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ABSTRACT

An explicit three-dimensional representation is constructed from feature-points extracted from a sequence of images
taken by a moving camera. The points are tracked through the sequence, and their 3D locations accurately
determined by use of Kalman Filters. The ego-motion of the camera is also solved for.

1 INTRODUCTION

Understanding three-dimensional (3D) scene geometry
from a sequence of images requires careful selection
and management of the information they offer. Many
techniques are conceivable, offering different trade-offs
between complexity of implementation and detail of
3D scene representation. A suitable technique for
computer vision must provide a compact
representation, which is robust and easy to update as
further information is acquired from subsequent images.
The approach we have taken is based on the
REV-graph (Region, Edge, Vertex), which works on
the edge and point (ie. vertex) information contained
within an image. This provides a list-based
representation which meets the above criteria, and
which maintains 3D information for features closely
related to those existing in the real world. The
REV-graph can be divided into two parts: the
Geometry, which contains all the metrical information
(eg. position and orientation); and the Topology,
which contains information concerning connectivity
of points, lines and surfaces. This paper is concerned
solely with the Geometry part of the REV-graph.

In a sequence of images, each observation of an image
feature (eg. a point, edge or region) provides data on
the three dimensional analogue of the feature. This
data permits the metrical representation of the 3D
feature to be refined. An example of a (non-optimal)
refining procedure is that of estimating the range of a
point-feature by triangulation between successive pairs
of images in the sequence, and then forming the
average 3D position. The refining procedure that we
have developed is based on Kalman Filters, and thus
makes optimal use of all the observations.

The state space of our Kalman Filter is the 3D location
of points seen in the images. The main advantage of
using 3D points is that they are uncoupled: positional
error in one point does not affect any other. If N
points are being tracked, then the Kalman Filter
separates into N three-dimensional state spaces,
instead of consisting one 3N-dimensional state space.
The Geometry part of the REV-graph could also have
included, for example, straight lines and planer
surfaces [Porril 1987, Ayache,1987]. Unfortunately,
these would couple the terms in the state space, and
would result in a high-order system. In addition, the
variables describing straight lines and planes are
complexly related to the observations, and suffer from
singularities (eg. when the length of a line is zero,
and when a plane passes through the origin).
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The processing involved with the Geometry part of the
REV-graph is shown as a flow-chart in Figure 1. The
initiation of points into 3D from the first two images
processed we call the Bootstrap Processing.
Successive processed images are used to determine the
camera motion, to refine the estimated positions of 3D
points, and to instantiate new points into the
representation. These processes comprise the Run
Mode Processing. In Figure 2 are shown (in raster
order) the 16 images comprising the sequence.

FIRST TWO IMAGES

¥

BOOTSTRAP
PROCESSING

¥

NEXT IMAGE

¥

POINT MATCHING

¥

EGO-MOTION

¥

POINT
CLASSIFICATION

¥

POINT
POSITION UPDATE

¥

3D INSTANTIATION
OF NEW POINTS

1

Figure 1. Processing Flowchart.

2 BOOT-STRAP PROCESSING

The Bootstrap Mode of processing is used to initiate
the 3D representation of points. This uses the
matched feature-points from the first two images of the
sequence to estimate the depth of these points, and
hence to provide each with an initial 3D instantiation.
Details of this computation are given in [Harris,1987].
Feature-points from two images are extracted, and
matched on grounds of image-plane proximity and
attribute similarity. These matches are then used to
estimate the relative camera motion between the two
camera locations. This motion is a siz—\c}ién}ensional
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Figure 2. The 16 images of the widget comprising the
sequence.

quantity, representing both vector translations and
rotations of the camera, and is generally referred to as
the "Ego-Motion". The Ego-Motion algorithm may
fail, or the resulting motion estimate may be too
ill-conditioned, because, for example, the camera
translation may be too small. In this case, Boot
Mode processing will be attempted on another pair of
images.

For each of the matched points, the Ego-Motion
algorithm provides an estimate of depth relative to the
camera, together with a figure-of-merit indicating its
3D consistency. Points with a low figure-of-merit can
arise from erroneous matches, and from the
obscuration of a distant body by a closer body
(obscuration points). Such points are discarded. The
remaining points are instantiated in 3D, and this
enables subsequent run-mode processing to be
performed.

Each instantiated point is represented by a probability
distribution function (PDF), indicating the likelihood
that the point actually exists at a particular position
in space. On the grounds of mathematical tractability,
we have chosen to work with multivariate normal
PDFs, specified by a centroid (ie. most probable)
position vector, and a 3x3 covariance matrix. As
surfaces of constant probability density are ellipsoidal
in shape, we generally refer to the PDFs as ellipsoids.
These ellipsoids are situated in a global coordinate
system, the origin of which is not necessarily at
either camera location.

The initial size and shape of an ellipsoid depends on
its range and the relative camera translation between
the two Bootstrap images. In general, there will be
little angular error associated with a matched point,
but much radial error. This results in ellipsoids which
are elongated towards the cyclopian camera position
(ie. halfway between the two actual camera positions).
These Bootstrap ellipsoids are shown in Figure 3, as
seen from the fourth camera location, and the 4
standard deviation surfaces are shown.
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Points which are unmatched, or have been otherwise
discarded, are retained for possible later use - these
points are said to be in limbo. If, on a subsequent
image, matching can be achieved to a point in limbo,
then this point is instantiated into 3D with an
appropriately sized and positioned ellipsoid.

Sufficiently elderly points in limbo are discarded
because the validity of their matching attributes
decreases in time (ie. with increasing camera motion),
and this makes them prone 1 incorrect matching.
Also, the number of points in limbo cannot be
allowed to become too great, otherwise incorrect
matching becomes too common.

Figure 3. The Bootstrap ellipsoids as seen at the
fourth camera location.

3 FEATURE-POINT MATCHING

The processing of each new image in the sequence
starts with the extraction of feature-points. To match
these points to previously instantiated ellipsoids, we
make use of an estimate of the location and attitude of
the camera (called the camera ego-motion). The
location of the camera is specified by the vector
displacement, t, of the pin-hole of the camera from a
global coordinate origin. The camera attitude is
defined by the rotation of the camera away from a
reference position, in which the optical axis and
image axes are aligned with the global cartesian axes.
This rotation is specified by the vector 8, whose
direction is the axis of rotation, and whose magnitude
is the angle of rotation.

Given an estimate of the camera ego-motion, the
perspective projection (in this camera position) of
each ellipsoid is computed, forming an ellipse on the
image-plane. Broadening each ellipse by a few pixels
to cater for error in observed feature-point positioning
and error in the estimated ego-motion, defines a search
region in which a candidate points for matching must
lie. The selection of one of these candidates as the
correct match is performed by inspection of the
feature-points grey-level attributes.



4 EGO-MOTION DETERMINATION

In the Run Mode, it is necessary to determine the
ego-motion of the camera for each new image. This is
performed by finding the ego-motion that brings the
observed image-plane positions of the matched
feature-points into alignment with the projection of
the ellipsoids. The ego-motion must be determined
before the ellipsoids can be updated, as we do not
assume that the a priori estimates of the camera
motion are of sufficient accuracy. However, the a
priori estimates of camera motion may be made use of
as regularising terms in the case where the image data
alone would result in ill-conditioning.

Consider a hypothesised camera ego-motion, specified
explicitly by the six dimensional vector, q = (8.,t).
We wish to align the hypothesised motion with the
true camera ego-motion. To do this, the ellipsoid
PDFs are first projected into the image-plane of the
hypothesised camera, resulting in PDFs on the
image-plane. These projected PDFs are modified
appropriately by the PDFs of the observed
feature-points, to take account of the accuracy of
positioning of the observed feature-points. The
goodness-of-fit, E(q), of the hypothesised camera is
defined to be the sum of the squared Mahalanobis

distance for each of the matched points.
Mathematically, this is :
N
E@=X (re-n'@1T m@ [r-r@]
k=1
where
N is the number of matched points,

ry s the observed image-plane position of the k'th

matched feature point,

ri(q) is the position of the k'th 3D feature-point

projected on to the image-plane of the camera
with hypothesised ego-motion q,

ny (q) is the covariance matrix of an ellipsoid,

projected onto the image-plane of the camera
with hypothesised ego-motion g, and modified

by the observed PDF.

Minimising E with respect to the ego-motion
parameters, ¢, results in the ego-motion estimate of
highest joint probability for all the matched points
(ie. the most likely estimate). This minimisation is
performed iteratively, using either the
Newton-Raphson or Steepest Descent techniques,
depending on which performs best at each step of the
iteration. At each step of the iteration, a camera
ego-motion is hypothesised, and a new (hopefully
better) estimate is calculated. The minimisation
techniques require explicit evaluation of the zeroth,
first and second differentials of E with respect to q,
and these are derived analytically.
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Incorrect matching is overcome by use of robust
weighting, which adaptively and gracefully reduces the
contribution of poorly fitting points in the above
summation. No use is made of a priori ego-motion
estimates except for initiating the iteration loop.
This is primarily because of the very high accuracy of
the visual data, but also because it aids the formation
of a self-consistent 3D representation

5 POINT POSITION UPDATE

Each time an instantiated feature-point is observed and
matched, a more precise estimate of its 3D position is
obtained. This is because the new observation
provides further information relating to the 3D
position of the point, which enables its PDF to be
reduced in size. As an analogy, this process may be
thought of as each point being associated with a
volume in which it is believed to reside, and this
volume being pared down by each new view of the
point. The updating of the ellipsoids with the new
observations is performed by Kalman Filters [Gelb],
which makes optimal use of the information.

An observed feature-point will not in general be
located precisely at the position of the projection of
its causative 3D feature: associated with the observed
feature-point will be a positional uncertainty. At a
minimum, this will be a circle of radius half a pixel
(since feature-points are situated at integral pixels),
but a more meaningful expression for the uncertainty
could be derived from, say, the size and shape of the
local auto-correlation function. As before, we shall
write the positional uncertainty as a Normal PDF
centred on the observed position, and with an
appropriate covariance matrix.

The observation of the feature-point provides no
information about the range of the point, except that
it is in front of the camera. Hence we can express the
three dimensional PDF of the observation by a
function which has surfaces of equal probability which
are nested elliptical cones with their common apex at
the pinhole of the camera. The cross-section of the
cone is given by the aforementioned two-dimensional
covariance matrix.

The current observation may be used to update the
ellipsoid by forming the joint PDF of the conical
PDF, and the previous estimate of the ellipsoid, and
then normalising for unit probability. This, however,
would result in a non-Normal PDF (ie. not an
ellipsoid), because one of the constituent PDFs (the
conical one) was not itself Normal. Normality is
regained by approximating the conical PDF by one
that is cylindrical, possessing the same cross-section
as the cone at the range of the ellipsoid. The centroid
and covariance of the resultant ellipsoid are easily
calculated.

This approach has problems with 3D points that are
distant; their ellipsoids fail to reach to infinity, where
the point could lie. The use of ellipsoids will thus
introduce a nearness bias for distant points. This
problem is overcome by working in Disparity Space,



the axes of which are the current image-plane
coordinates and the current reciprocal depth. In
Disparity Space, the PDF function of the observed
feature-point is an exact elliptical cylinder, with
cross-section equal to that of the image-plane PDF.
The transformation of the ellipsoid to and from
Disparity Space is not exact, but is a good
approximation when the ellipsoid is small. The joint
PDF is calculated as before.

Working in the Disparity Space of the i'th camera
location, the operation of the Kalman Filter is as
follows. Write the centroid and covariance of an
ellipsoid before incorporation of the data from the i'th
image, respectively as R; and C;. The observed
feature-point is located in the image at r'=(x'y"), with
observation covariance ¢' (a 2x2 matrix). These are
extended to Disparity Space as r (a 3-vector) and ¢ (a
3x3 matrix) by appropriately inserting zeros in the
disparity coordinates, thus:

1o
c'1=

oT o
r=(r, 0)

After incorporation of the observation, the centroid
and covariance of the ellipsoid, R;,; and C; . are

given by:

(Ci‘1 +cl )'1

Ci+1

Ris1 = Cist (C71R; + ¢1r)

6 POINT CLASSIFICATION

Observed image points can be divided into two
classes: those that originate from actual 3D events
(such as corners and surface markings), and
obscuration points which arise from the conjunction
of a pair of edges as seen from a particular camera
viewpoint. The obscuration points do not in general
correspond to a consistent 3D position, and do not
directly give any useful 3D information. Indeed, it is
necessary to exclude such points from the ego-motion
calculation, as they are a major source of spurious
information. Points are classified as arising from
obscurations if their cumulative positional inaccuracy
becomes excessive. Points with positional inaccuracy
near the threshold are exculded from the ego-motion
calculation, though their positions continue to be

updated.

7 RESULTS

Processing the sequence of images in the Run Mode
results in a point representation that rapidly settles
down to a solution. Correctly located points end up
with tight ellipsoids, whereas spuriously matched
points result in large elongated ellipsoids. This is
illustrated by Figure 4, showing the ellipsoids after
processing all 16 images of the sequence. The
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spurious (large) ellipsoids can easily be identified and
removed by noting the number of images that
contributed to their existence.

Figure 4. The ellipsoids after processing all 16
images in the sequence.

The Bootstrap estimate of camera motion (used to
regularise the Bootstrap ego-motion) has only needed
to be accurate enough to ensure that matching is
achieved. The determination of ego-motion is
generally very stable and works well even with only a
few matched points, provided they adequately span the
space, both across the image and in depth.

In conclusion, the processing for the Geometry part of
the REV-graph has shown itself to be both stable and
accurate, and to be able to usefully process image
sequences of arbitary length.
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