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Abstract
The 3D printing is described of a complete and portable system comprising a batch injection analysis (BIA) cell and an 
electrochemical platform with eight sensing electrodes. Both BIA and electrochemical cells were printed within 3.4 h using 
a multimaterial printer equipped with insulating, flexible, and conductive filaments at cost of ca. ~ U$ 1.2 per unit, and their 
integration was based on a threadable assembling without commercial component requirements. Printed electrodes were 
exposed to electrochemical/Fenton pre-treatments to improve the sensitivity. Scanning electron microscopy and electrochemi-
cal impedance spectroscopy measurements upon printed materials revealed high-fidelity 3D features (90 to 98%) and fast 
heterogeneous rate constants ((1.5 ± 0.1) ×  10−3 cm  s−1). Operational parameters of BIA cell were optimized using a redox 
probe composed of [Fe(CN)6]4−/3− under stirring and the best analytical performance was achieved using a dispensing rate 
of 9.0 µL  s−1 and an injection volume of 2.0 µL. The proof of concept of the printed device for bioanalytical applications 
was evaluated using adrenaline (ADR) as target analyte and its redox activities were carefully evaluated through different 
voltammetric techniques upon multiple 3D-printed electrodes. The coupling of BIA system with amperometric detection 
ensured fast responses with well-defined peak width related to the oxidation of ADR applying a potential of 0.4 V vs Ag. The 
fully 3D-printed system provided suitable analytical performance in terms of repeatability and reproducibility (RSD ≤ 6%), 
linear concentration range (5 to 40 µmol  L−1; R2 = 0.99), limit of detection (0.61 µmol  L−1), and high analytical frequency 
(494 ± 13  h−1). Lastly, artificial urine samples were spiked with ADR solutions at three different concentration levels and the 
obtained recovery values ranged from 87 to 118%, thus demonstrating potentiality for biological fluid analysis. Based on the 
analytical performance, the complete device fully printed through additive manufacturing technology emerges as powerful, 
inexpensive, and portable tool for electroanalytical applications involving biologically relevant compounds.

Keywords 3D printing · Fused deposition modeling · Wall-jet cell · Carbon black electrodes · Multiplex system · 
Adrenaline

Introduction

The technological revolution of digital simulation and 
computer-aided manufacturing has enabled the popu-
larization of 3D printing [1–3]. Based on the additive 
manufacturing methods, 3D printing makes possible the 
construction and customization of objects in a single step 
[4–6]. One of the most popular 3D printing technologies 

is known as fused deposition modeling (FDM), which 
promotes the printing of desirable structures at coordi-
nates previously selected from digital projects in com-
puter-controlled software [7]. 3D-printed objects are cre-
ated via layer-by-layer deposition of filaments and the 
device completion time is directly linked to layer thick-
ness and surface finalization. This technology offers very 
attractive advantages such as low-cost instrumentation, 
reproduction fidelity, operational simplicity, and pos-
sibilities of depositing multiple materials using a wide 
variety of filaments [8, 9]. In the last years, filaments 
including materials based on metals, polymers, and car-
bon with relevant chemical, mechanical, and electrical 
properties such as low toxicity, flexibility, and conduc-
tivity have become commercially available [10–12].
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Advances in 3D printing technology have contributed 
to the analytical chemistry including developments from 
sample preparation to detection [13–18]. Examples of min-
iaturized devices for solid-phase extraction [19], solution 
mixing [20], droplet generation [21], mass spectrometry 
interfacing [22], and analytical separations [23, 24] as well 
as colorimetric [25] and electrochemical sensors [10] have 
been successfully reported in the last years. Electrochemical 
sensors have been by far the most popular analytical tools 
developed through 3D printing due to low instrumental 
requirements and satisfactory analytical performance as well 
as availability of different conductive filaments [11, 12, 16, 
26]. Their use in conjunction with flow and bath injection 
analysis (BIA) enables reproducible injection volumes, low 
interference involving sample evaporation, efficient surface 
renovation, multiple sequential analyses, and fast responses 
[27–29]. When compared to flow injection analysis, BIA 
systems associated to commercially available electronic 
micropipettes have ensured better performance once they do 
not present problems commonly seen in flow-based systems 
like solution leakage and presence of bubbles [28, 30–32].

Regarding the electrodes often integrated into BIA cells, 
many studies reported in the literature make use of conven-
tional electrodes [27, 29, 33–35]. Normally, these electrodes 
are relatively large and bulky, making difficult their use for 
on-site applications [28, 36, 37]. In 2014, Tormin et al. [38] 
reported the first study employing screen-printed electrodes 
(SPE) in the BIA system aiming to minimize the mentioned 
problems. In their study, the analytical platform was asso-
ciated to wall-jet approach and the authors successfully 
demonstrated the electrochemical detection of diclofenac, 
hydrogen peroxide, and heavy metals.

In the last 5 years, different authors have explored 3D 
printing to create printed BIA cells [39–41] integrated with 
commercial [32] or 3D-printed electrodes [40], such as ref-
erence (RE), auxiliar (AE), and working (WE) electrodes 
using filaments composed of acrylonitrile–butadiene–sty-
rene (ABS), polylactic acid (PLA), and PLA doped with car-
bon black (CB/PLA) or graphene [17, 42]. Recently, Richter 
et al. [41] designed an interesting architecture including a 
cell body containing RE, AE, and WE. These printed seg-
ments were constructed using a low-cost desktop printer and 
two filaments (PLA and CB/PLA). The performance of the 
complete sensing platform was evaluated through voltam-
metric measurements of dopamine, as a model analyte. How-
ever, a non-3D-printed component as a rubber-made O-ring 
was needed to avoid problems associated with leakage and 
delimitation of the WE area [41, 43]. Also, to the best of our 
knowledge, the current state-of-the-art related to 3D-printed 
electrochemical sensors does not include analytical systems 
with multiple integrated electrodes.

Here, we report for the first time the fabrication of a 
3D-printed BIA cell integrated with multiple sensing 

electrodes in a single step. The proposed device was fully 
constructed through a multimaterial desktop printer and its 
segments were assembled/disassembled through a threading 
strategy. The 3D-printed cell was integrated with eight CB/
PLA electrodes (RE, AE, and WE) and activated through 
the combination of Fenton degradation followed by electro-
chemical oxidation, as reported recently [44]. As proof of 
concept, the integrated electrodes were modified with gra-
phene oxide (GO) and glucose oxidase (GOx). Moreover, 
multiple electrochemical techniques were explored to evalu-
ate the redox activities of adrenaline (ADR). The sensing 
platform associated to amperometric detection (BIA-AD) 
was employed to successfully measure ADR in artificial 
urine samples. ADR substance is neural and hormonal from 
catecholamine group. Their presence in the human organism 
is associated to important biological functions as vasocon-
striction, heart rate, and regulator of blood pressure [45–47].

Experimental

Chemicals and materials

Adrenaline, acetic acid, ammonium iron(II) sulfate hexa-
hydrate, boric acid, graphene oxide (GO), glucose oxi-
dase (Aspergillus niger, 181 U  mg−1) (GOx), hydrochloric 
acid, hydrogen peroxide, potassium chloride, phosphoric 
acid, potassium hexacyanoferrate(II) trihydrate, potassium 
hexacyanoferrate(III), sodium hydroxide, sodium phosphate 
dibasic, sodium phosphate monobasic, and paracetamol were 
purchased from Sigma-Aldrich (Saint Louis, MO, USA) and 
used as received.

Stock and standard solutions were prepared using 
ultrapure water processed through a water purification sys-
tem (Direct-Q®3, Millipore, Darmstadt, Germany) with 
resistivity equal to 18.2 MΩ.cm. Non-conductive thermo-
plastic filaments (PLA and PLA-flex) were purchased from 
3DFila (Belo Horizonte, MG, Brazil). Conductive filament 
model proto-pasta CB/PLA was received from Protoplant 
(Vancouver, BC, Canada). A portable LED cabin (7 W) 
and silver ink pen were purchased from Kiss NY Pro (New 
York, USA) and MG Chemicals (Burlington, ON, Canada), 
respectively.

Instrumentation

Electrochemical experiments were realized using a potentio-
stat/bipotentiostat model μStat 400 from DropSens (Oviedo, 
Spain) and a PGSTAT-100 N potentiostat from Metrohm-
Autolab (Utrecht, Netherlands). The BIA cell was combined 
with an electronic micropipette model E3 and Combitips® 
advanced (100 µL) purchased from Eppendorf (Hamburg, 
Germany). The distance from the electronic micropipette 
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tip to the electrochemical cell was set at ~ 2 mm [21, 23, 
28]. All electrochemical experiments were realized at room 
temperature (25 ± 2 °C).

3D printing, integration, and activation of sensing 
electrodes

The BIA cell layout containing eight integrated electrochem-
ical sensors was designed using SolidWorks 2014 software 
and printed through a multimaterial desktop 3D printer 
model open-source i3MK2 from Prusa Research (Prague, 
Czech Republic). Each electrochemical sensor was designed 
in a conventional three-electrode arrangement including 
working, reference, and auxiliary electrodes. The design 
and assembling of individual pieces involved in the fully 
integrated 3D-printed BIA cell are summarized in Fig. S1, 
available in the electronic supplementary information (ESI). 
For the printing process, the STL file was converted into 
a GCODE file through PrusaSlicer software. The manu-
facturing method was realized based on the FDM process 
[10] setting nozzle and bed temperatures at 230 and 60 °C, 
respectively.

The assembling of the 3D-printed cell segments was 
based on a threadable strategy, as illustrated in Fig. 1A and 
Video S1. First, segments I and II are threaded forming the 
region to insert a micropipette tip. Based on this component, 
it is possible to select the best distance from the syringe tip 
to WE. Posteriorly, the parts III, IV, and V are mounted, 
forming the fully 3D-printed cell integrated with eight elec-
trochemical sensors. It is important to highlight that the seg-
ment IV (PLA-flexible) is pressured between parts III and V 
as a sandwich type, ensuring a reversible sealing.

To select one 3D-printed sensor, the micropipette tip was 
inserted in the 3D-printed cell and segments (i) and (ii) were 
then aligned. This mechanism is based on clockwise rotation 
and allows choosing eight 3D-printed sensors on the same 
analytical platform (Fig. 1B).

Afterwards, the surfaces of all 3D-printed electrodes 
were simultaneously polished using a sanding sheet with 
grit numbers 280 and 1500 impregnated into a 3D-printed 
piece. The procedure for polishing the electrode surfaces is 
schematized in Fig. S2 (see ESI).

For improving the electrochemical performance, the 
surfaces of multiple electrodes were pre-treated through an 

Fig. 1  Scheme showing A the 
assembling of 3D-printed BIA 
cell with integrated electrodes 
and B the resulting integrated 
platform. In A, the assembling 
shows (I) micropipette adaptor, 
(II) top cover, (III) cell body, 
(IV) flexible printed ring, and 
(V) cell body with multiple 
integrated electrodes. In B, it 
is demonstrated a top view of 
3D-printed cell and adopted 
mechanism to select the 
electrodes based on alignment 
between parts (i) and (ii)
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electrochemical/Fenton method, described elsewhere [44]. 
Next, reference electrodes were painted with Ag ink, thus 
creating pseudo-reference electrodes (p-RE), as illustrated 
in Fig. S3.

Electrochemical measurements using 3D‑printed 
device

Operational conditions

The optimization of operational conditions includ-
ing stirring, dispensing rate, and injection volume was 
realized using a redox probe composed of 1 mmol  L−1 
[Fe(CN)6]4−/3− prepared in 0.1 mol  L−1 KCl. An aliquot 
of 40 mL of supporting electrolyte (0.1 mol  L−1 KCl) was 
inserted into the BIA cell to realize the electrochemical 
experiments based on amperometry applying a detection 
potential of 0.25 V (vs CB/PLA). Electrochemical measure-
ments in the absence and presence of stirring at 80 rpm were 
performed. The dispensing rate and injection volume were 
optimized in the range between 8.5–28 µL  s−1 and 1–5 µL, 
respectively. Both parameters were studied keeping constant 
stirring at 80 rpm.

The stability of the p-RE was compared to a commercial 
RE composed of Ag/AgCl. For this purpose, electrochemical 
experiments were carried out using paracetamol (PAR) as a 
model analyte. Electrochemical experiments were realized 
in the presence of 1 mmol  L−1 PAR prepared in two electro-
lytes composed of 0.1 mol  L−1 Britton-Robinson buffer (pH 
2 to 10) and KCl (0.01 to 2 mol  L−1). Cyclic voltammograms 
(CV) were recorded in the potential window between 0.0 and 
1.2 V at a scan rate of 50 m  Vs−1.

Electrochemical measurements

The BIA cell with eight integrated electrodes was used 
for multiple electrochemical experiments. Freshly acti-
vated electrode (#1), GO/activated electrode (#2), and 
GOx/activated electrode (#3) were dedicated for electro-
chemical impedance spectroscopy (EIS) measurements 
(frequency range =  105 to  10−1  Hz, amplitude poten-
tial = 20 mV, and open-circuit potential = 0.23 V) in the 
presence of [Fe(CN)6]4−/3− prepared in 0.1 mol  L−1 KCl. 
The modification of integrated electrodes through GO and 
GOx was realized based on ex situ protocol adapted to 
recent studies [48, 49] (additional information is available 
in the ESI). These experiments were performed to esti-
mate the electron transfer resistance (Rct) value and heter-
ogeneous electron transfer rate constant (Ks). In the same 
way, freshly activated electrodes labeled as #4, #5, #6, 
#7, and #8 were employed to evaluate the redox activities 
involving the biomolecule ADR. These experiments were 
performed through different electrochemical techniques 

including CV (window potential =  − 1.0 to 1.0 V and 
scan rate = 0.05 V); linear sweep voltammetry (LSV) 
(window potential = 0.0 to 0.8 V and scan rate = 0.05 V); 
square wave voltammetry (SWV) (window potential = 0.0 
to 0.5 V, frequency = 10 Hz, amplitude = 0.004 V, and 
potential increment = 0.002 V); differential pulse vol-
tammetry (DPV) (window potential = 0.0 to 0.55  V, 
scan rate = 0.05 V  s−1, amplitude = 0.005 V, and modu-
lation time = 30 ms), and amperometry (applied poten-
tial = 0.4 V vs Ag). Lastly, ADR was used as an analyte 
model to investigate the repeatability and reproducibility 
of the proposed 3D-printed BIA cell with integrated mul-
tiple electrodes. All voltammetric experiments were car-
ried out applying the desirable potential vs p-RE.

Adrenaline analysis

The ADR analysis was performed through amperometric 
measurements applying a potential of 0.4 V (vs p-RE) to 
the working electrode (see Video S1). ADR standard solu-
tions were prepared in 0.1 mol  L−1 PBS (pH 7.2) containing 
0.1 mol  L−1 KCl [46]. To realize the recovery study, artificial 
urine samples were spiked with ADR standard solutions at 
three concentration levels (10, 20, and 30 µmol  L−1). For 
this experiment, solutions were prepared at a ratio of 1:1 
(standard solution:artificial urine). The method used to pre-
pare the artificial urine samples was adapted from a protocol 
described elsewhere [50]. All experiments were performed 
under optimized conditions.

Characterization

The fully 3D-printed sensing platform was characterized by 
scanning electron microscopy (SEM) using a microscope 
model JSM-6610 from JEOL (Akishima, Tokyo, Japan) via 
secondary electron imaging mode and acceleration voltage 
of 5 kV. The morphological study was realized by captur-
ing images of WE surface, CB/PLA layers integrated into 
the wall from BIA, and interfaces between PLA, PLA-flex, 
and p-RE.

Results and discussion

Fabrication of the 3D‑printed device

The use of 3D printing technology has been widely 
explored in the chemical sciences to manufacture ana-
lytical devices [51, 52]. Through a 3D printer equipped 
with single filaments, it is possible to create robust ana-
lytical systems, such as BIA [40]. Recently, the most 
modern BIA systems have advanced towards complete 
or partially 3D-printed electrode arrays. Richter and 
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Muñoz group, for example, have manufactured multiuse 
3D-printed cells with single RE, AE, and WE based on 
the FDM method [40, 41]. As it is well-known, desk-
top printers equipped with multifilaments allow the 
simultaneous use of conductive, insulating, and flex-
ible thermoplastic filaments, thus offering possibilities 
to create complete analytical devices with integrated 
sensing electrodes.

In this way, the current protocol proposes the print-
ing of a 3D-printed BIA cell combined with multiple 
integrated electrodes. The 3D-printed cell is based on 
wall-jet configuration, and it can be rapidly mounted/
dismounted by exploiting a threadable strategy, i.e., 
without sophisticated instrumentation. Overall, the pro-
posed strategy makes the assembling rapid, practical, 
and simple. In addition, it opens real opportunities for 
allowing multiple routine analyses directly at the point 
of care. The sensing platform is composed of 5 printed 
segments, and it does not require other commercial com-
ponents. Furthermore, it offers the possibility to print 
an entire BIA system with multiple integrated electro-
chemical cells. Each analytical platform was produced 
within 3.4 h at a cost of ~ U$ 1.2.

Morphological characterization

The morphological structure of the PLA, PLA-flex, CB/
PLA, and silver ink painted over RE was evaluated through 
the SEM technique, as summarized in Figs. 2 and S4 (see 
ESI). As it can be seen in Fig. 2, the recorded SEM images 
show the entire circular area of WE (Fig. 2A), the layers of 
CB/PLA materials integrated on the 3D-printed cell wall 
(Fig. 2B), and the activated WE surface (Fig. 2C). The 
3D-printed surface revealed well-defined edges and layers 
with low irregularity levels. The calculated diameter and 
layer thickness values for the WE were 3.55 ± 0.06 and 
0.17 ± 0.02 mm, respectively. These mentioned values were 
compared to the theoretical dimensions (WE, Ø = 3.5 mm; 
thickness = 0.18 mm) and they demonstrated fidelity values 
from 90 to 98%.

Figure 2D and 2E depict SEM images detailing the inter-
face between PLA and PLA-flex as well as the printed sur-
face fully incorporated with Ag ink, respectively. As it can 
be noted in Fig. 2D, the printed surface has also presented 
a good edge definition and the morphology of the p-RE 
(Fig. 2E) was similar to the behavior reported in previous 
studies [41, 53].

Fig. 2  SEM images showing A the geometric area of working elec-
trode, B cross-section detailing the layer-by-layer deposition of elec-
trode material and printed cell wall, C activated surface of work-

ing electrode, D interface between PLA/PLA-flex, and E surface of 
pseudo-reference electrode painted with Ag ink
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Optimization of the 3D‑printed cell operating 
conditions

It is well-known that the performance of BIA cell coupled to 
electrochemical detection depends on operational parameters 
including stirring, dispensing rate, and injection volume. For 
this reason, they were optimized to achieve the best perfor-
mance. All experiments were realized using activated elec-
trodes in the presence of [Fe(CN)6]4−/3− prepared in 0.1 mol 
 L−1 KCl as a redox mediator (Fig. 3). Additional information 
is summarized in Fig. S5 (see ESI).

Considering the achieved data (see additional discussion 
in the ESI), the best analytical performance was reached 
using stirring of 80 rpm, dispensing rate of 9 µL  s−1, and 
injection volume of 2 µL. Therefore, they were kept constant 
for the subsequent experiments.

Electrochemical performance of the integrated 
electrodes

The electrochemical performance of the integrated elec-
trodes was evaluated using PAR solution as a model probe. 
These studies were performed in the presence of PAR pre-
pared in BR buffer at pH values ranging from 2 to 10 and 

in KCl solution (0.01 to 2 mol  L−1). For this purpose, the 
performance of the printed sensor containing p-RE was 
compared to the data obtained using a commercial RE. 
The optimized data for peak potential and Ipa involving the 
PAR oxidation are shown in Figs. S6 and S7 (see in ESI). 
Based on the achieved data, it was possible to observe that 
both cells containing p-RE and commercial RE electrodes 
exhibited satisfactory peak potential responses with rela-
tive standard deviation (RSD) values ranging from 1.6 to 
6.5%. Furthermore, considering the recorded values of Ipa 
associated to PAR oxidation in the presence of different 
KCl concentrations, it has been noticed that voltammetric 
response exploiting p-RE and commercial RE electrodes 
provided RSD values between 6.6 and 10.5%. Based on the 
achieved results, it can be noted that the 3D-printed BIA 
cell integrated with p-RE showed similar electrochemical 
performance when compared to commercial RE [53].

The 3D printing protocol based on FDM technology 
to construct BIA cell with integrated multiple electrodes 
offers affordable characteristics such as the printing of 
electrodes with different carbon-based filaments, also 
allowing their modification with different molecules 
depending on intended applications. Most importantly, 
the use of a BIA cell with multiple electrodes makes 

Fig. 3  Optimization of 
operational conditions of 3D 
printed BIA cell. Ampero-
grams recorded for 1 mmol  L−1 
[Fe(CN)6]4−/3− A without and B 
with stirring (80 rpm). Effect of 
C dispensing rate and D injec-
tion volume on the peak current. 
In A–B, the data were recorded 
using a dispensing rate of 9.0 
µL  s−1 and injection volume of 
2.0 µL. In C and D, the injec-
tion volume and the dispensing 
rate were 2.0 µL and 9.0 µL  s−1, 
respectively. Supporting electro-
lyte: 0.1 mol  L−1 KCl solution. 
All experiments were recorded 
applying 0.25 V vs CB/PLA
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possible analytical applications with high-throughput or 
screening capabilities enabling, for example, sequential 
or multiplexed analyzes [49]. As proof of concept, the 
3D-printed BIA cell with multiple integrated WE was 
evaluated through the modification with GO and GOx [48, 
49] based on chitosan biofilm [48]. Furthermore, the redox 
activities of biomolecule ADR were carefully investigated 
by exploiting different electrochemical measurements 
involving CV, LSW, SWV, DPV, and AD. The summarized 
responses are denoted in Fig. 4.

As demonstrated in Fig. 4A, the activated printed sur-
face in the absence (#1) and presence of GO (#2) and GOx 
(#3) presented distinct semicircle changes on Nyquist plots. 
The diagrams were fitted by a Randles circuit to estimate 
the electron transfer resistance (Rct) values. The achieved 
Rct values for electrodes #1, #2, and #3 were 1.4 ± 0.1, 
3.5 ± 0.1, and 35 ± 2 kΩ (n = 3), respectively. Based on 
the achieved Rct values and through Sluyters and Oomen 
methods [54, 55], the electron transfer rate constant (Ks) 
were estimated for each printed electrode and the calculated 

values for electrodes #1, #2, and #3 were (1.5 ± 0.1) ×  10−3, 
(6.0 ± 0.2) ×  10−4, and (6.1 ± 0.2) ×  10−5 cm  s−1, respectively.

As mentioned above, the Rct and Ks values were drasti-
cally altered when the printed surfaces are incorporated with 
GO and GOx. This impedimetric behavior can be associated 
to impregnation of GO and GOx structures on electrode sur-
face [56, 57]. It is important to mention that the GO/elec-
trode and GOx/electrode are widely used in biological appli-
cations [58, 59]. As denoted in Fig. 4B using the electrode 
#4, the biomolecule ADR demonstrates well-defined peak 
potentials at 0.3 and − 0.2 V vs p-RE, indicating a quasi-
reversible behavior (peak-to-peak separation ~ 500 mV). Fol-
lowing electrodes #5, #6, and #7 (Fig. 4C-E), it is possible 
to see the best redox activity for ADR at a potential range 
from 0.1 to 0.5 V vs p-RE. Next, the electrode #8 was used 
to optimize the ADR oxidation potential and the obtained 
responses are denoted in Fig. S8 (see in ESI).

Figure 4F exhibits the chronoamperograms showing the 
recorded response for the background current before and 
after the injection of a defined volume (2.0 µL) of 50 µmol 

Fig. 4  Electrochemical characterization, study on redox activity, and 
amperogram recorded for ADR using eight integrated electrodes. A 
Nyquist plots recorded on electrodes #1, #2, and #3; B–E voltam-
mograms recorded in the absence and presence of ADR through CV, 

LSV, SWV, and DPV techniques using electrodes #4, #5, #6, and #7, 
respectively; F typical amperogram showing the detection of ADR in 
the 3D-printed BIA-AD cell
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 L−1 ADR solution at optimized potential (0.4 V vs p-RE). 
These results indicated pronounceable faradaic performance 
with well-defined peaks involved in the oxidation of ADR 
catalyzed upon integrated 3D-printed electrode. It is impor-
tant to mention that the optimized detection potential is simi-
lar to recent studies using carbon-based electrodes [60, 61].

Repeatability and reproducibility

Based on the optimized oxidation potential for ADR, the 
repeatability and reproducibility of the proposed 3D-printed 
BIA cell with eight integrated sensors were investigated by 
performing hydrodynamic experiments which were realized 
in inter‐ and intra‐electrodes by successive injection of ADR 
solution (50 µmol  L−1). The obtained results are summarized 
in Fig. 5.

The RSD values calculated for experiments related to 
inter- (n = 8) and intra-electrode (n = 3) comparison ranged 
from 2 to 6%. The variance measurement through ANOVA-
single factor was realized upon 3D-printed BIA cell 
responses exhibited in Fig. 5B (reproducibility study), and 
the obtained F value of 1.30 was lower than the F critical 
value (2.66), suggesting that the multiples integrated elec-
trodes offer similar electrochemical responses, thus clearly 

highlighting the high-performance of the 3D-printed BIA 
cell with eight integrated electrodes for detection of ADR.

Analytical performance

As proof of concept, the 3D-printed analytical platform in 
association with amperometric detection (BIA-AD) was 
employed to measure ADR. The electrochemical oxidation 
of ADR was realized at 0.4 V vs p-RE, as previously men-
tioned in Fig. S8 (ESI). The analytical response and linear 
behavior of the electrochemical signal were investigated by 
ranging the ADR concentration between 5 and 40 µmol  L−1 
(Fig. 6).

The proposed BIA-AD system has exhibited an accept-
able correlation coefficient (R2 = 0.99) in the evaluated linear 
concentration range (5 to 40 µmol  L−1) and satisfactory limit 
of detection (LOD) for ADR (0.61 µmol  L−1). The LOD was 
calculated based on the 3S/slope of the analytical curve and 
it was compared to other reports found in the literature. As it 
can be seen in Table 1, the use of a 3D-printed electrochemi-
cal platform has offered a LOD value for ADR with magni-
tude order similar to those values found by bare electrodes. 
Based on the number of injections per hour, the analytical 
frequency (AF) was estimated to be ca. 494 ± 13  h−1. The 

Fig. 5  Presentation of the 
electrochemical performance 
in terms of repeatability and 
reproducibility for ADR using 
3D-printed electrodes. A 
Amperograms showing the 
detection of ADR at eight 
electrodes using the 3D-printed 
platform; graphs depicted in B 
and C show the peak current 
and width values for the results 
recorded at each electrode. 
Lastly, graph D displays the 
analytical sampling in terms of 
injection per hour for different 
electrodes. BIA conditions: 
injection volume = 2 µL; dis-
pensing rate = 9.0 µL  s−1; stir-
ring at 80 rpm. Model solution: 
50 µmol  L−1 ADR prepared in 
0.1 mol  L−1 PBS (pH = 7.2) and 
0.1 mol  L−1 KCl. All experi-
ments were recorded applying 
0.40 V vs p-RE
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AF value demonstrated herein is higher than other values 
reported using BIA systems constructed partially via 3D 
printing technology, as summarized in Table S1.

Aiming to demonstrate bioanalytical feasibility, the pro-
posed BIA system was dedicated to realize measurements of 
ADR in artificial urine samples. This biological component 
is commonly used in asthma, defibrillation, cardiac arrest, 
and cardiopulmonary resuscitation cases [45, 46]. Further-
more, the coronavirus outbreak (COVID-19) has caused a 
significant demand for cardiopulmonary resuscitation drugs 
[69]. The recommended levels in human adult patients range 
from 0.5 to 1.0 mg  kg−1 ADR [70]. For this reason, urine 
samples were spiked with ADR standard solutions in three 
concentration levels (10, 20, and 30 µmol  L−1). The recorded 
amperometric responses and a summary of the levels of 

ADR detected in the spiked samples are displayed in Fig. S9 
(available in the ESI) and Table 2, respectively.

The recovery study for ADR exhibited acceptable results 
in the range between 87 and 118%. It is important to note 
that the detection level of ADR evaluated herein is satisfac-
tory for routine monitoring in clinical laboratories. Then, 
the proposed BIA-AD system indicated suitable analytical 
performance involving analysis of ADR in urine samples.

Conclusion

We have successfully demonstrated the use of a multimate-
rial open-source printer and distinct thermoplastic filaments 
to construct a fully 3D-printed BIA cell with multiple inte-
grated sensing electrodes without commercial component 
requirements. The analytical system was manufactured 
using low-cost materials and its components can be quickly 
assembled/disassembled through a threadable strategy. The 
outstanding features of the 3D-printed BIA cell include the 
possibility of using multiple working electrodes potentially 
submitted to different surface modifications or sequential 
electrochemical measurements. Moreover, the integrated 
carbon black electrodes when associated with amperomet-
ric detection have provided a fast response for adrenaline 
measurements with adequate analytical performance. Based 
on the reported results, the 3D-printed BIA cell integrated 

Fig. 6  A Amperogram showing 
the recorded response for ADR 
at different concentrations using 
BIA-AD system and B analyti-
cal curve demonstrating the lin-
ear dynamic concentration range 
(y =  − 0.00383 + 0.00389x). 
Experimental conditions: see 
Fig. 5
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Table 1  Analytical features of the proposed analytical platform com-
pared to the data reported by other electrochemical methods devoted 
to measurements of ADR

BDD boron-doped diamond; GC glassy carbon; CNT carbon nano-
tube; CQD carbon quantum dot; GQD graphene quantum dot; SWV 
square wave voltammetry; DPV differential pulse voltammetry; NI no 
information.

Electrode surface Method Linear range
(µmol  L−1)

LOD
(µmol  L−1)

Reference

MXene AD 0.02–10 0.009 [46]
Stainless steel AD 5–1000 1.0 [60]
NiO/CNT SWV 0.08–900 0.01 [61]
BDD SWV 0.7–60 0.21 [62]
GC AD NI NI [63]
Graphene DPV 0.015–40 0.003 [64]
CQD AD 0.02–0.8 0.006 [65]
Ni3-xTe2 SWV 4.0–31 0.35 [66]
Graphite AD 100–2500 5.3 [67]
Au/GQD AD 0.01–40 0.01 [68]
CB/PLA AD 5–40 0.6 This study

Table 2  Detected levels of ADR in artificial urine samples previously 
spiked with standard solutions at three concentration levels (n = 3

Spiking levels Add
(µmol  L−1)

Found
(µmol  L−1)

Recovery
(%)

RSD
(%)

#1 10 11.9 ± 0.2 118 ± 1 2
#2 20 18.5 ± 0.3 92 ± 1 2
#3 30 25.9 ± 0.3 87 ± 1 1
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with sensing electrodes may emerge as a powerful and port-
able analytical tool for routine and high-throughput analysis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00604- 022- 05323-4.
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