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The 3D arrangement of porous granular biomaterials usable to fill bone defects has 

received little study. Granular biomaterials occupy 3D space when packed together in 

a manner that creates a porosity suitable for the invasion of vascular and bone cells. 

Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g 

of β-TCP powder in the same volume of slurry. When the granules were placed in a test 

tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks 

of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to 

compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. 

Biomechanical compression tests were done on the granules stacks. Bone cylinders 

were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density 

(LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography 

was used on the β-TCP granule stacks and the trabecular bone cores to determine 

porosity and specific surface. A vector-projection algorithm was used to image porosity 

employing a frontal plane image, which was constructed line by line from all images of a 

microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity 

(0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p < 0.05 and 

0.087 ± 0.045, p < 0.05) and LD bones (respectively 88.8 ± 1.57% and 0.037 ± 0.014), 

but exhibited a higher surface density (5.56 ± 0.11 mm2/mm3 vs. 2.06 ± 0.26 for LD, 

p < 0.05). LP granular arrangements created large pores coexisting with dense areas of 

material. Frontal plane analysis evidenced a more regular arrangement of β-TCP gran-

ules than bone trabecule. Stacks of HP granules represent a scaffold that resembles 

trabecular bone in its porous microarchitecture.

Keywords: porosity, microcT, 3D packing, 3D geometry, bone graft, fractal, β-TcP, granules

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2015.00161&domain=pdf&date_stamp=2015-10-12
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00161
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:daniel.chappard@univ-angers.fr
http://dx.doi.org/10.3389/fendo.2015.00161
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00161/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00161/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00161/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00161/abstract
http://loop.frontiersin.org/people/128718/overview


October 2015 | Volume 6 | Article 1612

Chappard et al. Porosity of bone and biomaterial granules

Frontiers in Endocrinology | www.frontiersin.org

inTrODUcTiOn

Bone is a calci�ed connective tissue, which ful�ls a large number 
of functions in the body (1). Being both rigid and elastic due to 
the unique composition of its matrix made of collagen type I 
and hydroxyapatite crystals, it is adapted to gravity and muscle 
contractions. Bone cells are able to remodel and adapt bone mass 
and architecture throughout life allowing repair of microdamage 
(microcracks, trabecular microfractures) or fracture. To reduce 
the amount of this material within the body, Nature has developed 
a number of strategies to provide the maximum biomechanical 
competence with a genetically controlled bone mass. During 
aging, epigenetic factors, such as gravity and muscle strains, 
also modify bone mass and microarchitecture (Wol� ’s Law). 
Trabecular microarchitecture is now a well-recognized type of 
self-organization that ful�ls this condition (2, 3).

Bone loss can occur systemically, for example, during aging. 
However, localized bone loss can also occur, as in some intra-bony 
defects, such as solitary or aneurysmal cysts, or acquired bone 
defects as observed a�er tooth extraction or during hip pros-
thesis revision. Granular biomaterials are o�en used to �ll these 
defects, especially in non-bearing bones. Among the di�erent 
orthophosphates that can be produced in large quantity by indus-
try, beta-tricalcium phosphate (β-TCP) appears the most suitable, 
particularly in maxillo-facial and dental surgery (4). Granules of 
1000–2000 μm diameter represent the most commonly used size 
for �lling alveolar sockets or increasing bone volume by sinus li� 
(5). However, when the surgeons place granules within a bone 
defect, it is the voids between the granules that represent the inter-
connected space available for vascular sprouts and bone cells to 
invade the gra�ed area. Calcium phosphate ceramics are known to 
be too brittle to be placed in load-bearing areas. Ceramic granules 
allow a perfect �lling of the bone defects, but they are limited to 
gra�ed areas where no signi�cant strength is needed (alveolar 
ridge augmentation, sinus li� …) (5). Little is known about the 3D 
arrangement of a gra�ed stack of granules, and if the porosity of the 
stack is similar to that of trabecular bone to allow the accessibility 
of biological �uids, body �uids, cells, and vascularization within 
the gra�ed site (6, 7). In addition, when �lling a bone defect, the 
surgeon has to avoid crushing of the granules to avoid altering the 
granules’ microarchitecture (8). Hence, the biomechanical resist-
ance of the granules in compression is also an important factor 
to be taken into account when choosing the gra�ing material (9).

�e aims of the present study were (1) to compare the pore 
microarchitecture of the two types of β-TCP granules providing 
stacks of low porosity (LP) and high porosity (HP), respectively, 
with that of the two types of trabecular bone [high density (HD) 
and low density (LD)], in order to assess the granular stack that 
had the pore microarchitecture more similar to trabecular bone; 
(2) to compare the biomechanical properties in compression of 
these two types of granules.”

MaTerials anD MeThODs

Bone samples
For the bone with HD, �ve bone cylinders were harvested from 
the upper tibia epiphysis of young butchered animals (calves, 

aged around 15 months, 500–600 kg). �e calibrated cylinders 
(10 mm in diameter) were obtained with a diamond-tipped cor-
ing tool (Starlite Industries, Rosemont, PA, USA) perpendicular 
to the tibial plateau. Similarly, �ve cylinders (10 mm diameter) 
with low bone density (LD) were prepared from the upper tibial 
epiphysis from �ve aged human cadavers from the Anatomical 
Laboratory (mean age 78.3 ± 5.2 years). For both the HD and 
LD cylinders, the articular and subchondral bone were removed 
to provide cylinders 23–25 mm in length containing only the 
secondary spongiosa. �e subjects had given their body to 
science before death and had completed a form indicating 
that their corpses were to be used for medical education and 
research. Subjects were examined upon arrival at the labora-
tory of anatomy of the Faculty of Medicine. All bone samples 
were harvested following a strict protocol of the laboratory of 
anatomy; e.g., it was impossible to know any detail which could 
lead to the subject’s identi�cation (causes of death, previous 
medical records).

β-TcP granules
Beta-tricalcium phosphate granules were obtained from Kasios 
(L’Union, France). Granules were prepared by polyurethane foam 
technology and used as received. �is technique has been exten-
sively described elsewhere (10, 11). Two types of granules were 
used and placed in polyethylene test tubes (10 mm in diameter): 
compact granules were prepared with 25 g of β-TCP grain in a 
�xed volume of slurry and provided a LP stacks; lighter granules 
with 12.5 g of β-TCP grain 1 in the same volume of slurry pro-
duced the HP stacks (12).

�e morphology of the two types of granules was qualitatively 
evaluated by scanning electron microscopy (SEM, Jeol JSM 
6301F) before analysis. �e β-TCP granules were glued on an 
aluminum stub with a double-sided carbon sellotape. �ey were 
gold-coated by sputtering with an MED 020 (Bal-Tec, Chatillon 
sur Cher, France). Images were captured at a 3-kV acceleration 
voltage in the secondary electron mode.

Biomechanical analysis
�e compression characteristics of the two types of β-TCP gran-
ules were determined on an Instron 5942 machine with Bluehill 
so�ware (Instron, Elancourt, France) (Figure 1A). As the test is 
destructive, new intact granules were placed into the cylindrical 
test cell of the machine and compacted with an adapted punch 
10  mm in diameter. �e maximum applied load was �xed at 
400 N with a 2-mm min−1 displacement. For each type of stacks 
of granule (HP or LP), the load–displacement curve was recorded 
(N/mm) automatically by the machine. Sti�ness was automati-
cally provided by measuring the slope of the tangent to the curve 
at the beginning of the deformation (N/mm). �e maximum 
displacement of the punch (in mm) was obtained when the load 
reached 400 N. �e work to failure (N⋅mm) was determined as 
the area under the load–displacement curve from yield until 
failure and represents the energy absorbed by bone during plastic 
deformation (Figure 1B) (13). �ese parameters were calculated 
according to previously published equations (14, 15). Analysis 
was repeated �ve times for each type of granules and the averaged 
values were considered.
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MicrocT analysis
MicroCT analysis was performed on a Skyscan 1172 microcom-
puted tomograph (Bruker microCT, Kontich, Belgium). Bone 
samples were placed in polystyrene test tubes (10 mm in diam-
eter) and scanned while in �xative (10% formalin). Granules of 
β-TCP were placed in similar tubes and gently agitated to allow 
the granules to settle and optimize their 3D spatial arrangement 
in the dry state. Tubes were �lled with β-TCP granules up to 
30 mm in height. For each series of granules, analysis was done 
in triplicate. �e microCT was operated at 80 kV, 100 μA with 
a 0.5-mm aluminum �lter. �e pixel size was �xed at 4.95 μm 
and the angular rotation step at 0.25°. 3D models of bones and 
granules were obtained with VG Studiomax (Volume Graphics 
GmbH, Heidelberg, Germany) operating in the volume render-
ing mode. Microarchitecture parameters were obtained with the 
CTAn so�ware (Bruker) a�er global thresholding of the pores 
(16). �ey included measures of porosity (Po, in %), mean pore 
diameter (Po⋅Diam, in μm), and speci�c surface [representing 
the interface between bone or biomaterial and the porosity, BS/

FigUre 1 | Biomechanical analysis of the two types of stacks of 

granule (hP and lP). (a) Image of the compression machine; granules are 

placed in the cylindrical test cell (1) and compressed with the punch (2). 

(B) Theoretical load–displacement curve between displacement and force 

obtained by compression; the slope of the tangent to the curve is 

automatically provided (blue line), thus providing stiffness; the maximum 

displacement of the punch at 400 N is obtained by the red line; the area 

under the curve (in green) represents the work to failure. (c) The curves 

obtained for the HP and LP stacks of granules.

TV, in mm2/mm3, where BS is the whole pore surface and TV is 
the volume of interest according to the ASBMR nomenclature 
(17)]. For the bone cylinders and the granule stacks, the region 
of interest (ROI) over-imposed on the 2D binarized sections was 
a 5-mm wide square; the height of analysis of the samples has 
concerned 15 mm. Pore diameter was determined by the sphere-
�tting method in the CTAn so�ware (18). In order to further 
investigate the porosity, the binarized stacks of 2D microCT 
sections of each sample were analyzed by so�ware written in 
Matlab (MathWorks, Natick, MA, USA). �e algorithm for 
evaluation of porosity used a vector projection on a frontal plane 
(Vectopor) and has been extensively described elsewhere (19). 
In the present study, the pixels of the ROI which belonged to 
the same column received the same pseudo-color according to 
the number of pixels superimposed on pores. A look-up table 
(LUT) was designed ranging from deep blue (no porosity) to 
red (high porosity). Intermediate values depend on the value of 
porosity along the vector according to the LUT. �e frontal plane 
vector projection image was assigned intensity values for each 
pixel based on the number of pixels, which contained pores in 
the related column of the microCT binarized image. �e frontal 
plane image was saved with the colorized LUT and analyzed by 
the FracLac plugin developed for ImageJ (20, 21). �e box-plot 
fractal dimension (Df) and the lacunarity (λ) of the frontal plane 
images were determined as previously described (19). �e box-
plot fractal dimension evaluates the complexity of the material 
to �ll the reference space and is helpful in the study of porous 
objects, such as bone (22, 23) or materials (24, 25). Lacunarity is 
another recently described fractal parameter reported to improve 
the description of a fractal porous object (26, 27). Lacunarity is 
in�uenced by the variation of the pores in a given structure; a 
low lacunarity re�ects homogeneity, while a high lacunarity is an 
indicator of heterogeneity (28, 29).

statistical analysis
Statistical analysis was done with Systat 13 (Systat Inc., San 
José, CA, USA). For each parameter, results are expressed as 
mean  ±  SD. Di�erences for porosity between the four groups 
(HD, LD, HP, and LP) were sought with the Kruskal–Wallis non-
parametric analysis of variance followed by the Conover–Inman 
test for all pairwise comparisons. For biomechanical parameters, 
di�erences between the HP vs. LP groups were analyzed by the 
non-parametric Mann–Whitney U test. A di�erence was consid-
ered as signi�cant when p < 0.05.

resUlTs

Qualitative examination of the β-TcP 
granules
�e di�erence in morphology of the granules was evident to the 
naked eye and con�rmed by SEM. �e 12.5-g preparation of 
granules was the most porous with thin walls of sintered β-TCP, 
while the 25-g granule preparation was denser, with numerous 
concave surfaces and occasional macropores (Figure  2). In all 
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FigUre 2 | seM analysis of the two types of β-TcP granules. (a) LP 

granules prepared with 25 g in the slurry, (B) HP granules prepared with 

12.5 g. Note the inner porosity due to the sublimation of the polyurethane 

foam as triangular voids connected by thin channels (arrows).

TaBle 1 | Morphometric parameters of bone cylinders with a high-density (hD), low-density (lD), and β-TcP granules (compact low porosity granules: 

lP; high porosity granules: hP).

Bone granules

hD lD lP hP

Po (%) 69.1 ± 6.4 88.8 ± 1.5* 58.9 ± 1.3* 75.3 ± 0.4*§

BS/TV (mm2/mm3) 4.08 ± 1.05 2.06 ± 0.26* 4.98 ± 0.09 5.56 ± 0.11§

Po⋅Diam (μm) 458 ± 123 875 ± 112* 359 ± 7 321 ± 7§

Fractal dimension Df 2.747 ± 0.017 2.762 ± 0.014 2.635 ± 0.034 2.749 ± 0.009

Lacunarity (λ) 0.087 ± 0.045 0.037 ± 0.014*,§ 0.220 ± 0.110 0.043 ± 0.007§

Stiffness (N/mm) 65.4 ± 4.5 14.4 ± 1.8§

Max. displac. (mm) 3.90 ± 0.03 5.30 ± 0.31§

Work to failure (N⋅mm) 487 ± 7 447 ± 26§

Data are provided as mean ± SD. Differences between the four groups were sought with the Kruskal–Wallis analysis of variance followed by the Conover–Inman post hoc test for all 

pairwise comparisons. For biomechanical parameters, differences between the HP vs. LP groups were analyzed by the Mann–Whitney U test.

*Significantly different from HD cylinders with p < 0.05.
§Significantly different from LP granules with p < 0.05.
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cases, the inner porosity due to sublimation of the polyurethane 
foam was clearly identi�ed as triangular voids connected by thin 
channels.

Biomechanical analysis of the β-TcP 
granules
The load vs. displacement curves of both HP and LP types 
of granules are shown in Figure 1C. The first domain of the 
curve corresponds to the collapse of the granules, after which 
the deformation is due to their irreversible compression. The 
HP stack had a statistically significant higher maximum 

displacement compared to the LP stack, as expected (p < 0.05, 
Table 1). On the contrary, the stiffness and the work to failure 
were significantly higher in the LP stacks compared to the HP 
stack (p < 0.05 in both cases).

Morphometric analysis of Bone and 
granules
A 3D-rendering of the two types of bone cores and granule stacks 
is shown in Figure  3. Morphometric parameters are listed in 
Table  1 and illustrated in Figure  4. �e HD bone cores had a 
signi�cantly smaller porosity than LD bones. �e LP stacks had 
the lowest porosity among all groups. Conversely, HP stacks pre-
sented a porosity that is intermediate between that of a HD bone 
and that of a low-density bone. �e HP formulation produced a 
~28% increase of porosity associated with a reduction of the mass 
of β-TCP. �is was associated with a signi�cant increase in BS/TV 
in the HP group compared to the LP group (+11.6%). �e vector 
analysis of porosity clearly evidenced di�erences between the two 
pairs of materials: HD bones appeared inhomogeneous with areas 
containing large amounts of bony material (blue areas according 
to the LUT), while LD had a large number of red spots indicat-
ing HP (Figures 5A,B). Very similar �ndings were observed for 
the LP and HP stacks of granules: LP stacks had large areas of 
material but large holes were also present. On the contrary, the 
morphology of the stacks of HP granules had a more regular dis-
tribution of the pores and material (Figures 5C,D). Interestingly, 
the fractal dimension Df did not di�er among the four groups, 
but lacunarity λ was high in HD bones and even higher in the LP 
granules (Table 1).

DiscUssiOn

In this series of materials comprising bone cores and granular 
stacks made of β-TCP granules, a quantitative and morphologi-
cal analysis of porosity was done. Porosity of the LP stacks was 
noticeably lower than a HD trabecular bone. However, the poros-
ity of the HP stacks (and conversely the amount of material) was 
in the range of normal bone volume as determined by classical 
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FigUre 4 | Porosity measured by microcT in the bone cylinders and 

stacks of granules. Statistical analysis was done with Kruskal–Wallis 

analysis of variance followed by the Conover–Inman post hoc test. Error bars 

indicate SD. *Significantly different with p < 0.02; **with p < 0.003; ***with 

p < 0.0001.

FigUre 3 | Microtomographic analysis of the different types of 

materials (appearing in white). (a) High-density bone (HD) with numerous 

trabeculae and low porosity; (B) low-density bone (LD) from aged subjects 

with reduced trabeculae and increased porosity; (c) of compact granules 

(LP) of β-TCP; (D) scaffold of HP granules. All images have been prepared 

with a square ROI of 5 mm side; so the volume of interest is a parallelepiped 

(height: 15 mm; square section: 5 mm).
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histomorphometry methods (30). �is re�ects the microarchitec-
ture of the stacks of HP granules which contain more macropores 
and thin branches than the LP granules. However, as expected, 
this e�ect is detrimental to the biomechanical properties of the 
HP granules whose stacks have lower compressive mechanical 
properties, as evidenced by lower sti�ness values, lower work 
to failure, and maximum displacement. �e surgeon should be 
aware not to crush the granules in the gra�ed areas and the use of 
a bone syringe with a large diameter may help.

It should be noted that the BS/TV of HP granules is signi�cantly 
higher than that of LP granules or that of HD and LD bones. 
�is is especially important since BS/BV represents the bioactive 
surfaces of β-TCP that will be in direct contact with the biologi-
cal �uids and the cells (31). �e BS/TV values obtained in this 
study with β-TCP granules are similar to those reported by other 
groups with BCP (a mixture of β-TCP and hydroxyapatite) (32). 
Recent observations have stressed the interest of increasing the 
speci�c surface (BS/TV) of orthophosphate materials to promote 

bone formation (33). So, the HP formulation represents the high-
est surface available for osteoblast attachment and proliferation 
(osteoblasts are bone-forming cells). Because β-TCP is a biomate-
rial colonized by osteoconduction from nearby trabeculae, this 
parameter is of great importance (34).

MicroCT analysis is a relatively recently introduced tool in the 
analysis of bone and materials. Values for parameters, such as 
BV/TV and Po, are highly correlated with histomorphometry on 
2D sections (35). In the present study, the di�erence in porosity 
between the stacks of granules can be clearly identi�ed as previ-
ously reported (12). Di�erent types of parameters have been pro-
posed to evaluate the 3D arrangement of porous materials (e.g., 
the box-plot fractal dimension) (22, 23) and the interconnectivity 
of the pores created between the granules (29). �e method was 
successfully applied to evaluate the complexity of di�erent types 
of granule aggregates: sandstone (36), coal (37), metal grains 
(38), and soils (39). �e complexity of the granule repartition, 
evaluated by Df, did not di�er between the four groups. However, 
fractal lacunarity appears as an interesting new tool capable to 
di�erentiate the groups but it does not bring morphological 
information (12, 28, 29, 40). We have recently developed vector 
analysis for visualization and quanti�cation of the porosity in 
objects presenting a complex form (19). �e method was found 
useful to analyze pores in materials prepared with various types 
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FigUre 5 | images of the frontal planes projected from the different 

types of porous materials: (a) hD bone, (B) lD bone, (c) lP, and 

(D) hP granules of β-TcP. The regions with maximal porosity are red, 

minimal porosity in blue according to the LUT (at the bottom of the image). All 

images have been prepared with a square ROI of 5 mm side length and the 

scale bar represents 1 mm.

October 2015 | Volume 6 | Article 1616

Chappard et al. Porosity of bone and biomaterial granules

Frontiers in Endocrinology | www.frontiersin.org

of porogens and in bones having a particularly complex shape. 
�is is the case with alveolar bone at the mandible, which is very 
di�cult to analyze because of the presence of the tooth roots. 
Recently, the bone loss induced by paralysis of Mus masseter and 
Mus temporalis was evidenced by this technique (41). �e frontal 
plane is produced line by line during the vector analysis of each 
microCT image and represents the projection of porosity. �e 
complexity of the image can be measured by fractal geometry 
on this projected 2D image. In the present series, there was no 
di�erence for Df among the four groups under study. However, 
lacunarity is known to be in�uenced by the uniformity of the 

spatial distribution; it is a useful parameter when objects do not 
di�er by their fractal dimension (42, 43). �e maximal λ value 
was reached in the LP (25 g) group meaning that very large pores 
are created in the 3D arrangement of the granules. On the other 
hand, the lowest λ values were obtained for the HP (12.5 g group) 
granules and the LD bone, which presented a regular distribution 
of pore dimensions. Similar relationships have been reported in 
studies concerned with the porosity of soils (44, 45).

�e presence of pores larger than 100 μm has been recognized 
as a key factor in the vascular invasion of gra�ed materials into 
bone (46, 47). In this study, Po⋅Diam values for bone were within 
the values typically reported for bone (48); Po⋅Diam of both HP 
and LP are larger than 300 μm and well suited for body �uid and 
cell invasion (49).

�ere are some limitations to this study: (1) no compressive 
analysis was done on the bone cylinders, but synthetic ceramics 
are well known to be more brittle than bone; (2) bovine bone was 
used to obtain the HD cylinders, but the biomechanical param-
eters for trabecular bone are very close (sti�ness in compression 
for bovine bone: 173 MPa vs. human: 139–472 MPa) (50); and 
(3) the other microarchitectural characteristics of the β-TCP 
materials having been reported elsewhere are not duplicated in 
the present study (12).

cOnclUsiOn

�e present study shows that the two types of β-TCP granules 
prepared di�erently did not produce the same interconnected 
porosity: LP granules provided very large but less numerous 
pores and HP granules provided a HP with a large interface. �e 
HP stacks of granules presented a porosity similar to trabecular 
bone, although the granules were physically independent. �is 
study con�rms that vector analysis is a suitable method for the 
evaluation of porosity of complex objects.
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