the sphere.
Each feature sphere is then incrementally updated by using features and their. attrlbute-
value palrs glcaned from each successive view.

--For 1ncrementally updatlng a feature sphere, we first determine the transformation

~ between the fixed world coordinate frame in which each view is taken and the obJect-

centered - coordmate frame which rotates with the ObJCCt and in which the feature
spheres are built. For the most part, this transformation is eas1ly derived from the rota-
tion of the turntable. However, if the object is manually turned upside down to mtegrate
‘ in the mformatlon from the underside of the object, the system must automatically com-
pute this transformatlon “Once the transformation is known, the feature matching cri-
teria discussed i in Chapter 3 can be used to determine whether or not a feature was seen
ina prev1ous view. If a feature in the new view is matched to a feature in the currently :
known partial model, the system must merge the two features together; otherw1$e the
~part1a1 model must be updated by the addition of the new feature. : :

The,folllow_mg pseudo-code represents this model learnlng strategy:

‘build_model (O, (D) {
for each new view I in {I}
- extract a feature set {S } from range unage 1
- if (first view) ‘
1n1,t1ate_model (S}, 0,
else '
' compute transformatlon Tr
-update_model ({S}, O,,, TP
for each new view I in {I}
- collect LFS’s }

initiate_model ({S}, 0,,) {
~.define an object-centered coordinate system T7,,
~ allocate a feature sphere for each class of feature
for each S; in {S } '
- add (Try, 1(s; )) to 0 1
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update_model ({S}, Om, T { -
~for each S; in {S} : S
~ if there isan M; € Op, such that Tr‘1 Si) <=>M;

R then mod1fy M; with §;
_dmmun4w»w0}

Note that in the last step in “‘build_model" the system collects all the local feature sets
'(LFS) from the synthesized 3-D model. In accordance with the discussion in Chapter 3,
these LFS’s play an important role in the object recognition system described there. In
particular, the LFS’s are used for generating pose transformation hypotheses.

Fig. 4.2 depicts the two essential elements of the model learning system, the turnt-
able and the Structured-light unit. An object whose model is to be created is placed at
the center of a turntable and its range 1mages are then taken for d1fferent rotational posi--
tions of the object; for each range image the structured light scanner is translated '
linearly, as illustrated by the straight arrow in the figure, the direction of motion .
correspondmg to the y-axis in the world coordinate system. The rotations of the turnt-
able and the translauons of the scanner are all under computer control and can be varied '
dependlng upon the complexities of the object shape. (For simple objects, the different

“rotational views can be as far apart as 90° and a 3-D model synthesized with just four

“views.) The axis of the rotation of the turntable is approximately parallel to-the +z
direction of the world coordinate system. To provide a good coverage of both the sides
and the top of the object, both the center of the laser beam and the optic axis of the
camera make angles that are roughly 45° with the z—axis : |

Unless the object has a ﬂat bottom, it often becomes necessary to also-model those
surfaces that would be invisible when the object is first placed on the turntable due to-
their being in contact with the table. To make a complete 3-D model for such objects, -
after all the views are collected in the first position, the object is manually turned upside
down and scanning resumed. In general, just as many views are collected in the new
position as in the first. The important point to note is that the system automatically

computes the transform. Tr that relates the object-centered coordinate frame for the
obJect in an ups1de-down posmon to the world coordinate frame by matchmg common:
features . '

43 . bli)iete’rmination of Transfoi'ltlations '

Clearjly‘r, the first thing that must be done in model learning is to establish a coordi- _
~ nate system in which the model will be synthesized. For this purpose, we set up an
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~ scandirection ___--V

-

- structured light range sensor

turntable

World cobrdinate‘sys,temv '

X

| Figure 4.2. The physical setup of the model learning sysvtevm. The ‘structured 11ght '
. range; sensor is calibrated with respect to the world coordinate system. -
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object-centered coordinate system. The process of model synthesis is greatly facilitated
if this coordinate system is defined in such a manner that its z-axis is coincident with
the axis of rotation of the turntable. It also helps to define the origin of this coordinate '
system at a point that is half way between the highest point on the object and the turnt-
- able. What follows is a procedure for defining such an object-centered coordinate Sys-
tem given the first view of the object. Note that this procedure relies solely on the read-
~ing of the range sensor of the system, and does not require any manual measurements. -

" The reader beware that we are making a distinction between the object-centered
coordmate frame, in which all the views are pooled for model synthesis, and a world
coordinate frame, in which sits the scanner. Therefore, it is the world coordinate frame '

~in which we spe01fy the scan directions. We will assume that the range sensor has been
calibrated [C&K —87] with respect to the world coordinate system. The origin of the
g world coordinate system can be anywhere -

Of course, since the scanner res1des in the world frame, we must first estabhsh the
world coordinate system' before we can set up the object-centered coordmates "The
world frame is established essentially by the human operator In our expenments, the
“world frame is as shown in Fig. 4.2, with the y-axis corresponding to the translatlonal
movement of the structured-hght un1t and the z-axis nominally perpendlcular to the

urntable -

Next the obJect-centered coordmate frame must be established. We will now
describe a procedure for doing so. The first step consists of determining the axis of rota-
tion of the turntable, since this axis will serve as the z-axis of the object-centered sys-'
tem ‘The rotatmg axis can be specified by a unit direction vector, a. We will also
assume the existence of a center of rotation, denoted by po; this will be a point on the
”rotatlon axis located at the intersection of the axis with the plane of the turntable. Note
that the rotation center, as specified by po, will not by itself be used for the origin of the
obJect-centered system, but only as an intermediate step toward obtaining that ongm -

o To determme a, we take two range 1mages of the face (which is planar) of the
- turntable, for the second i image the turntable is rotated by 180°. In each of these i 1mages, ,
plane is fit to the turntable range 'data, and the surface normals computed. Let the two
surface normals be denoted by n® and n!80. If the surface of the turntable was per-"
fectly perpendlcular to the rotation-axis for all angular positions of the turntable, the
two normals would be identical and parallel to a. In general, this condition is not
satisfied because of the slight wobble that might be present when the turntable ‘is _
rotated. In the presence of the wobble, the directions of the two normals are symmetnc'
with respect to a. In either case, the direction of the rotation axis can be computed
from " ' ’ ' R
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The posmon vector po to the center of rotation can be found from a range 1mage
in Wthh the center of the turntable is marked somehow. To be able to localize the
‘center precisely, we usually place a rectangular box on the turntable with one of its |
comer touching the center.  We then take a range image of the box and the turntable
and detect the comer in the resulting data. :

~ Since we want the origin of the: obJ:ect-centered coordinate frame to be about half
way_‘ between the highest point on the object and the turntable, the Sy‘S..t:em' utilizes the
first view of the object for locating this origin. If we denote by 4 the maximum height
of any object point in the first v1ew, the location of the ongm of the obJect—centered ,
coordmate system is then glven by :

0 = P0+(—)a A

Smce the Ob]CCt is placed roughly at the ‘center of the turntable, for many ObJCCtS this -
origin will be roughly at the volume center of the object. We then spec1fy as, follows
the three axes, X’ y and z’, of the obJect-centered coordmate system :

- _z; =aq
‘,“=' ax(1 0'0]t |
lax[10.0]|
x'=y’xz’"" i 7 | o
where [1 O O]‘ represents the x axis of the world coordmate system. 'I'hus the obJect-'

centered coordlnate frame in the first view is related to the world coordmate frame by
the followmg transformatlon :

X'y ¥x 2’y 0 .
X'y ¥y 2y oy
X3 ¥ 7' o

0 0 0 1] :
For a g1ven posmon vector in the object-centered frame for the ﬁrst view, this transfor-
mation- helps us find its corresponding coordinates in the world frame. In other words,‘
" ‘Tro takes from the object-centered frame to the world frame. Therefore, Tro takes us.
from the world frame to the object-centered frame for the first view. Suppose, in the
’ range map for the first view -- the range map for every view will be defined in the fixed
- world frame - we locate a feature at, say, the vector v, then the coordlnates of this vec-
" torin the obJect-centered frame will be given- by Tro V.

7 -_’» ~~Tro=
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As the object is rotated on the turntable for a different view, the object-centered
frame also rotates with the object; however, the range map is still in the same world
frame. Let the angle of rotation of the turntable, measured counterclockwise in the xy-
plane of the world frame, for the i* view be ;. The transformatlon that takes us from
the fixed world frame to the obJect-centered frame for the i view is grven by Tr, ,

o where

B Ty =TroRoty®) | @
with Rotz defined by | e
' fcese,-' —sin®; 0 0]
sinB; cosb;- 0 0
00 10
0 0 o1

Note that the matrix Roz(0) rotates a vector through an angle 0 counterclockwise in the
'xy-plane Therefore, if in the i** range map, an object feature is found to be located at,
say, the vector v, then the correspondmg vector in the obJect-centered frame is Tr,

Rorz’ ®) =

L In the denvatlon of Equatlon (4.1), we have made use of the knowledge that the
'Ob]CCt undertakes a rotation around a known axis through a known angle from one view
to the next. Clearly, when the object is flipped for generating information on its under-

- side, this transformation will cease to be valid. We therefore must have recourse to

some algorithm that can re-establish the transformation of the object in the new- settihg
The algorithm that is used for this purpose is very similar to the one used for generating
pose-transformation hypotheses in the object recognition system described in Chapter 3.
We will now describe how exactly we find the transformation that takes us from the
world frame to the obJect-centered frame after the ObJCCt is flipped.

Assume that in the first set of scans, before the object is ﬂlpped the system has
collected all the possible LFS’s from the partial model constructed. so far. Further
“assume that at least one of these LFS’s is visible in the the first view after the object is

B flipped. The algonthm then proceeds: as follows: Extract every LFS from the range

'1mage and try to find a matched LFS in the pamal model built so far from the topside
views. Each such match will, in general, lead to a different pose transformatlon for the
object in its flipped position. For each such pose transformation, we count the.number

- of features extracted from the range image that can be matched with the partial model. |
The pose transformation yielding the largest count is accepted as the transformation that
takes us from the world frame to the obJect-centered frame. The algorithm for comput-

o 1ng this transformatlon is sketched below in pseudo language



reestablish_transform (1, O,,) {
- extract features {S} from range image I

- * extract a new LFS from {S} |

Cif (LFSg matches an LFS in O,,)

. estimate Tr _

count # of matching features between {S} and O under Tr o
» . go to * g :
E return the Tr whlch yields the max1ma1 count }

B

Once th1s transformatlon denoted by Try, is found, for subsequent rotatlons of the
obJect the transformatlon that takes us d1rect1y from the fixed world frame, in which all
'range maps are constructed to the object-centered frame are deterrmned as before In
other words, if

T =Tr,Roty®) o (42)@

| then, Tr, takes us from the ﬁxed world coordmates to the. object-centered coordmates
for the i ' view taken after the object is ﬂlpped At the risk of being repetltlous, we -
would hke to elaborate by saying that if in the i” h range map after the obJect is flipped,
if a feature i is located at the vector v in the world frame, then the correspondmg vector
- in the obJect-centered frame is given by Trilv

S % 4 Model Imtlatlon in the First Vlew

Once the object-centered coordinate system is. estabhshed the procedure for 1n1-‘
tiating a partial object model from the first view is rather straightforward: We first.
transform the position/orientation attributes of every detected object features in the:
. image from the world coordinate system to the object-centered: coordinate system: by
multiplying the attnbutes from the left by Trl . In short, we perform. the following
feature translatlon , ' S "

Tri (S) = Mgy o | B )

whe_r’e; S; is a scene feature and M;,,(,-) is the translated model feature relabeled as c(i) ‘
As mentloned in Chapter 3 a feature can generally be described by three. sets of.'

'attnbutes -shape, relation and position/orientation. Of these, only pos1t10n/or1entat10n_

attnbutes are transformation ‘dependent. We thus can rewrite express1on . 3) in terms
: of the three sets of attributes as follows : : :

sa (S) > sa (M) - forall sae SAS)
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c(ra(Sy)) = ra(My) o for all ra & RA(S)
Tr~ (a(S))) —la Mciy) - ' for all la € LA(S )

Note that, as pointed out in Chapter 3, some of the shape attributes and
position/orientation attributes are viewpoint dependent, i.e. the values of those attri-
- butes are subject to occlusion. Therefore when adding a feature to the model we must
take note whether the feature is occluded in the scene. For example, a surface 'region‘ in-
an image may have been occluded by some other surfaces if any one of its boundarles is
‘an occluded boundary; consequently, some of the attributes, say, area and centroid, of
the region may not be accurate. If a feature in the image is found occluded, we must
~ regard its viewpoint dependent attributes as "weak" attributes, meaning that their values
will be overwritten or modified if a more complete version of the feature is detected
again in any of the subsequent views of the object. In our current implementation, we
~ do not explicitly mark attributes as ‘‘weak" when occlusions are detected; or, one might
say, we treat every attribute as “‘weak." To explain, suppose from a given view the area
* of a surface has been extracted, and then if for the same surface a larger area becomes
available in a subsequent view, the larger value will overwrite the earlier smaller value '
Of course; there are attributes that are not amenable to this ‘‘overwrite" formula more
on this subje'ct in the next section. : -

i

; After the features extracted from the first range map are translated pomters to
them must be recorded on a feature sphere, or a set of features spheres if different
classes of features are used. To accomplish this, the principal direction of each feature
is calculated from its position/orientation attributes in accordance with the formulas

' presented in Chapter 3. From the principal direction of a feature, its corresponding cell
on the sphere 1s found by using the tessel —assignment function, also descnbed in
Chapter 3.

L1

4 5 Updatmg the Model

‘ We w111 now drscuss how the features extracted from a new v1ew are used to
update the partial model built from the previous views. This implies that the system
must first decide whether a feature detected in the new view is indeed "new" to the par-
tial model; if it is, the system should add the feature to the partial model, otherwrse the

- new information on what i is an aleady ex1stent feature must somehow be merged w1th
the old 1nformatron : ' ) ;

‘ -The newne_ss/oldness of a feature, extracted from the new view, with respect to the
- partial model can only be determined by comparing the feature with those already
stored in the partial model. Clearly, this comparison of features is the same as the
’feature matchrng problem discussed in Chapter 3. Recall that for each view of the



vajeCt the transformatlon that takes us from the world coordmates in whlch the scene
features are extracted, to the object-centered coordinates used for the feature spheres is
known to the system as it can be calculated from equation (4.1) or 4.2). G1ven the new |
~ feature, we first translate it to the object-centered coordinate frame via Tr™ by using
) "ithe formulas shown earler; we then compute its principal direction. This prmcrpal direc-
tion will correspond to a particular tessel on the feature spheres of the model The
nelghborhood of this tessel is searched for any registered model features to ‘answer the

- question whether the new feature is the same as one of the old features. Clearly, the

size of this nelghborhood should depend on the uncertalnty in the computauon of the

principal direction, and every model feature in the ne1ghborhood is a candidate for test-.

'_mg agamst the new scene feature. As in:object recognition, feature compansons are
- made on the basis of three criteria — shape, relation, posrtlon/onentatlon If no candl- ’

: date features can be found in the nelghborhood on the feature spheres, or if all the can-

| vdidate features in the neighborhood fail to match, the new feature i is considered to be
new mformatlon about the model, and is then added to the model as were the features -

R durmg the model initiation stage in the ﬁrst view.

v On the other hand if a feature extracted from the current view of the object can be
matched to-one of the features on the partial model, we must then decide what to do;
with the feature Although, the simplest solution would be to totally ignore the new
.feature one has to bear in mind the poss1b1hty that the new attribute values rmght be

supenor to the old values, in the sense that they might be more free of occlusron or
may be less distorted due to noise and other artifacts. We therefore need some mechan-
| ism forr comblmng the old and the new attnbute values in such s1tuatlons |

For attnbutes that are v1ewpomt 1ndependent the new and the old attnbute values, '
are best combined by takmg an average of the two, assuming . that we have as much

conﬁdence in the new attribute value as in the old. For example, if the attribute radius. : .

of a feature cylmdncal —surface already exists in the partial model and if from.the
current v1ew a new value becomes available for this attribute, then, s1nce this attribute -
is wew’pomt independent, we should update the value of radius by averagmg the two
values ~Similar updating would have to be done for other viewpoint mdependent attn- »

butes hke the normal ofa planar surface or the posltlon of a vertex. T -

An entlrely d1fferent strategy is requ1red for vrewpomt dependent attnbutes In thlsv |
case 1f both the parnal model and the new values are unoccluded, the system takes an.-

Of course, thls isa very simple strategy that sufﬁces when the same feature would not be
© seen in more than two or three views. For those features that might be visible in a large number of
views, in any combination the new attribute values would have to given a weight that would be
mversely proportronal to the number of updates already made for that attribute value
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,average of the two. On the other hand if one of the values is occluded we reta1n only
the unoccluded one. And, if both are occluded, the system takes a werghted average of
the. two, each werght being proportlonal to the number of prxels v1s1b1e to the sensor.

Note that the notion of averaglng, we1ghted or unwelghted for updatmg the value _
'_ of an attribute’ can only be applied to numerical attributes. For non-numerical attri-

butes, how the new information i is combrned with the old is decided on a case-by-case

" basis. For example, when merging two sets of features that are the values of two adJa--
: .cency attrlbutes, we take the union of the two sets. ' S

4 6 Expenmental Results

' This section will present an example for illustrating how the entire model learmng
process is carried out. The object used, displayed in Fig. 4.3, consists of thirteen planar
faces and one conical surface. To give the reader a rough idea of the size of the object,

_the length and the width of the object are approx1mately 7" and 3.5", respectively; the
helght to the heighest point, in the middle of the object, is about 3". The model learn-

. ', ing example discussed here generates all the surfaces from only the top v1ews, in other |
. words, the object was not flipped. For modehng the underside, the system used the

default assumptlon that the underside was a planar surface, which in this case happens
to be a fact _The system. was commanded to take six views of the ob_]ect 60 degree
apart The range image of each view consisted of 85 scans with 0. 1" scan resolutron

.~ meaning that between successive pos1t10ns of the structured-light unit dunng a transla-

~ tion, the distance traveled by the unit-along the y-axis of the world coordmate system
was 0.1". Fig. 4. 4(a-f) are the stripe images for the six views, and Fig. 4. 5(a-f) are their
segmented needle maps. The label of each segmented region is displayed near the

‘ " ~ - center of the region. The features extracted from each view consist of primitive sur-
.. faces and vertlces, the model representation will be based on these two -classes  of

' features For clarity, we will focus our d1scussron mostly on surface features, though -
‘we will: mentlon vertex features when relevant. Notice that region 5 of view 1, region 4 -

of view-2, region 2 of view-3, etc. are the face of the turntable so they are excluded.
~ from the ‘model learmng process. ‘ ‘ s :

'4 6 1 Imtlatmg the Model

) Before we start to process the first view, an obJect—centered coordlnate system is
' Adeﬁned accordmg to the procedure described in Section 3 with respect to. the world

* coordinate system in ‘which the structured-hght scanner is calibrated. Two spherical .

" arrays with- frequency—of-geodesw -division equal to 16, which leads to 2562 cells on
5 each sphere, are then created to represent WO feature spheres, one for surface features,
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Figure 4.3. - Object used for the mddel learning experiment discussed in the text..-~
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Figure 4.5.  Segmented needle maps of the six views of the object.
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and the other for vertex features. ‘The two feature spheres form the bases for feature
matching in this model learning process. As shown in Fig 4.5-a, 9 regions and 16 ver- -
tices, the vertices are not labeled, are detected in the first view. Region 5, which is the
face of the turntable, will not be considered as a surface feature of the object, so only 8
surface features are passed on to the learning process. Furthermore, we have chosen to
- disregard scene vertices formed between a curved surface and a planar/curved surface
because they usually are spunous Junctlons caused by occlusmn '

_ As ‘was mentloned in Chapter 3 each feature is represented in the computer
memory by a frame data structure. For example, the attribute frame for the reglon 1
5 extracted from the first view is as follows: - EE -

 Region 1
" Type: planar
- Number_of_pixels: 743
) _.,jk"-Number of_adjacent_regions: 3
- Adjacent_regions: (29 4) _ R
e TYpe_.of;edge_wi_th_adjacent_r.egibn: (convex convex convex) .~ ..
" Vertices_between_adjacent_regions:  ((1,2) (2,3) (12, 11) -
. Nommal: (-0.00503 -034456 093875)
- _Moment direction: (0. 33467 0.88405 0. 32627)
V' -':Reglon center (-2 11130 17 15708 467800)

A couple of entries in the- attnbute set need clarification. To establlsh adJacency rela-
tlonshlps between regions, the boundmg contour of each region in a range map is traced
ina clockw1se direction and a record made of the common edges and vertices of a given
region with other_‘reglons.‘ During boundary tracing, note is also made of the start-vertex

~ and the end-vertex when a common edge is found with another region. For example, the

list (1; 2) in the value of the attnbute Vertices_between_adjacent region, 1is the label
of the start vertex of the common edge between regions 1 and 2; 2 is the label of the
. end vertex Also, note that the nature of this common edge is convex. Another attnbute

‘ Note that, in general a vertex feature in a scene is deﬁned elther as a ]uncuon of three -
surfaces,- ora junction of two surfaces and an occlusion. However, when an occlusion is involved .

and one or both of the surfaces meeting. at'a junction is curved, that vertex is ignored, because, .

usually, that is not a real vertex-in the scene. Such false vertices become evident when, for

example, a range map is made of a hole from above with the mterlor of the hole only partially

- visible. - o o
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- 'that m1ght bear some explanauon is momem‘ dzrectzon, the d1rect10n refers to the dll‘CC-
. tion of the line about which the moment of i inertia is a minimum (1n most cases, thlS is
) ‘the dxrectlon along which the surface is most elongated) The attnbute Normal apphes, o
of course, to only planar surfaces, which is the case here. For, say, a cylmdncal surface '
'mstead of Normal, the relevant attnbute would be szs whose value Would be ‘the
’ d1rect10n of the axis of the cylinder. - ’

In a sumlar vein, the attnbute frame for vertex 1 extracted from the ﬁrst v1ew 1s

Vertexl ~ : ’ EEREE A j ‘ |
- Position: (-39276 186921 52745) | ‘ e
""‘:_"Belongs to_regions: (2 1 *)
""AdJacent vertices: (2 * *)
f'Edge_ty‘pe (convex * L)

: In the example here, we made the assumptlon ‘that exactly 3 surfaces had to meet at a
vertex Slnce it is likely that for a vertex not all the converging surfaces may be v1s1b1e. v
in'a glven v1ew ‘we must leave place-holders for those that are not. This has been
accomphshed by the use of the symbol "*’ in the above frame. Therefore ek denotes an’
| 'umnstantlated attribute value. S :

- The reader has probably noticed that. adJacency 1nformatlon about surfaces, ver-'
tices,. and edge-type of common edges is redundantly recorded on the attribute frames

of the surface features as well as the vertex features. The reason for this 1s t1me' ‘

: .efﬁ01ency, espemally when it comes to the use of adJacency and edge-type 1nformatlon '
- on vertex features for the generation of LFS’s. The reader may recall from Chapter 3
- that LFS s are used for hypothesis generat10n : IR

Now ‘we will descnbe a step that is partlcular to model learmng While the attr1-

bute frames we showed above correspond to scene features in the object recognition:

~discussed in Chapter 3, for the purpose of model learning each scene feature must either

become a model feature or must be merged with one of the ex1st1ng model features -

- Since, we are at this time discussing the first view of the object, all scene features ‘
_ become ‘model features and are used to initiate the model. To convert a scene feature
~intoa model feature, we must translate its position/orientation attributes from the world |

coordmate frame in which the data are taken into the obJect—centered frame in which

the model i is bu1lt During this process of translatmg features into the object-centered o

coordmates -the features are also assigned new labels, this being done for purely -

cosmetic reasons For example 1n1t1a11y, as shown in Fig. 4. 5(a) the extracted surfaces ’
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4are labeled 1,2,3,4,6,7, 8 and 9, with label 5 correspondmg to the: turntable After
droppmg region 5, and translating the remaining - surface features 1nto the ob_]ect-
centered coordlnates by multiplying the posmon/onentatlon vectors from the left by
| ,Trll, the new. surface labels as stored i in the model become 1, 2,.. 8 As an example

’ model surface 1 has the following attribute frame: - ‘ : :

: Surfacel ‘
. Type:planar ,
~.:.. Nomal: (-0.0050 -0.3446 0.9387)

* Moment_direction: 0.3347 0.8841 0.3263
‘Region_ center: 0.0137 -1. 7699 0. 8990
Number_of_adjacent_regions: 3.

' Adjacent_regions: (2 8 4) -

'and corresponds to the scene surface 1 shown in Flg 4. 5(a) Slrmlarly, all the vertex |
: features extracted from the scene in the ﬁrst view are transformed and relabeled

After the conversmn of scene features into model features, the pr1n01pa1 d1rect10n
“of each surface and vertex model feature is computed in the object-centered coordinate v
R system -On the basis of the principal direction, each feature i is assigned a pointer on the

correspondmg tessel -on the approprrate feature sphere. Fig. 4.6 shows the surface E

- feature: sphere constructed from the features gleaned from the first view. To help the

E reader associate the ‘different surfaces with the entries on the feature sphere, we have

' shown in (a) the different surfaces of the object and their labels as generated by pro-

~cessing: the first view. Note that (a) is not a synthesized model, but only : a means to
. transmlt to the reader the surface-label association at the end of view 1.

4 6 2 Updatmg the Model

Now as: each new view of the ob_]ect is taken, we can use it to update the model

m1t1ated w1th the data from ‘the ﬁrst view and updated by all the previous views. If

there are any common features between the new view and the partial model built so far,
they. must be dlscovered ‘by matching. Of course, if there are no-common features, then.
~all we need do i isto merely add the new features to the feature spheres built from. the
pnor views. Con31der for example, view 2, wh1ch in the example under discussion is at
an. angle of 60° clockw1se from view 1. Fig 4. 5(b) shows that the range image for this

a view is segmented 1nto 8 regions; except for reglon 4 each of these reglons represents a.

B surface features of the obJect visible from the v1ew pomt correspondlng to view 2 By'
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" (a) The partial model built from view 1

" (b) Surface feamre sphere Qf the partial mbdel‘ '

vFlgure 4. 6 A part1a1 model built from the features extracted from the ﬁrst v1ew /" pn»
' 159 for table : » - :
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‘ comparmg w1th 4 5(a), one can 1mmed1ately observe that region 6 is the only new sur-
face feature seen in view 2, while the remaining 6 are seen in the first view and should
~ already have been recorded in the partial model. The model learning process "learns”
this facts by matching features in view 2 with the partial feature sphere constructed
- from view 1. This learning process consists of transforming the pos1t10n/or1entatron
'-mformauon of each view 2 feature 1nto the object-centered coordinate system via Tr3",
and then computing the principal direction associated with the feature. A small neigh-
borhood on the feature sphere ‘centered at the tessel corresponding to-the computed
_ pnnc1pa1 direction is then searched for a compatlble partial model feature. Currently, -
this neighborhood is of radius 2 tessels wh1ch corresponds to an allowable uncertamty
of 8°in the prmclpal drrectron _ : :

Cons1der, for example, the regron marked surface 5 in F1g 4, 5(b) On the basis of
its pnnclpal direction, this surface is found to match the part1a1-mode1 surface 8 shown
~in Fig. 4. 6(a) 'For region 1 in Fig. 4.5(b), there are three candidate model features,
these are marked 1, 4 and 6 in Fig. 4. 6(a); all three of these partial-model features fall
into the same tessel on the feature sphere, as depicted in Fig. 4. 6(b). In this case,
partlal-model surface 4 excluded from further consideration on the bas1s of the surface
types. Pamal-model surface 6 is eliminated as a possible match for scene surface 1on

the basis of the values of the normal d1stances of the surfaces involved i in the matchmg

process What is being said here is that if we take the dot product of normal to partial-

- _ model surface 6 with the pos1tlon vector to any point on the surface 6, we w111 obtdin

the normal distance to the surface 6 (remember that the pomt necessary . for this calcu-
’ ‘latlon is stored as one of the attnbutes for planar surfaces). Now, if we carry out the

B - same calculatlon for view-2 surface 1, the normal distance computed will be different

. from that calculated for partlal-model surface 6, making the two unmatchable. So, u1t1-
o mately, we can find that view-2 surface 1 must correspond to parttal-model surface 1.

o Contmulng the above matchmg process w1th each of the features in view 2 we
eventually ‘conclude that surface 6 in Fig. 4. .5(b) is new and was not seen in view L. ‘

o , ThlS surface 1s added to the partlal ‘model and grven the label 10 (not shown i in ﬁgures)

Now cons1der surface 8in F1g 4, 5(b) It is found to match partlal-model surface 7

e shown in Fig. 4.6(a). However the area of the surface in the second view is much larger v

" than that in ‘the first view. ‘Therefore, i in this case the process updatmg the part1a1 model
cons1sts of overwrmng the value of the attrlbute area. After view-2 surface 8 1s merged ’

SILFL AN
‘Note- that we could not have first computed the prmcrpal direction in the world coordmate frame ‘
and 'then transformed. the resulting vector into the: object-centered coordinate frame. The reason -

- for ‘thi$ ‘is’ that principal directions are defined with respect to the origin of the ob]ect-centered

coordmate frame and therefore can only be computed in this frame
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| with partlal-model surface 7 in thls manner, we recalculate the surface normal and the .
region center associated with the updated model surface 7. We must also. update the
adjacency 1nformatlon associated with the model surface 7, smce the correspondlng
view-2 surface 8 was found adjacent to view-2 surface 6, which i is now partial-model -

surface 10. This updatmg of adjacency information also takes: place for partlal-model-'
surfaces 2 and 3 "The vertex features are updated the same way as the surfaces

Each of the remaining four views is used to update the partial model in the same -
manner The final surface labels are depicted in Fig. 4.7. Note, as was the case ‘with

Fig. 4.6, this ﬁgure is only intended to help the reader associate labels with the surfaces - )

~of the object; the underlylng object itself was not synthesized from the final model.
Table 4 1 shows for each v1ew the mappings from the view features to the partlal-model.
features ' ' '

'4' 7. DiscusSio’ns

- In order to dlsplay the ﬁnal result obtamed by 1ntegrat1ng all the six v1ews, we

derived a w1re-frame representation of the ob_]ect from the final feature sphere. This -

- wire-frame exists in three dimensions and can be rotated for display. Two views of ‘the

wire-frame : are shown in Figs. 4.8(a) and (b) together with vertex labels. Notw1thstand- B

ing the fact that some of the object vertices came out dlS_]Olnth in the images of the

: ,“learned model" shown in Figs. 4.8(a) and (b), the wire-frame is constructed readily

from' the vertex feature sphere. While the vertices 13 and 18 shown in Fig. 4.8
‘correspond to the same object vertex, they came out separated in the learned model '
because of occlusions. The same is true of the vertices 14 and 21 in Fig. 4.8. This
d1fﬁculty could probably have been eliminated if we had used more views. It is impor-

tant to realize that the wire-frame shown is used only for display and plays no role i in

any of the ob_]ect recognltlon strategies, only feature spheres being used for that pur-
pose. _

The reader is probably curious about how we managed to show the curved edges '
in the wire- ~frame in Fig. 4.8. An ad hoc algorithm had to be written for this purpose and -
consisted of finding the intersection boundary of the planar and the conical surfaces,
these two surfaces existing on the surface feature sphere. Note that the intersection of a
cone and a plane forms an elliptic curve when the plan cuts through the cone, W_thh is
the case when the normal to the plane close to being parallel with the axis of the cone.
The 1ntersectlon would be hyperbolic when the plane makes a glancing cut of the cone.
Since in our case the former condition is satisfied, we need to determine the parameters
of the elhpse, from these parameters one could then generate a wire-frame representa-
tion of the elhpse In general a 3-D ellipse is described by its center, the plane it lies
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Figure 4.7. The completely built model using all six views of the object.
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Table 4 I This table shows mappmgs from surface labels in eaoh o |
- view to the labels used for partml—model surfaces

v1ew 1 T mapplng from scene feafufeAs"to pmﬁﬂ¥m6dé1 f'eét:.‘ es . |
viewl | 1->1,2->2,3->3,4->4,6->5,7->6,8 ->1, 9->8 | |
view2 | 1=, 2-59,3=>2,5=>8,6-> 10,7 _>3 8—>7
[view3 | 1229, 32,410,576 11

|viewd |12, 2>1,4512,657,7 513

[views | 1=>2, 2=>12, 3=>5,4=>1,6=> 13, 7_>4 8—>6

: v1ew6 T 1=>54, 3=_>1 4_>4 5—>6 6-> 14 |

NOTES o

s For the ﬁrst view, the vlew-I Iabel 5 corresponds to the turntable and therefore has. :
- no mapping to the partzal model. The turntable labels for other viewsare also elim-
- inated from mapping. While in the first view, the partial- model labels. correspond

mostly to the swface labels in the scene, for subsequent views, any matchings
- found between the surfaces in the view and surfaces in the partial-model determme-

. the mappings shown in the table. Of course, when there are no matches, new-labels
- . -must be used for scene Jfeatures. The distinction-between the two is brought out by

the use of szngle-stemmed (->) and double-stemmed (=>) arrows, the former ’

correspondlng to the case when a new partial-model labels must be used for a

*scene surface, and the latter to the case when partial model label used is decrded: o

.'by the existence of a, match.
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on its long ax1s, and its two radii. Clearly, the plane the elllpse l1es on is the plane
makmg the intersection, and the center of the ellipse i is the intersection point of the axis
of the cone and the plane. The long axis of the ellipse lies on a plane surface that is

"ﬂformed by the normal to the intersecting plane and the axis of the cone;. at the same L

t1me, the long axis of the ellipse is perpendicular to the normal to the 1ntersect1ng plane.
To determine the two radii, we first compute the length from the apex of the cone to the
center of the- ellipse, and the angle of intersection; the angle of i intersection is deﬁned as
‘ _the angle between the normal to the intersecting plane and the axis of the cone.. Then
the two radu can be computed approx1mately from the length, the angle of the cone and‘
the angle of the intersection. Given the parameters of the 1ntersect1ng ell1pse, the
,ell1pse can be represented in a parametric form

. P = Nricos(0) + vergsin(a) + p,

‘where P is the posmon vector to a point on the ellipse, v; and v, the unit vectors along" o
‘the major-and the minor axes of the ellipse, r; and r; the two.radii correspondlng to the:
‘major and: the mmor axes, p¢. the position vector. to the center of the ell1pse, and
finally, o the angle for parametnzmg the ellipse equation. The parametnc form is
easily converted into a wire-frame representation by discretizing the angle: oc For small
enough intervals in o, the segments of the ell1pse would: be linear. ;

The ﬁnal model, as shown in F1g 4.8, consists of 15 surfaces:and.22 vertices. Note

| that the 22 vertices. 1nclude only those that exist on the vertex feature: sphere the
amﬁc1al VCI’thCS 1ntroduced to give wire frame representations to curved edges: are not
included. The number of surfaces in the generated model is one: more- than the number
of surfaces on the object. The extra surface in. the model corresponds to. the: region.
labeled 2in: v1ew—2 image. shown in Fig. 4.5(b). When.the partial model is ‘updated-with:
view- 2 thlS Tegion is.not recognized:to.be the same. as.region 4.in-view-1. shown in: Fig.
4, 5(a) The reason. for, th1s mismatch. is. that. in. view-2 it is. not possible: to. obtam an.
accurate est1mat1on of the direction. of the axis. of the conical surface: In:other. words,
the cone. axis. d1rectlon computed for region 2 in view-2 is too different: from the direc--
tion. of the cone axis. for region 4.in view-1. As a. result, when the system:sees.region:2:
in view-2; it treats the region.as a new, feature, the pointer to this feature resxdmg m the:
tessel correspondlng to. the computed axis d1rectlon : :

 The original object had only, 18-vertices, however our model found 22; These extra:
vertices. are_quite visible:in. Fig. 4.8:and correspond:to locations where: .object. vertices:
appear. d15]01nted As;was mentioned before, these extra.vertices are caused by occlu-
sion. In. Fig. 4.5(b), for example, there is a vertex formed at the junction of reglons 6,8
and the occluded region. (Note that in analyzing a scene, a vertex is defined: as.a;junc-
tion- formed by either. three surfaces or. two surfaces and. an occluded reglon )
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- Evidently, this vertex is false since in a different view the occlusion:present could shift
the location of this junction. We do do some topological reasoning to replace such
spurious vertices with real vertices during the updating process. What is being said here
is that if for the vertex formed by regions 6, 8 and occlusion we could in a later view
d1scover all three surfaces meeting at the real vertex, then the false vertex would be
| replaced by the real vertex. Although, this reasoning was able to eliminate some of the
false VCI’thCS, it proved not be effective for some, including the one formed by the junc-
tion of reglons 6, 8 and occlusion in Fig. 4.5(b), because the three surfaces meetmg in
the v1cm1ty of that point are never visible simultaneously in any of the views used.

Clearly, the number of views used must be such that the resulting model is toplog-
ically consistent. Strictly speaking, because of disjointed vertices the model in Fig. 4.8
is not topologically consistent. Future research is planned to examine the generated
models for their topological correctness. If a learned model is found to be 1ncorrect that
should 1n1t1ate a finer sampling of the v1ewpomt space v '

For future research one must also bear in mind that topological cons1stency wh11e
, necessary may not be sufficient for a learned model to represent a real object -- the con-
- dition of geometnc consistency must also be satisfied. For example, as 111ustrated by the
ftruncated pyramid example shown in [Mc—82], a three dimensional entlty may be topo- .

L loglcally con51stent yet not geometrically so. Our future research will also aim at dis-

- covering what reasoning strategles should be 1mplemented for makmg checks on
geometnc consrstency

It is important to reahze ‘that the learned model in Fig. 4.8, desplte all its
” deﬁc1en01es, is adequate for object recognition in difficult and cluttered scenes, such as
the one shown in Fig. 3.1 in Chapter 3. The data driven nature of our recognrtlon stra-

teg1es makes them forgiving of small errors in the model information. To remlnd the :

" reader agam in a data-driven approach we select a feature from the scene ata time and
then try to confirm its presence on a model feature sphere. Suppose, an extra vertex or
an extra bit of a surface appeared on the model feature sphere, it may not necessarily
pose any difficulties, depending, of course upon how much discrimination is required
between different object models. The accuracy requirements on model generation as a
functlon of the discriminatory power of a 3- D Ob]CCt recognition strategy is yet another _'
avenue for future research. = '
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CONCLUSIONS

ThlS report presented the 3D-POLY system. for object recognltlon and model
_leammg The report addressed the four main issues listed in the Introduction i in connec-
tlon with our d1scus51on there on the design of a robot vision system.

- We mathematlcally analyzed the process of structured light imaging. The result of
this - analys1s was a novel procedure for the calibration of structured 11ght equlpped
-robots, the procedure yields in a straightforward manner a calibration - matrix that
directly converts the image coordinates of an illuminated point in the scene. into 1ts '

: world coordmates »

The report presented in Chapter 3 a hypothes1s generation and venﬁcatlon strategy
whose complex1ty possesses a low polynomial bound for single object. recognition. It is
important 'to reallze that the manner in which identity and pose hypotheses are. formed
and verified is mdependent of what types of features are used for describing obJects ’
The features described in Chapter 3 and currently used in 3D-POLY merely serve to
illustrate how our hypothesis generation and- verification scheme should be used. Itis
very likely that the types of features we have discussed may not be appropriate to indus-
trial objects w1th shiny metallic surfaces, since the surfaces on such objects can not be-
~easily 1maged ‘with structured light scanners. It is possible that for such objects a recog-
nition strategy should be solely based upon lower level features such as vertlces and .
edges and should not employ surface type features - :

An 1mportant key to hypothes1s venﬁcatlon in 3D-POLY is the use of sphencal'
data structures, these data structures were used to store pointers to feature frames on the
 basis of the principal directions associated with the features. Of course, we could not
have used this data structure had we not been able to present constant time algonthms,
for ﬁndmg neighborhood over spherical tesselations. We believe the algorithms we
presented in connection with this data structure will also prove useful in other situations
where sphencal representations are needed, for example, for aspect graphs for objects,

used pnmanly for grouping topologlcally sumlar viewpoints, and for the Hough space

for representmg orientations.
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| - Appendix A
Determination of Transformation -

In th1s appendrx we will present the formulation for est1mat1ng the transformation
that brings a set of model features into a corresponding set of scene features The
location/orientation attributes of the features will be used for this purpose.: Clearly, -
only those location/attributes can be used. that are viewpoint independent; tmplymg that |
we should not use attributes like the surface centroid, mid-point of an -edge, etc. Let us
" denote a posmon attnbute of a feature by p, ‘which is a position vector, and a onentatlon '
- attribute by a, which is a direction vector (unit vector) If a scene feature S is matched
toa model feature M, then under noise-free condition we should have. '

'R ‘pm +1 = Ds : : o (Al)

Ra,,,_as':, | N (A
| where Pm and Ps» and a,, and a, are the correspondmg locatlon attributes and orienta-
tion attnbutes of the model feature and the scene feature, and R and ¢ are the rotational
~and translatlonal components of the transformation T7, respectively. Note. that both

equatron (A 1) and (A.2) are in vector form. We will assume that R is a 3><3 matnx and
't a 3-vector. Although the followmg form will not be used explicitly in our work, the

reader rmght find it informative to know that when a rigid body is rotated clockwise

through an: angle 0 about an axis whose dlrectlon is given by the unit vector n, the
matnx R takes the form :

qn x+Cose( 1-n2) nxny(1-¥cose)—nz sin@ nznx(l—cos9)+ny sin@
L nxny(1¥-cose)+nzsin6 nj+cos@(1-n2) nyny(1—0s0)—n,sin@ |
‘ N1y (1-cosB)—n, sin@ nyn,(l—cose)+nxs1n6 n: +cose(1 —n3 ) : :

This matrix has three unknowns, the angle 6 and two of n,, ny, and n,, since the magm-
tude of n is umty ’ '

1. Solution for the Transformation

Now . given the correspondence between a set of scene features {S} and a set of '
model features {M}, we want to determine (or estimate if noise is present) the R and ¢.
W1thout loss of generality we can assume the matching of {S} to {M} results in' the
correspondences between ps and p,,,, i=1,...,k, and between a’ to a,,,, J=1. 0
Note that k does not have to agree with / since the number of posmon attributes in each
feature might be different from the number of orientation attnbutes From equatlon
(A.1) and (A.2), we now have



m chen/kak

| R ph+1 = pt o | @y
fori-}-=1,-...,k,and _ | ‘, _v | } , |

. Rdh=o4 A
forjv= 1 o

Smce R is present in only equatlon (A.4) while both R and 7 are present in equa-
tion (A 3) it is natural to decompose the problem of solving T into two stages: first
solve for R by using equation (A.4) and then solve for ¢ by using equation (A3).

“A question that arises here is that under what conditions can we gaurantee a
unique solution for R and #. Let us first investigate the case of R. Since each orienta-
tion vector a is a unit vector in 3-D space, it can be completely specified by two param-
eters. Consequently, each instance of equation (A.4) can provide two independent
scalar equations in terms of R. Furthermore, as mentioned in Section 3, a rotation R has

three degrees of freedom. Therefore, in order to to completely solve R we need at least
" two instances of equation (A.4), i.e. two corresponding pairs of orientatibn vectors, pro-
viding that the two vectors are not linearly dependent (parallel orientation vectors will
lead to linearly dependent equations). Given two equations of the type shown in (A.4),
we will actually have four equations for the three unknown of R. If the correspon- -
dences ‘between the scene surface orientations and the model surface orientations are -
correct, then these four equations are not really mdependent because the onentatlon

o vectors must obey the following additional constralnt

a,l,, a,z,, = a} af

In other words, thlS constraint must be denvable from the four equations. In practlce, _
- this constraint is used to verify the accuracy of the surface correspondences prior to
solving the equations. '

- If I, the number of orientation vectors in the correspondence, is greater than 2, then
the corresponding orientation vectors must obey the following pairwise constraints: ie.

@yah=di-al  ferallijsI (AS)

So, suppose by matching scene surfaces with model surfaces we have set up /
correspondences that satisfy the above costraints. Now, the question is what is the best
way to solve the / vector equations of the type shown in (A.4) for the unknown R: One:
could Iump together all the I equations into the followrng composite form

[am arzn ° ] [as as o]

‘ Wthh could be written in a more compact form as
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v"R.Am%AS_ | | : L 3
leading: to the following least squares solution for R | - 3
R‘=AA.T [A AT]‘_I o L (fA6) _,
Supposedly, a correct least squares solution obtained in this manner should m1n1m1ze_
the metnc ‘ '

.» . : < T . N : ) )
[RA,m"'As] [RAm—AS] | L AD
| or, in other w‘e,rds, lead to a solution of the equation | ‘ : .
— |RA, -A; | |RA,, - A;| = A.
= =0 (A

Unfortunately, the solution represented by the equation (A.6) and the ratlonale leadmg
' up to it are faulty for the main reason that the metric in equation (A.7) is really not an’
error metnc since it is a 3x3 matrix and not a scalar. What we really want to rmmmlze '
is not what is shown in (A.6) but the following form - ‘ '

E? = ElaéfR-a'{,,l'z | B X )}
, J=1 L .
In the next subsectlon followmg a derivation originally given by Faugeras and Hebert :
[F&H - 83] we will show how an elegant solution to the minimization of E 2 can be
obtamed by the use of quaternions. The reader should note that other methods also
ex1st for solvmg equatlon (A9); see, for example [A&et -87, G&L -84].

~We would like to make one more comment about the 1nappropr1ateness of (A 6) o

- for the solution we desire. Even if the equation in (A.8) made sense, the least squares

- optimization would be with Tespect to all the nine elements of the matrix R. Since these
nine elements do not constitute independent variables -- in fact, there are only three
independent variables involved amongst these nine elements -- the solutlon obtained
may be entlrely meaningless.

2. Estimat_ion'of the Rotation Matrix

‘We clearly want an R that would satisfy
= : 3E? -

—_—_—— = I -
R k=K | .
Followmg Faugeras and Hebert, we will use quaternlons to represent rotatlons, and
obtain a solution for R in the form of the principal eigenvectors of a matrix in terms of

aganda,. A quatemlon [Ha —69] is defined as
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Q0 =(sv)
where s is a scalar, and v is a vector of 3 elements. The conjugate of a quaternion Q is
denoted by O and defined as

| Q =(s,-v)
‘The multiplication of ‘ two quatcmions Q and Q’ is also a quaternion and given by
7 0 *Q’ = (ss’ = vV, vxv' + sV + 5v)
From the above two definitions, we have

Q* @ = (5= (V) (V), (WIXV) +5(-V) +5(-v))

Let us assume that the rotation expressed by R is carried out along an axis n and
with angle 6. Then the rotation of a by R, given by the vector R-a, can be represented
by : ‘

. ORa)=0*O0a)*0z - (A.10)

where we now have quaternions on both sides and where

. 6 . 0
QR = (cos2,51n—2-n).

and vector a has been written in the quaternion form (0, a@). Itis easy to verify that
IQr 1% = Op* O = 1
By substituting (A.10) for R - a{,, in equation (A.9), we obtain

1
32 = ¥ 10, a5) — Qg * (0, a,) * Qg 12
j=1 .

Note, for the simplicity of notation we have dropped the superscript j on vectors a,, and
 a,.Since 1Qz 1% =1, for any quaternion Q,, we have

10,12 = 0, * 0y
= 0,*(1,0)* 0;
=0, *Or*0r* 0,
=0, *Qr*0;* O
=10, * Qpl?

Therefore, we can post-multiply Qp with both terms in the above equation and obtain
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= 2 100, a;)*Qr — O * (0, a,,) 1 N (S S I
; o v
Now we can minimize 2, which has become a quadratic fun'ction of QR, with respect
to B
| Qg = (a,m)
ThlS mlnlrmzauon must satlsfy constraint
| o2 +ini?=1
which ‘is a Consequence of Qp * QT =1.

From the definition of quatermon multiplication, we can expand thc term
(O a;)* QR Or * (0, a,,) in equation (A.11) as

(O’ as) * (aan) - (a,n) * (09 am) ‘
.[_as ‘n, dag +as><'fl] - [_am ‘n, (xam"*"amx“J

= ['fl : (amfas)a - (a,—as) + (am+as)xn] ' o (A.12) |

" The above expression is a linear functlon of o and m; thus we should be able to express
the above exprcssmn in the form of matrix multiplication as ' e

Slam): B

where B isa 4x4 matnx in terms- of a and a,.

I

Th1s is done by converting vector cross product to matrix multlphcauon as fol-
lows. Define a cross matrix X of a vector v =(x,y,z) as

. 0 z -y
Xw)=|-2z 0 x
’ y x 0

It is easy to venfy that the cross product of two vectors v and 1 can be expressed in the
. form of matrlx multiplication as '

yxn=n-X(@)

Note again that 7 is a row vector and not a column vector. In fact all the vectors used
in the formulation presented here are row vectors, unless, of course, stated othcrw1se.
The express1on in (A.12) can now be rewritten as '

(Tl (am —ay), —o. (am_as) +n-X (am+as))

Wthh 1s the same as

(am —-as) X _(a.m+as)

R 0 .—'(am—as)
«m): [ J
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Thus we have

0 —cy —¢y —éz
’ ¢ 0 b, -by
B = v :
v ¢y b, 0 -b,
ch b, b, 0
where
b =a,+a;, and

c =a,—a;

Now equation (A.12) can be rewritten as

l
2 =ZI‘QR'BI2
; .
! -
=Y 0r-B-BT -0}
J

=Qr-A-0Qf
whcrev
A=Y BBT DR » . (A13)
The quaternion rotaﬁon Qr that and minimizes equation (A.13) will be the eigenvector
_associated with the minimal eigenvalue of the matrix A. Since the magnitude of Qg is

unity, we must, of course, normalize the solution eigenvector. Assuming the computed
elgenvector after normalization is [, B,Y,0], then the rotation angle

0= Zcos L)

and the rotation axis

n = B9 /sin(2)

" In addition, the minimal enginvalue of the matrix A will be equal to the minimized
E?, which is the fitting error. Hence, based on that enginvalue we can determine how
well the scene surfaces correspond to the model surfaces. If the enginvalue is greater
than some predefined threshold, ‘we should reject the correspondences estabhshed and, |
therefore, reject the matchmg of {S} w1th {M}. '
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3. Estimation of the Translation Vector

After the rotation is determined, we can smnlarly estimate the lranslatlon by
mmmnzmg the followm g error function

e CE2= Z ipi-R - pl~t12 o (ALY

k., . . S ONT
= X (pi-R-ph-1] [pi-R-ph~1]

2

Setting the derivative 53:‘,— to zero lead to the following solution

Ca e
= ka{'v_R'(Z’P{n)'

‘The minimized ﬁttmg error can be readily calculated by plugging 7 into equatlon
- (A14). Agam 1f this fitting error is greater than certain threshold, we should reject the ’
‘matchmg o

The reader will recall that pose transformauon hypotheses are generated by ﬁrst
extracting vertices from a scene and then matching a scene vertex, together w1th its
associated surfaces, with an LFS for the model. As was mentioned in Chapter 3, an LFS ‘
s composed of a model vertex and all the surfaces that come together at that vertex.
The surface features in an LFS will always possess orientation attributes but may or
may not possess any position attributes, especially viewpoint 1ndependent position attri-
butes. (For example, the centroid of a surface won’t do since it is viewpoint dependent
due to the fact that its calculation is greatly influenced by the extent to- which the sur-
face might be occluded.) This 1mp11es that in an LFS we may not have available to us
many locatlon vectors suclt as pJ,. For this reason, the position attribute of the vertex
itself ‘becomes of prime 1mportance For a scene vertex where three surfaces meet, the
coordinates of the vertex can be computed very robustly by finding the intersection the
three surfaces. For those vertices where only two surfaces meet, there does not exist a
- reliable method of computing the coordinates; therefore, we simply use the nearest
- range measurement from the structured-light data. In either of these cases, k equals lin

equatlon (A 14) and therefore the translation vector is given by -

i\ = ps_R ‘Pm
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Appendix B
Imtlal Guess for Tessel Assignment

G1ven a pnnmpal d1rect10n @, in this append1x we show how its correspondmg -
tessel indices. (i,j,k) can be computed from a linear approximation. Note that the indices
thus computed are only supposed to place us in the vicinity of the true. tessel.- As
explained in Section 6.3. 3, the approximately located tessel i is used as a starung point
for getung the exact tessel correspondmg to (I) '

We w1ll present our approx1mauon for the first of the parallelograms shown in Fig. |
3.22, the approximations for the other parallelograms are identical in their. j and k
dependences by virtue of symmetry; the dependence oniis different and w111 be shown ’
below. :

The approximation for the first parallelogram in F1g 322 actually consists of three
separate. approxunauons one for each of the three zones that we will now 1dent1fy The
first zone consists of the triangle marked 1 in Fig. 3. 21, the second zone of the tnangles
2 and 3 and the last zone of the lnangle marked 4. ’ ‘

- Accordmg to equation (9) in Section 7, the index i is 1ndependent of 1nd1ces Jand

k in the computatlon of 8 and ¢ for a given triplet (i,j,k). For a given (8,¢), we can
therefore separate the deterrmnatlon of index i from that of _] and k. The procedure that :
follows cons1sts of three steps: '

(1) - First detemune the identity of the zone to Wthh the d1recuon belongs

(2) Next, determine the index i correspondlng to the parallelogram in wh1ch the d1rec-
tion (9 (1)) hes

(3) Est1mate the 1ndlces J and k

For the first two steps the follow1ng formulas are used (Let K= %— T=atan (2) and

assume0<9<1tand0<¢<21t)

if(()<e<'1:) ' o /*® e zonel ¥/

| l'-['—'l mod(5) - o
["else1f(1:<9<1t—fc) o [* ® e zone2 */
z =l ¢—(6—t)><1‘c( / (21t—4t)1 mo d(S) o

else . /* (De zone3 */ :

z=|'¢_ 2"Imod(S)
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For Stép 3, we will allow j and k to take non- -integer value in the following formu';
las.. During computations, the non- 1nteger values are U'uncated to yield the integer
values First, let -

¢ ¢—(z 1)><21c
If(De zonel
k o % (BxQ / 1)

Jj= Ome k+1

If(De zone2 assume o
O=aj+bk+c

‘ | '¢"dj+ek+f _ |
Solvmg for a, b ¢,d,e f at the four comers of zone 2, we have
e (1+k 2 3
Q .
"= (k- 1——+—.
¢ k-j- )2Q o
Then j and k can be obtained by 7
a (6+n-37) 2¢
= ~1
_J Qx| (= 21) ( ” )]
¢I
K

" And for zone 3, we use the formulas similar to those of zone 1, except that j and k are
swapped, and angles 6 and ¢ are appropriately offset. . -
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