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This paper explores the direct motion estimation prob-
lem assuming that video-rate depth information is avail-
able, from either stereo cameras or other sensors. We use
these depth measurements in the traditional linear bright-
ness constraint equations, and we introduce a new depth
constraint equation. As a result, estimation of certain types
of motion, such as translation in depth and rotations out of
the image plane, becomes more robust. We derive linear
brightness and depth change constraint equations that gov-
ern the velocity field in 3-D for both perspective and ortho-
graphic camera projection models. These constraints are
integrated jointly over image regions according to a rigid-
body motion model, yielding a single linear system to ro-
bustly track 3D object pose. Results are shown for tracking
the pose of faces in sequences of synthetic and real images.

1 Introduction
Estimating 3D object pose is an important problem in

computer vision. In particular, it is a challenging aspect of
novel human interface applications, which require fast, ac-
curate head or body tracking. Knowledge of users’ body
position must arrive quickly to adjust the display of an in-
terface in a meaningful, timely manner. For a method to
work on body parts with varied clothing or appearance, it
should rely on motion of direct image measurements rather
than tracking a priori features or fixed models.

Previous approaches to pose tracking often rely on as-
sumed models of shape to track motion in 3-D from inten-
sity data. This leads to innaccuracies when the real object
deviates from the model, which is typically planar or ellip-
soidal.

In this paper we show how we can take advantage of re-
cently developed video-rate range sensors to dramatically
improve pose tracking performance. We use models which
express parametric motion constraints directly on range and
intensity image values, since these methods effectively in-
tegrate measurement uncertainty both over image regions
and over the motion model. These linearized models yield
closed-form solutions, which may be computed quickly.

∗Currently at the MIT Media Lab.

Our method offers two key innovations to existing direct
pose estimation frameworks. First, we use the range in-
formation to determine the shape of the object, rather than
assume a generic model or estimate structure from motion.
This shape is updated with each frame, offering a more ac-
curate representation across time than one provided by an
initial or off-line range scan. Second, we derive the depth
counterpart to the classic brightness change constraint equa-
tion. We use both constraints to jointly solve for motion
estimates. Observing the change in depth directly, rather
than inferring it from intensity change over time (or sub-
tle perspective effects), can yield more accurate estimates
of object motion, particularly for rotation out of the image
plane and for translation in depth. Depth information is also
less sensitive than intensity data to illumination and shading
effects as an object translates and rotates through space, and
hence the depth change constraint equation is more reliable
than the traditional brightness constraint when these photo-
metric effects are significant.

We use a hardware stereo implementation which offers
images of registered depth and intensity at video frame rate.
This system relies on the non-parametric census stereo cor-
respondence algorithm [12] and currently runs on a single
FPGA PCI card attached to a personal computer [11]. Other
real-time range sensing technology may also be used as in-
put to our pose estimation method, as long as registered
depth images are available at video rate. “RGBZ” data can
directly resolve many of the usual ambiguities present in a
single intensity image; in previous papers we have demon-
strated the utility of this information for background seg-
mentation [6] and face detection and tracking [5].

The remainder of this paper proceeds as follows. We
first summarize previous work on parametric motion meth-
ods for pose estimation and head tracking. We then intro-
duce our joint depth and brightness constraint, suitable for
image sequences where gradients can be computed both on
intensity and depth information. Next, we show how these
constraints can be integrated over image regions according
to a rigid-body motion model. This results in a single linear
system with an efficient closed-form solution. We derive the
system for both perspective and orthographic camera mod-
els. We demonstrate results for tracking objects with known



motion in synthetic sequences and for tracking the pose of
a user’s head in real video sequences.

2 Previous Work
The general problem of estimating object pose from im-

age sequences has been widely studied in the computer vi-
sion literature. Here we only outline some of the previous
work on this topic, specifically focusing on work in direct
parametric motion estimation for head and object tracking.

Rigid and affine models for direct parametric motion es-
timation have been extensively explored in the past decade.
Horn and Weldon provided an early and comprehensive de-
scription of the brightness constraints implied by egomotion
or the rigid motion of an object in the world [7]. They ob-
served that motion estimation was in general quite difficult
to solve with unknown scene depth, although it is possi-
ble in several restricted cases. Bergen et al. [1] were among
the first to demonstrate image stabilization and object track-
ing using an affine model with direct image intensity con-
straints; they utilized a coarse-to-fine algorithm to solve for
large motions.

Black and Yacoob [3] applied parametric models to track
the motion of a user’s head, and also employed non-rigid
models to capture expression. For tracking gross head mo-
tion they assumed planar face shape, which limits the ac-
curacy and range of motion of their method. Basu and
Pentland [2] offered a similar scheme for recovery of rigid
motion parameters assuming ellipsoidal shape models and
perspective projection. Their method used a precomputed
optic flow representation instead of direct brightness con-
straints. They also represented rigid motion using Euler an-
gles, which can pose certain difficulties at singularities.

More recently, Bregler and Malik [4] introduced the use
of the twist representation of rigid motion. Twists, which
are commonly used in the field of robotics, are more stable
and efficient to compute than Euler angles. They are espe-
cially suited to the estimation of chained articulated motion,
as Bregler and Malik demonstrated. They estimated twists
directly from the image brightness constraint with a scaled
orthographic projection model, and they used ellipsoids to
model the shape of each limb of the articulated object. To
recover motion in depth, they relied on constraints from
this articulation and on information from multiple widely-
spaced camera views.

Our approach shares similar goals with the derivation
of the direct motion stereo equations in Shieh et al.[8],
and with the tensor brightness constraint applied to mo-
tion stereo shown in Stein and Shashua[9]. However,
these methods assume infinitesimal baseline, and rely on
a coarse-to-fine solution strategy when used with baselines
generating disparities greater than a pixel. Our method uses
the range information directly and can be used with any
video-rate range sensor, e.g. laser scanner, structured light,

or stereo correspondence.
Video-rate range information allows us to express more

powerful direct constraints on image and depth gradients,
and to linearly estimate pose parameters that can easily
track motion in depth. We are able to track the rigid motion
of a single unconnected part from a single viewpoint given
a monocular sequence of intensity and range imagery.

3 Motion Estimation
We first review the classic brightness change constraint

equation and its application to motion estimation under per-
spective camera projection. We then introduce and develop
a second, analogous constraint that operates directly on
depth information. Next, we show how to combine these
constraints across image pixels into a single linear system
which may be solved efficiently for 3-D motion parameters.
Finally, we discuss a spatial coordinate shift that greatly im-
proves the motion estimation results.

3.1 The Brightness Change Constraint
Equation for Perspective Projection

In all of the following derivations, we will denote
the coordinate of a point in 3-D space as �X =
[ X Y Z ]T , and the 3-D velocity of this point as �V =
[ Vx Vy Vz ]T . When we project this point onto the
camera image plane via some camera projection model, it
will be located at the 2-D image coordinate �x = [ x y ]T .
The 3-D motion of the point in space will induce a cor-
responding 2-D motion of the projected point in the im-
age plane, and we will express these 2-D velocities as
�v = [ vx vy ]T .

The brightness change constraint equation (BCCE) for
image velocity estimation arises from the assumption that
intensities undergo only local translations from one frame
to the next in an image sequence. This assumption is only
approximately true in practice, in that it ignores phenom-
ena such as occlusions, disocclusions, and changes in in-
tensity due to changes in lighting. The assumption may be
expressed for frames at times t and t + 1 as follows:

I(x, y, t) = I(x + vx(x, y, t), y + vy(x, y, t), t + 1) (1)

I(x, y, t) is the image intensity, and vx(x, y, t) and
vy(x, y, t) are the x- and y-components of the 2-D velocity
field of object motion after projection onto the image plane.
If we further assume that the time-varying image intensity
is well approximated by a first-order Taylor series expan-
sion, we can expand the right side of the above equation to
obtain

I(x, y, t) = I(x, y, t) + Ix(x, y, t)vx(x, y, t) +
Iy(x, y, t)vy(x, y, t) + It(x, y, t) (2)



where Ix(x, y, t), Iy(x, y, t), and It(x, y, t) are image in-
tensity gradients with respect to x, y, and t, as a function
of space and time. Cancellation of the I(x, y, t) terms and
rearrangement into matrix form yields the commonly used
gradient formulation of the BCCE [7]:

−It =
[

Ix Iy

] [
vx

vy

]
(3)

This equation constrains image plane velocities, but we
are interested in solving for 3-D world velocities. For a
perspective camera with focal length f , the relationship be-
tween the two sets of velocities may be derived from the
perspective camera projection equations: x = fX

Z , and
y = fY

Z . Taking the derivatives of these equations with
respect to time yields

vx =
dx

dt
=

f

Z
Vx − x

Z
Vz (4)

vy =
dy

dt
=

f

Z
Vy − y

Z
Vz

This can be written in matrix form as

[
vx

vy

]
=

1
Z

[
f 0 −x
0 f −y

] 
 Vx

Vy

Vz


 (5)

Substituting the right side of equation ( 5) for �v in equation
( 3), we obtain the BCCE constraint equation in terms of
3-D object velocities:

−It =
1
Z

[
Ix Iy

] [
f 0 −x
0 f −y

]
�V

=
1
Z

[
fIx fIy −(xIx + yIy)

]
�V (6)

We wish to further constrain the 3-D velocities �V ac-
cording to rigid body motion. Any rigid body motion can
be expressed in terms of the instantaneous object translation
�T = [ tx ty tz ]T and the instantaneous rotation of the

object about an axis �Ω = [ ωx ωy ωz ]T . �Ω describes

the orientation of the axis of rotation, and
∣∣∣�Ω∣∣∣ is the magni-

tude of rotation per unit time. For small rotations,

�V ≈ �T + �Ω × �X = �T − �X × �Ω (7)

The cross product of two vectors may be rewritten as the
product of a skew-symmetric matrix and a vector. Applying
this to the cross-product �X × �Ω above, we obtain:

�X × �Ω = X̂�Ω , where X̂ =


 0 −Z Y

Z 0 −X
−Y X 0




We can now rearrange (7) into the convenient matrix form

�V = Q�φ (8)

where φ = [ �T T �ΩT ]T is our motion parameter vector,
and where

Q = [ I −X̂ ] =


 1 0 0 0 Z −Y

0 1 1 −Z 0 X
0 0 1 Y −X 0




Substitution of the right side of (8) for �V in (6) produces
a single linear equation relating image intensity derivatives
to rigid body motion parameters under perspective projec-
tion at a single pixel:

−It =
1
Z

[ fIx fIy −(xIx + yIy) ]Q�φ (9)

Much of the previous work on motion and pose estima-
tion from intensity data has used this constraint and varia-
tions on it. However, in most of that work, the depth val-
ues which appear in the equation are not known, and one
must use non-linear estimation techniques to solve for the
motion (see [10] for examples). Alternatively, the estima-
tion can be reduced to a linear system through the use of a
generic shape model of the object being tracked [2, 3]. By
using depth measurements directly in our linear constraint
equation, we are able to avoid the non-linear computations
required by the former class of approaches, as well as re-
duce the object shape errors inherent in the latter class of
approaches.

3.2 Adding the Depth Constraint
Assuming that video-rate depth information is available

to us, we can relate changes in the depth image over time to
rigid body motion in a manner similar to that shown for in-
tensity information above. For rigid objects, an object point
which appears at a particular image location (x, y) at time
t will appear at location (x + vx, y + vy) at time t + 1.
The depth values at these corresponding locations in image
space and time should therefore be the same, except for any
depth translation that the object point undergoes between
the two frames. This can be expressed in a form similar to
(1):

Z(x, y, t)+Vz(x, y, t) = Z(x+vx(x, y, t), y+vy(x, y, t), t+1)
(10)

The same series of steps described above for deriving the
BCCE on rigid body motion can now be used to derive an
analogous linear depth change constraint equation (DCCE)
on rigid body motion. First-order Taylor series expansion,
followed by rearrangement into matrix form, produces

−Zt =
[

Zx Zy

] [
vx

vy

]
− Vz (11)



Use of perspective camera projection to relate image ve-
locities to 3-D world velocities yields

−Zt =
1
Z

[ Zx Zy ]
[

f 0 −x
0 f −y

]
�V − Vz (12)

=
1
Z

[ fZx fZy −(Z + xZx + yZy) ]�V

Finally, we again constrain 3-D world velocities to rigid
body motion by introducing the Q matrix

−Zt =
1
Z

[ fZx fZy −(Z + xZx + yZy) ]Q�φ

(13)
This linear equation for relating depth gradient measure-
ments to rigid body motion parameters at a single pixel is
the depth analog to equation (9). Note that, in contrast to
the BCCE, whose derivation begins with an assumption (see
equation (1)) that is an approximation at best, the DCCE is
based on the linearization of a generic description of motion
in 3-D, and we might therefore expect it to lead to more ac-
curate estimation of motion.

3.3 Orthographic Approximation
In many applications, we can approximate the camera

projection model as orthographic instead of perspective
without introducing significant error in 3-D world coordi-
nate estimation. For the pose tracking algorithms discussed
in this paper, use of orthographic projection greatly sim-
plifies the constraint equations derived in the previous sec-
tions, thereby making the solution of linear systems of these
equations much less computationally intensive.

Derivation of the orthographic analogs of equations (9)
and (13) is straightforward. We replace the perspective pro-
jection relationship with the orthographic projection equa-
tions x = X and y = Y , which in turn imply that vx = Vx

and vy = Vy . Hence, equation (5) is replaced by the much
simpler equation

�v =
[

1 0 0
0 1 0

]
�V (14)

Proceeding through the remainder of the derivations of
equations (9) and (13) yields their orthographic projection
analogs:

−It = [ Ix Iy 0 ]Q�φ (15)

−Zt = [ Zx Zy −1 ]Q�φ (16)

3.4 Integration Over Space and Time
We can write intensity and depth constraint equations of

the form of equations (9) and (13) for each pixel location
that pertains to the object of interest. Because the intensity
constraint equations (9) are linear, we can combine them
across N pixels by stacking the equations in matrix form:

�bI = HI
�φ. HI ∈ �Nx6, where each row is the vector

obtained by multiplying out the right side of equation (9)
at a single pixel i. �bI ∈ �Nx1, where the ith element is
−It at pixel i. The I subscripts on HI and �bI indicate that
they only use the intensity constraints. We can collect the
depth constraint equations (13) into an analogous linear sys-
tem: �bD = HD

�φD. Provided that N > 6, the least-squares
method may be used to solve either of these systems inde-
pendently for the motion parameters �φ.

The intensity and depth linear systems and may also be
combined into a single linear system for constraining the
motion parameters:

�b = H�φ, , where H =
[

HI

λHD

]
,�b =

[
�bI

λ �bD

]
(17)

The scaling factor, λ, controls the weighting of the depth
constraints relative to the intensity constraints. When one
expects depth to be more reliable than intensity, such as un-
der fast changing lighting conditions, one might want to set
λ to a value higher than 1, but under other conditions, such
as when depth information is much noisier than intensity,
one might prefer to use lower λ values. The least-squares
solution to the above equation is

�φ = −(HTH)−1HT�b (18)

The image pixel data used to build the above linear sys-
tem are taken only from a restricted region of image sup-
port. This support region is the set of pixel locations which
we believe correspond to the object, and for which intensity,
depth, and their derivatives are well-defined.

The motions estimated between pairs of consecutive
frames are simply added together to form an estimate of cu-
mulative object motion over time. It is beneficial to supple-
ment this tracking algorithm with a parallel scheme for de-
ciding when the accumulated error has become substantial,
and to reinitialize the object pose estimate at these times.

3.5 Shift of World Coordinate System
We improve the numerical stability of the least-squares

solution by translating all of the 3-D spatial coordinates
to the centroid �Xo = [ Xo Yo Zo ]T of the supported
samples. This transformation affects only the matrix Q,
and the motion parameter vector �φ will compensate for this
change. That is, we can rewrite equation (9) as

−It =
1
Z

[ fIx fIy −(xIx + yIy) ]Q′�φ′ (19)

where �φ′ = [ �T ′T �Ω′T ]T , and

Q′ =


 1 0 0 0 (Z − Zo) −(Y − Yo)

0 1 1 −(Z − Zo) 0 (X − Xo)
0 0 1 (Y − Yo) −(X − Xo) 0






Figure 1. Synthetic sequence input. First and second images: intensity and depth images for initial frame of both synthetic
sequences. Third, fourth, and fifth images: extrema of rotations for first synthetic sequence. Sixth image: extreme of
translation for second synthetic sequence.

Equation (13) can be modified similarly. We combine
these shifted intensity and depth equations into a single
linear system and solve for the motion parameters �φ′ by
least squares, as described above. These motion parame-
ters are in the coordinate system of the object centroid;
we would like to transform them back to motion parame-
ters �φ in the camera coordinate system. The 3-D veloci-
ties �V ′ in the shifted coordinate system are described by
�V ′ = �T ′ − ( �X − �Xo) × �Ω′. Since these velocities must
also equal the velocities �V in the camera coordinate system,
given by equation (7), it is straightforward to show that

�Ω = �Ω′ and �T = �T ′ + �Xo × �Ω′ (20)

4 Results
4.1 Synthetic Image Sequences

Synthetic image sequences provide ground truth that al-
low us to quantitatively analyze our technique. We gener-
ated synthetic sequences from a detailed polygonal model
of the frontal half of a human head. The range and color
data used to construct the model were obtained with a ro-
tating Cyberware laser scanner equipped to record regis-
tered color and depth data at each point. Color test image
sequences were constructed via a standard graphical ren-
dering package, employing a perspective camera projection
model. Spatial and time derivatives in intensity and depth
were computed using difference filters with small support.
Sample intensity and depth images of the model are shown
in the leftmost two panels of Figure 1.

For each of the two image sequences discussed in this
section, motion between all pairs of successive frames were
computed using 1) the BCCE only (with measured depth),
2) the DCCE only, and 3) both constraints together. In ad-
dition, for each of these cases, parameters were computed
using both the perspective and orthographic versions of the
constraints. When combining the intensity and depth con-
straints into a single linear system, we chose the depth con-
straint weighting factor, λ, to be the ratio of the mean mag-
nitudes of the It and Zt values. This helps to equalize the

contributions of the two sets of constraints toward the least-
squares solution.

To evaluate the utility of measured depth and the DCCE,
we also implemented a motion estimation system which
uses only the BCCE and a simple, generic depth model, as
in the class of methods which include [2, 3, 4]. The partic-
ular form of generic depth model that we used was a plane
parallel to the camera image plane, initialized to be at the
depth of the object being tracked. We used this system to
compute a fourth set of motion parameters for all of the
synthetic sequences, according to both the orthographic and
perspective versions of the BCCE.

For each pair of frames, the image support region for
computation of motion parameters was taken to be, as a first
pass, the intersection of the sets of pixels in each frame for
which depth is non-background and for which all spatial
derivatives do not include differences with background pix-
els. However, because sampling and object self-occlusion
(e.g. of the neck by the chin, in our sequences) creates large
depth gradients which do not remain consistent with object
pose during motion, we found it helpful to eliminate from
the support map all pixels for which the magnitude of the
depth gradients exceeded the mean magnitude by more than
several standard deviations.

The first synthetic sequence begins with the face oriented
toward the camera. The face then makes a 40 degree ro-
tation downward about the X-axis over the course of 35
frames (≈ 1 degree per frame), and returns to the starting
position via the opposite rotation in the next 35 frames. The
next 70 frames consist of the same rotation about the Y-axis,
and the final 70 frames contain the same rotation about the
Z-axis. The first two panels of Figure 1 show the intensity
and depth images of the starting position for the sequence,
while the third, fourth, and fifth panels show intensity im-
ages of the sequence’s three extrema of rotation.

Figure 2 shows the three computed rotational pose para-
meters plotted against time over the course of the sequence,
using each of the four methods described above, according
to the perspective forms of the constraint equations. All ro-
tational parameters are expressed in terms of Euler angles.



The ground truth for the parameters, shown as solid lines in
each graph, is the same for each graph: the leftmost solid
triangle represents the steady rise in the X-axis rotational
parameter from zero to 40 degrees and back to zero, the
middle triangle represents the identical sequence of changes
in the Y-axis rotational parameter, and the rightmost trian-
gle represents these same changes in the Z-axis parameter.
Only one Euler angle should be non-zero at any given time.

The results obtained using only the BCCE with the
generic shape model indicate that this method does not per-
form well for out-of-plane rotations (i.e. rotations about
the X-axis and Y-axis). All three Euler angles are non-
zero throughout these rotations, and the translational para-
meters (not shown) were also very inaccurate. The second
graph, on the other hand, shows that simply adding mea-
sured depth to the BCCE greatly improves the pose estima-
tion. The third graph shows that using the DCCE instead of
the BCCE improves the estimation even further. The fourth
graph shows that the best results of all are obtained by us-
ing the BCCE and DCCE together. The accumulated error
at the end of the sequence is quite small despite very large
rotations of a rather complex (and incomplete) object.

The second synthetic sequence examines translation in
depth, which causes difficulties for many pose and motion
algorithms. The artificial face again begins the sequence
oriented toward the camera, as shown in the first two pan-
els of Figure 1, then translates steadily and directly away
from the camera to the extreme position shown in the right-
most panel of this figure, and finally returns at the same
speed to the starting position. The distance between the ex-
treme positions of the face was approximately three times
the width of the face model, with the extreme farthest posi-
tion being about twice as far from the camera as the starting
position. The translation between the two extreme positions
took place in 150 frames.

Figure 3 shows the three computed translational para-
meters plotted against time using each of the four meth-
ods described above, according to the perspective forms of
the constraint equations. The results assume the Z-axis is
pointing toward the camera. The ground truth for the para-
meters, shown as solid lines in each graph, is the same for
each graph: both the X- and Y-translation is zero through-
out the sequence, while the Z-translation forms a triangle
indicating its steady decrease to a position far behind the
starting point and its subsequent increase back to the start-
ing point. Again, the results using only the BCCE with a
generic depth model indicate that this method does not per-
form well for translation in depth. Its estimates for the X-
and Y-translations are quite noisy, while the Z-translation is
greatly under-estimated. As for the first synthetic sequence,
the graphs for the BCCE with measured depth and for the
DCCE alone show significantly improved results, while the
graph for the joint use of the BCCE and DCCE shows the

best results of all, with very little accumulated error at the
end of the sequence.

In general, orthographic projection results for the two
sequences were slightly worse than the perspective results,
due to the error in the camera model assumption. Of course,
from the orthographic BCCE (15) it is apparent that trans-
lation in depth cannot be recovered using only the BCCE,
even with accurate depth. We indeed found this shortcom-
ing in our results for the second sequence.

4.2 Real Image Sequence
To test our methods on real data, we recorded an approx-

imately 300 frame (10 second) sequence of registered in-
tensity and depth images using our real-time stereo imaging
hardware. The image sequence consists of a person initially
facing the camera and then rotating her head toward each of
the four image corners in succession. Our goal was to track
the motion of the person’s head.

As for the synthetic sequences, we computed motion es-
timates using 1) the BCCE only with a generic shape model,
2) the BCCE only with measured depth, 3) the DCCE
only, and 4) the combined BCCE and DCCE with mea-
sured depth. We used the perspective forms of the constraint
equations throughout. The weighting factor λ was chosen
as described for the synthetic sequences. Image support re-
gions were computed automatically by selecting large con-
nected foreground regions with smoothly changing range
data. This precludes pixels which have an uncertain depth
value, typically due to occlusion or low contrast. Also, un-
like in the synthetic sequences, real depth imagery is noisy,
and we found it advantageous to smooth the depth images
prior to computing gradients.

Figure 4 shows still frame images from the sequence
overlaid with graphically rendered axes indicating our pose
estimates. The original still frames have been greatly light-
ened to allow the axes to be seen more easily. For the first
frame, shown in the top image in the figure, the axes are ren-
dered according to our camera model so as to appear to be
a few inches in front of the person’s nose. Two of the axes
lie in a plane parallel to the image plane, while the third
(the darkest axis) is directed at the camera. We updated the
position and orientation of the rendered axes for successive
frames according to the recovered motion estimates. There-
fore, if our pose tracking algorithm works well, we should
expect the axes to continue to appear to be rigidly affixed
a few inches in front of the nose as the person moves her
head. The middle row of images in the figure shows pose
estimates obtained at several extreme positions in the se-
quence, using only the BCCE with a generic shape model.
The bottom row of images in the figure shows the results
obtained for the same frames using the BCCE and DCCE
together with measured depth.

The estimates in the bottom row appear to be qualita-
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Figure 2. Comparison of ground truth (solid) with computed perspective rotation parameters (see legend) for synthetic
rotation sequence, in terms of Euler angles (in radians). Left: BCCE only with planar depth model; Middle-left: BCCE only
with real depth; Middle-right: DCCE only; Right: Both constraints used.
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Figure 3. Comparison of ground truth (solid) with computed perspective translation parameters (see legend) for synthetic
Z-translation sequence. Left: BCCE only with planar depth model; Middle-left: BCCE only with real depth; Middle-right: DCCE
only; Right: Both constraints used.

tively correct in all frames. The final frame shows that this
method accumulated very little error over the course of the
300 frame sequence. The estimation also showed very good
stability during non-rigid motions, specifically opening and
closing of the mouth. In contrast, the results in the mid-
dle row of images show that much greater inaccuracy is ob-
tained by using only the BCCE with a generic shape model.
This method was not able to cope with even the moderate
out-of-plane rotations exhibited in this sequence, as it pro-
duced significant spurious translation and exaggerated rota-
tion. For example, the second and fourth frames in the mid-
dle row indicate that the head has rotated by over 90 degrees
toward the person’s right, while the actual rotation is less
than 45 degrees. In addition, the last frame in the middle
row, showing axes that are far from their initial frame posi-
tion, reveals that the method accumulated a large amount of
error over the course of the sequence.

Results using either the BCCE or the DCCE alone, with
measured depth in each case, were not as good as those ob-
tained using the combined constraints. The DCCE alone
performed more poorly, producing qualitatively correct but
very noisy estimates. The noise in the estimates is likely
a result of the significant noise in the depth images them-
selves.

The quality of the estimates obtained by using the combi-

nation of the BCCE and DCCE is much more easily judged
by viewing the movies of the above results, which can be
found at http://www.interval.com/papers/1999-006. This
site also provides result movies for other real and synthetic
sequences, as well as a color version of this paper (which
allows most of its figures and graphs to be understood more
easily).

5 Discussion and Conclusions
We have demonstrated the ability of our method to ac-

curately measure classes of motion, such as translation in
depth, rotation out of the image plane, and large angle rota-
tion, which have caused difficulties for most previously de-
scribed techniques. We have successfully applied the tech-
nique to real imagery, and have shown that in practice, the
linear brightness and depth constraints complement each
other. Finally, we were able to track motion with very little
cumulative error over long video sequences (up to 10 sec-
onds, or 300 frames).

One conclusion that we can draw from the above ex-
periments is that the use of the combined intensity and
depth constraints outperforms the use of either indepen-
dently. This occurs not only because the two constraints to-
gether provide more data upon which to base estimates, but
also because each type of constraint helps offset the short-



Figure 4. Pose estimation results for real sequence of approx 300 frames (about 10 seconds). Top image: Initial frame in
sequence, with result pose axes in initial position. Middle image row: Axes indicate results obtained using BCCE with planar
depth for select frames later in sequence. Bottom image row: Results for the same frames using joint BCCE and DCCE with
measured depth.

comings of the other. For example, the DCCE is relatively
insensitive to photometric effects, while the BCCE typically
deals with data that is less noisy and has fewer undefined
regions. Another conclusion we can reach is that the sub-
stitution of measured, frame-rate depth for generic object
shape models can substantially improve on pose estimation
methods which use only the BCCE or variations on it. The
same is likely true for methods which estimate object shape
and motion together.

Our method lends itself nicely to real-time systems, in
that it is a linear method which may be solved efficiently via
least-squares. Another advantage of our method is that, be-
cause it is a differential tracker that updates its shape model
of the object over time, it can track object pose through dra-
matic changes such as those shown in the synthetic head
rotation sequence. In fact, we should expect the method to
perform reasonably well in tracking an object of arbitrary
shape through full 360 degree rotations, assuming small
inter-frame motions.
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