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3D printed microfluidic devices: enablers and
barriers

Sidra Waheed,ab Joan M. Cabot,ab Niall P. Macdonald,ab Trevor Lewis,b

Rosanne M. Guijt,c Brett Paullab and Michael C. Breadmore*ab

3D printing has the potential to significantly change the field of microfluidics. The ability to fabricate a

complete microfluidic device in a single step from a computer model has obvious attractions, but it is the

ability to create truly three dimensional structures that will provide new microfluidic capability that is chal-

lenging, if not impossible to make with existing approaches. This critical review covers the current state of

3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet (i3DP),

stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposi-

tion modeling). It discusses current achievements and limitations, and opportunities for advancement to

reach 3D printing's full potential.

Introduction

In recent years additive manufacturing, or 3D printing as it is

more commonly known, has gained significant interest and

has been spoken of as a third industrial revolution.1 Devel-

oped in the early 1980s, 3D printing converts computer-

assisted design (CAD) into a physical object in a single pro-

cess (Fig. 1).2 It remained a technology with relatively re-

stricted use until the expiration of a key patent in 2009, but

since then there has been a significant increase within the

manufacturing industry as well the consumer market because

of the ability to easily create unique bespoke one-off objects.3

The market for additive manufacturing has grown by 35.2%

to $4.1 billion in 2014 and is expected to become a $20.2

billion global industry by the end of the decade.4

Commercial 3D printers capable of producing structures

ranging from few microns to several centimetres are begin-

ning to challenge soft lithography as the research prototyping

approach to micro-fabrication. The significance of PDMS and

soft-lithography to the microfluidic community is high as it

enabled a new generation of researchers to undertake re-

search in the field due to the low infrastructure costs and

ease of manufacture.5 However, it has many limitations, in-

cluding the material properties of PDMS and the fact that

this material does not translate well to a commercial scale.

Nor are the properties similar to mass-production manufactur-

ing, such as etching (glass and silicon) or embossing and injec-

tion moulding (thermoplastics).6,7 Furthermore, all of these

fabrication approaches are limited by the range of features that

can be created, with a move from 2.5D (structures with varying

width but identical depth) to 3D structures significantly in-

creasing processing cost and reducing success rates.

The attraction of 3D printers is twofold. First is the un-

precedented ability to fabricate in three dimensions in a way

that has not been previously possible. This presents new op-

portunities in the field of microfluidics as researchers begin

to imagine what might be possible when manipulating sur-

faces and fluids in three dimensions. The second feature –

the ability to rapidly realise a model – enables researchers to

adopt a “fail fast and often” strategy. A simple cross fluidic

microchip can be printed in 10–15 min, while more complex

ones may take hours. This is in a material that is more simi-

lar to thermoplastics than PDMS (and with some printers,

may actually be the same thermopolymer) suggesting transla-

tion into commercial outcomes may be simpler.

Despite of all these benefits, 3D printed structures cannot

currently compete with the resolution of structures produced

by conventional lithography in a build space that is useful.
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Fig. 1 The additive manufacturing process. The CAD file is converted

into a standard triangulation language (STL) file. The STL file is digitally

sliced into individual layers that are sequentially realised to build an

object in a layer-by-layer manner.
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There are also concerns regarding dimensional fidelity, shape

conformity, surface quality, biocompatibility, optical trans-

parency and material availability.

To date, Waldbaur et al.8 and Vaezi et al.9 have reviewed

technical aspects of all current 3D printing technologies, in-

cluding other approaches that have had some preliminary re-

ports on printing microfluidic devices (such as selective laser

sintering).10 Recently, Au et al. published a comprehensive re-

view highlighting the impact of 3D printing in the field of

microfluidics.11

This review focuses on progress made towards the use of

3D printing for the fabrication of polymer microfluidic de-

vices. Suitable approaches that have been used successfully

include inkjet 3D printing (i3DP), fused deposition modelling

(FDM), stereolithography (SLA) and two photon polymerisa-

tion (2PP). A practical overview of the range of materials that

can be processed and the parameters influencing printing

performance are listed together with the printing accuracies

realised for various printers. This present review discusses

how the current state of the art for 3D printing has fabricated

microfluidic devices for various applications, where the bar-

riers reside and how the technology can develop into achiev-

ing its full potential.

Inkjet 3D printing (i3DP)
Fundamentals of i3DP

The i3DP process is based on inkjet technology which either

operates in continuous or drop on demand (DoD) mode.12

Continuous mode operates with ink of a lower viscosity with

higher drop velocity than DoD.13 The DoD mode is the

method of choice for 3D microfibrication as it generates

smaller droplets with higher placement accuracy which

should translate to finer and more repeatable microfluidic

structures.14 In the DoD technique, a pulse is generated ei-

ther thermally or piezoelectrically as shown in Fig. 2. In a

thermal DoD, ink is heated locally to form vapour bubbles

that eject as an ink droplet. In piezoelectric DoD, acoustic

pulses, generated by the deformation of piezoelectric ele-

ment, push the droplet of ink from the nozzle. Piezoelectric

DoD is suited to variety of solvents whereas in thermal DoD

solvent must be volatile.15

There are four critical elements for the high accuracy per-

formance of inkjet printing as shown in Fig. 3. Each element

involves different technical considerations, which have been

discussed in detail by Chen.16

i3DP can be further divided into two categories: powder-

based and photopolymer based. In powder-based i3DP, solid

powder particles are bonded with polymeric adhesive solu-

tion delivered by an inkjet print head. The process begins

with the deposition of a layer of powder spread uniformly on

the building stage by a roller. The multi-channel printer head

sprays droplets of adhesive onto the powder bed at the

targeted area. After the first layer is completed, the building

platform drops and second powder layer is distributed and

bound by the next layer of adhesive. This process is repeated

slice after slice until 3D object is formed (Fig. 4).17 The loose

supporting powder surrounding the printed object can easily

be brushed away (except from a fully enclosed structure

where the powder remains) and does not require any signifi-

cant post-processing step. The unused powder is continu-

ously recycled which lowers the costs of printed objects. The

powders are a combination of gypsum, polymer and silica

particles with adhesives that are composed of glycerol and

water-soluble acrylates. The powder size is approximately 50–

100 μm, and with 2–4 particles forming a layer the

Z-resolution is limited to 200 μm. The particle size, shape

and packing density determine the resolution of the

printers.18 The non-bound particles can increase the surface

roughness and reduce the transparency of printed object be-

cause of light scattering by the particles in the bulk, hinder-

ing microscopy studies desirable for many microfluidic

applications.19

Photopolymer based inkjet printers use an array of inkjet

print heads to deposit tiny drops of the build- and support-

material to form the object in a layer-by-layer fashion. The

build material is typically an acrylate-based photopolymer

and includes monomers, oligomers, and a photo-initiator to

cure each layer with a UV source (Fig. 5). Despite being lim-

ited to photopolymers there are over 100 commercial com-

posite materials available based on 17 primary photo-

polymers. The multi-material printing allows up to 14

materials to be printed simultaneously on the same tray with

a wide range of physical properties, including color and

Fig. 2 Schematic illustration of DoD printing process. Fig. 3 Key factors affecting inkjet process.
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surface morphology. The composite material includes varying

ratios of acrylonitrile butadiene styrene (ABS), polystyrene

(PS), polypropylene (PP), polymethylmethacrylate (PMMA),

polycarbonate (PC), ethylene propylene diene monomer

(EPDM) and high impact polystryrene (HIPS).21

Commercial manufacturers, such as Objet Geometries Ltd

and Stratasys use DoD technology, termed poly jet modelling

(PJM), while 3D Systems use multijet modelling (MJM). In

both cases, the print head has many small holes that jets

droplets of build material and support material simulta-

neously, to build 3D structure.

In PJM, the support structure is a mixture of propylene,

polyethylene, acrylic monomer and glycerin. This can be re-

moved by high pressure water jetting followed by washing in

a chemical bath (2% NaOH) to remove residue of support

material. High pressure water jetting may damage delicate

parts. With MJM, the support material is made up of paraffin

wax and is removed using heat to melt the paraffin, with ad-

ditional steps, like soaking in an ultrasonic bath of oil to re-

move wax from crevices, performed if required. One of the

major impediments to the use i3DP for microfluidics is the

need to remove the support material, which is impossible for

fully enclosed structures and difficult through narrow chan-

nels. The clogging of holes in a print head due to dry ink re-

duces the performance efficiency of the printer and thus, to

maintain good performance, i3DP needs to be used regularly.

There is also considerable cost (up to several hundred dol-

lars) in changing from one material to another as the system

needs to be flushed with the new propriety material.

Printing performance of i3DP in microfluidics. i3DP was

the first approach used to make a microfluidic device by

McDonald et al. in 2002.22 An Objet printer was used to make

templates with minimum features of 250 × 250 μm that was

used for soft lithography. The attraction to this approach is

the simplicity and speed with which templates can be made

particularly with different height structures, but it is far from

the ideal of being able to directly print a complete micro-

fluidic device.

Bonyár et al. moved closer to this ideal by directly printing

1000 × 2000 μm open microchannels using an Eden 250

inkjet system.23 The microgrooves were then sealed with a

thin transparent foil to create a sealed microchannel. Whilst

this streamlined the process by directly printing the chan-

nels, sealing adds an additional step involving a different ma-

terial. It must also be noted that the feature size of the micro-

channels is significantly larger than is commonly used in the

field.

In subsequent work, Bonyár et al. critically compared the

printing accuracy and quality of the matt and glossy printing

modes of the Objet Geometries Eden 250 3D inkjet printer.24

Test pieces were designed with 6 structural zones. The di-

mensional series were categorised into two groups: one with

dimensions that were an even integer multiple ranging from

2 to 8 of the printers X, Y, Z resolution (42, 84, 16 μm) and

the second an even integer multiple (2–8) of 50, 80 and 20

μm. More accurate prints were obtained when the channel

depth was designed as an integer multiple of the Z-resolution

(16 μm). The average deviation from theoretical depth value

was 7.3% for the matt mode and 9.9% for the glossy mode,

with even multiple integer of Z-resolution. In glossy mode,

the minimum channel width was 400 μm due to sagging of

the walls as a result of the absence of support material, with

a high average deviation from the theoretical width value of

33.5% in X and 51.2% in Y for channels with a width above

250 μm. In matt mode, deformation was observed for dimen-

sions above 150 μm for the Y direction (13.9% error) and for

the X direction (18.7% error), with the minimum channel

width of 200 μm. It was concluded that matt mode was more

suitable for microfluidic purposes because of its higher accu-

racy and resolution, but glossy printing provided better

transparency.

Walczak et al. compared dimensional fidelity, shape con-

formity and surface roughness of open and embedded rectan-

gular and semi circular microchannels printed using four

Fig. 4 Powder inkjet printing process: the roller spreads powder over

the bed, with the excess powder providing a support to the printing

object. Photopolymerisable ink is then deposited onto the powder to

bind the particles together.20 (Copyright 2008 Custom Part Net).

Fig. 5 Photopolymer based inkjet printer.20 (Copyright 2008 Custom

Part Net).
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different inkjet printers (two Stratasys printers and two 3D

System printers).25 The minimum dimension for printed

microfluidic channels was approximately 200 μm, with

smaller structures not printed or deformed. Generally, less

deformation was observed in structures printed by 3D Sys-

tems, and deformation was more prominent along the x-axis

than in the y-axis. Significant deformation was observed in

Stratasys printers working in glossy mode. Moreover,

Stratasys devices were blocked by support material, as the wa-

ter jet could not penetrate into microchannels. The surface

roughness of the structures printed by 3D Systems was 0.38–

0.61 μm. This is slightly poorer than micromilling26 and

much poorer in comparison to 2PP (4–11 nm),27 though bet-

ter than 3.24–42.9 μm reported by FDM.28 Only the highest

nominal resolution printer (ProJet 3000 HD+) had identical

surface roughness values in both horizontal and vertical

printing direction, due to a specifically constructed printer

head and reflow of support material. For the other printers

surface roughness was almost double when printing verti-

cally. The source of print error in the inkjet printers was re-

lated with volume and deposition mechanism of a droplet.

The authors proposed a simple method of correction for this

error, which decreased the difference between designed and

real dimensions to less than 5%.

Hwang et al. printed periodic pillars with constant diame-

ter of 250 μm with variable pitch (Fig. 6(A–F)).29 They found

the resolution of the printer depended on the droplet size,

printer nozzle spacing and reflow of material prior to UV cur-

ing. These factors affected the droplet spreading which ulti-

mately changed the final dimensions of printed devices.

Connor et al. quantified a dimensional fidelity and preci-

sion of embedded channels using ProJet HD 3500 inkjet

printer.30 Rectangular and trapezoidal channel arrays were

printed in the vertical (perpendicular to XY-axis) and horizon-

tal directions (parallel to XY-axis), to determine the influence

of print orientation. The vertical 3D printed channel pro-

duced good shape conformity when compared to horizontal

printing approach as shown in Fig. 6(G–J). The inferior shape

conformity of horizontal channels was due to side wall

roughness. They concluded that for microfluidics, vertically

3D-printed channels yield better shape conformity and di-

mensional fidelity with variances from two to four times

larger than conventional deep reactive ion etching (DRIE)

techniques, but the significance of the individual layers along

the length of the microchannel and the associated roughness

was not discussed.

Lee et al. evaluated microfluidic features using an Objet

Eden 350 V printer and found an average deviation of 25.2

μm between actual and printed diameter.28 The surface

roughness was increased with increased side wall angle due

to the formation of stitch marks, as shown in Fig. 6(L). The

surface roughness ranged between 0.47 to 8.44 μm for angles

between 0° to 60° and at 90° the roughness decreased to 1.7

μm. The Fullcure 720 built material was found to be hydro-

philic in nature, having a contact angle of 81.0°.

Lee et al. determined the operating range of ProJet HD

3500 printer, by printing open microchannels of 100–1000

μm in width and 50–500 μm in height.31 It was observed that

channels with less than 100 μm width and 50 μm height col-

lapsed. The microchannel width varied by ∼35 μm between

the CAD and printed device and the height difference was

less than 11 μm. They also concluded that better accuracy

was obtained when printing in a vertical direction.

Gowers et al. printed microfluidic devices using two differ-

ent 3D printers.32 First, a microfluidic chip was fabricated

using an ULTRA 3SP printer and ABS 3SP resin – a white

build material that allows printing of dimensionally and me-

chanically stable components. The set of three channels hav-

ing variable dimensions of (i) 520 × 520 μm (ii) 750 × 550 μm

(iii) 1000 × 550 μm were printed. However, the printed device

had almost 100 μm smaller dimensions than those specified

in the design. This decrease was attributed to shrinkage of

material during printing process. Objet260 Connex printer

was used to print needle holders. The main advantage of

using this printer compared to the ULTRA 3SP is the possibil-

ity to print rigid and soft material simultaneously on the

same component. VeroWhitePlus (RGD835) and TangoBlack

(FLX973) were employed for the printing of the rigid and soft

parts, respectively. The 3D printed microfluidic device

coupled with novel 3D printed holders incorporates

Fig. 6 Scanning electron micrograph (SEM) of channels printed by

different inkjet printers. (A–F) Pillars with 250 μm diameters and 1500

μm heights were printed (A), (C) and (E) and imprinted in PDMS (B), (D)

and (F). The pitch was (A–B) 500 μm, (C–D) 750 μm and (E–F) 1000 μm.

The final printed pillar diameters were 378 μm, resulting in structures

with multiple pillars bleeding into one another when the pitch was not

large enough (A–B).29 (Copyright 2015 Elsevier) (G) Cross-section of

the vertically and (H) horizontally printed rectangular microchannels.

(I) Cross-section of the vertically and (J) horizontally printed trapezoi-

dal microchannels. The vertical 3D printed channel produced good

shape conformity while the inferior shape conformity of horizontal

channels was due to side wall roughness.30 (Copyright 2015 IOP Pub-

lishing) (K–L) The stitch marks increased surface roughness. (M) Distri-

bution of width within printed channels (500 × 500) μm due to leaning

walls.28 (Copyright 2015 Springer).
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removable needle type integrated biosensors, for glucose and

lactate detection.

Paydar et al. explored multi-material 3D printing for

microfluidic interconnects.33 They fabricated an interconnect

consisting of a flexible elastomer (Tangoblack) O-ring co-

printed with rigid plastic (VeroBlack) barbed clips for me-

chanical clamping onto a microfluidic chip. The clamp and

gasket were printed in a single step, eliminating the need for

adhesives and additional assembly. The low manufacturing

cost made this interconnect a competitive alternative to other

available interconnect technology. The interconnect tolerated

a sealing pressure up to 416 kPa. However subsequent tests

with similar interconnect had a lower maximum sealing pres-

sure due to material fatigue. Breakage of the interconnect un-

der stress was observed due to grains deposited during print-

ing. Robustness of the interconnect could be increased by

avoiding grains along the axes of stress concentration.

Sochol et al. used MJM approach for the design and con-

struction of integrated microfluidic circuits (IFC) including

diodes, capacitors and transistors.34 The smallest dimension

of fluidic circuit was 200 μm and minimum fluidic compo-

nent thickness was 150 μm. The 3D printed IFC exhibited op-

erational characteristics consistent with their electrical ana-

logues, both independently and as part of integrated

networks. By modifying geometric parameters of the 3D flu-

idic components, one can readily customise core component

functionalities. In addition, the 3D component models can

be assembled as desired to achieve a diverse array of inte-

grated fluidic processors and networks.

Coating 3D printed channels with polydimethylsiloxane

(PDMS) and polystyrene (PS) was used by the Spence group to

overcome the limitation of unknown surface chemistry of

proprietary resin and also to make it transparent and amena-

ble to cell adhesion.35 The printed channels were at the milli-

meter scale and therefore support material was easily re-

moved, but it was difficult to remove support material for

channels with dimensions less than 500 μm.36 Using succes-

sive coatings of PDMS or PS, the microchannel dimensions

were reduced to 100 μm, which is an elegant and functional

way to improve the channel size from 3D printing, although

it requires additional steps.

Macdonald et al. investigated the biocompatibility of

inkjet resin (VisiJet Crystal EX200) against zebrafish em-

bryo.37 This resin is categorised as a class VI certified mate-

rial by United States Pharmacopeia (USP) for plastic biocom-

patibility. The result revealed that the untreated commercial

resin was incompatible for the growth of zebrafish embryos.

However, biocompatibility was improved by treating it with

ethanol. Similar results were found for Fullcure 720 build

material which was declared to have similar biocompatibility

when treated with ethanol.28

i3DP capabilities have been showcased by making devices

with different microfluidic functionality by a number of

groups, which has been mentioned in Table 1.

Strengths and weaknesses of i3DP in microfluidics. i3DP

is an attractive approach for making microfluidic devices

with microchannels greater than about 400 μm. The main

commercial manufacturers have outstanding machines that

will print multiple devices within hours with simplicity and

reliability that has yet to be matched by any other 3D printing

approaches. High resolution inkjet printing of 600 × 600 dpi

gives a theoretical XY resolution of 42 μm, with Z resolution

as low as 16 μm possible, although the reality is that features

cannot be printed with this resolution due to the nature of

the printing process. The greatest yet to be realised strength

of i3DP is the ability to easily print highly complex devices

with multiple different materials to provide advanced chemi-

cal and physical functionality. There are printers available

that can print 2 or more materials and the support, and to

mix composites of these on the fly to create additional

blended materials. Critical to this being successful is the de-

velopment of new functional materials, and while the restric-

tion of being UV polymerisable does make this more chal-

lenging, there are some materials with electronic and

magnetic properties beginning to emerge. i3DP is perhaps

the most commercially viable 3D printing approach for

microfluidics, albeit at a price that is typically 10–100 times

higher than STL and FDM printers. The typical XY build

space of at least 30 × 30 cm and the inkjet printing process

allows the fabrication of multiple devices at the same time.

Depending on the device size, it is possible to print 20–1000

devices in a single job, and if this can be done in 1–2 hours, it

may ultimately provide a cheap and affordable way for small-

scale batch production during early stage commercialisation.

However in order to truly penetrate the microfluidic field

there remain a number of significant challenges. At present,

i3DP can work with over 100 different raw materials. This is

insignificant when compared with the enormous range of

raw materials used in traditional manufacturing. Transparent

and highly biocompatible materials are required for applica-

tion in biomedical devices. New support materials with differ-

ent removal processes are necessary if fully enclosed micro-

channels in the 10–100 μm range are to be printed.

Promising steps for optimisation of droplet formation and re-

flow of drops prior to UV curing are also required. This must

be accompanied by an increase in resolution in both XY and

Z planes in order to realise this, which will likely come at the

expense of build space and print time.

Stereolithography
Fundamentals of SLA printing

Stereolithography (SLA) was developed by Chuck Hull in 1986

and commercialised at 3D Systems in 1988.2 He defined it as

“a method and apparatus for making solid objects by succes-

sively “printing” thin layers of a curable material, e.g., a UV

curable material, one on top of the other”. There are two im-

portant configurations: free surface approach (bath configu-

ration) and constrained surface approach (bat configuration).38

In both configurations objects are built in a layer-by-layer

manner by spatially controlled photopolymerisation of a liq-

uid resin which is performed with either a scanning laser or
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Table 1 3D printing technology used in different fields of microfluidics

Printing
technology

Model
(manufacturer) Material

Resolution
(x, y, z) μm Advantages reported Disadvantages reported Application

Inkjet 3D printing (i3DP)
MJM
(3D Systems)

ProJet 3500 HD Acrylonitrile 39 × 39 × 29 Vertically printed
channels have
dimensional stability
and smooth surface

Features printed along
Y-axis show rough
surfaces and low
dimensional accuracy

Study of printing
performance for
microfluidic features30

39 × 39 × 16 Solve alignment
problem and cost
effective

n.r. Droplet production
through T-junction123

ProJet 3500
HDPlus

VisiJet Crystal 50 × 50 × 32 Repeatable production
of models for
biocompatibility
studies with zebrafish

Photopolymers are not
biocompatible with fish
embryo test

Evaluation of
biocompatibility of
inkjet, SLA and FDM
3D printers37

VisiJet S300 25 × 25 × 29

VisiJet M3
Crystal

34 × 34 × 16 Module like assembly,
Recyclable, easy access
for non-expect user

Channels less than 100
μm in width and 50 μm
cannot be printed.

Fabrication of liver
cancer diagnostic
device31

ProJet 3000 HD VisiJet M3
Crystal

38 × 38 × 32 Modular approach.
Fluidic components for
static and dynamic
physical elements.
Develop integrated
microfluidic circuits.

Observed residual flow
through closed
interactions. Material
exhibits limited optical
characteristics and
biocompatibility.

Fabrication of fluidic
circuit components
including capacitors,
diodes and transistors34

ProJet 3000 HD+ VisiJet M3
polymer

38 × 38 × 16 Better nominal
resolution and
accuracy achieved.
Identical surface
roughness in both axis.
No manual work is
required to remove
support material for
printer. 200 μm open
channels achieved

Deformation is
prominent while
printing in X-axis.
Microchannels slightly
smaller.

Evaluation of printing
performance of four
inkjet printer for
microfluidic features25

ProJet 3510 HD ABS 68 × 68 × 32 Reusable, reduce
waste, reduced set-up
time

n.r. Micro-capillary device
for double emulsion
generation124

ProJet 3510 SD VisiJet M3
polymer

67 × 67 × 32 Better nominal
resolution and
accuracy achieved.
No manual work is
required to remove
support material for
printer. 200 μm open
channels achieved

Deformation is
prominent while
printing in X-axis.
Microchannels
slightly smaller.

Evaluation of printing
performance of four
inkjet printer for
microfluidic features25

ThermoJet ThermoJet
2000

85 × 64 × 42 Rapid process,
Multi-level features,
Non-toxic

Channels below 250 μm
were not achieved
and surface roughness
effect optical
performance

Fabrication of molds
and microfluidic
mixers22

PJM
(Stratasys)

Objet24 VeroWhitePlus
RGD-835

42 × 42 × 28 200 μm open channels
achieved

Deformation is
prominent while
printing in X-axis. The
surface roughness of
parallel and perpendicular
directions was almost
double. Default printing
patter. Microchannels
slightly bigger.

Evaluation of printing
performance of four
inkjet printer for
microfluidic features25

Easy fabrication of
multi-level and helical
molds

Limitation in printing
resolution

Fabrication of complex
microfluidics molds29
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Table 1 (continued)

Printing
technology

Model
(manufacturer) Material

Resolution
(x, y, z) μm Advantages reported Disadvantages reported Application

Objet30 Pro VeroWhitePlus
RGD-835

42 × 42 × 16 Lower surface
roughness founded
than other i3DP tested
when printed in glossy
mode. 200 μm open
channels achieved

Deformation is
prominent while
printing in X-axis.
The surface roughness of
parallel and perpendic-
ular directions was
almost double. Micro-
channels slightly
bigger. Significant
shape deformations
when working in glossy
mode.

Evaluation of printing
performance of four
inkjet printer for
microfluidic features25

Objet Eden350V FullCure 720 42 × 42 × 16 Biocompatibility
increases with
treatment with ethanol

Surface roughness
varies with printing
angle for i3DP

Evaluation of printing
performance for
microfluidic features28

Objet Eden250 FullCure 720 42 × 82 × 16 Matt mode is more
accurate, Glossy mode
give transparency

Glossy mode showed
high deviation from
designed dimensions

Study of printing
accuracy of two modes
for microfluidic device24

Direct printing of
microfluidic
prototypes, Cost
effective process

Sealing of device makes
it multistep process

Storage of gynaecological
cervical sample23

Objet Connex 350 VeroClear 42 × 42 × 16 Modular device Difficulty in removing
support material

Study of drug transport,
cell viability and
electrochemical sensing36

Rugged, robust,
reusable, user friendly
device

Difficulty in removing
support material below
250 μm

Study of electrical cell
lysis in polymer coated
3D printed devices35

Modular device Difficulty in removing
support material below
250 μm

Electrochemical detection
of ATP and RBC
purification in integrated
microfluidics devices125

VeroWhitePlus 42 × 42 × 16 Biocompatible,
Reusable, modular
device

n.r. Study of drug transport
and cell viability126

Objet260 Connex TangoBlack
FLX973

42 × 42 × 16 Modular device.
Possibility to print
rigid and soft material
simultaneously on the
same component

n.r. Microfluidic device for
subcutaneous monitoring
of tissue glucose and
lactate32

VeroWhitePlus
RGD-835

n.r.
(Quickparts M.O.)

TangoBlack n.r. Multi-material
fabrication of low cost
interconnects

Printing services do not
mention model
number of printer

Fabrication of
interconnects for
microfluidics33

VeroBlack

3SP (scan, spin and selectively photocure)
EnvisionTEC
ULTRA 3SP

ABS 3SP White 100 × 100 ×

25
Modular device. Easily
removable partially
cured perforated
supports and a single
material is used for
both build and support

Limitation in printing
resolution

Microfluidic device for
subcutaneous monitoring
of tissue glucose and
lactate32

Stereolithography (SLA)
DP-SLA Miicraft Acrylate based

resin
56 × 56 × 50 Low cost and

transparent
microfluidic chip

Improvement in resin
property and hardware
is required

Development of mixer,
gradient generation,
Droplet extraction and
determination of nitrate
in tapwater53

Accept 40% methanol
water mixtures and pH
between 2–10 at
concentration of 50
mM

n.r. Achieve mixing from 4
channels for acid/base
reactions and methanol
water mixtures127

Modification in resin
and cost effective
process

n.r. Tunable surface
properties62
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Table 1 (continued)

Printing
technology

Model
(manufacturer) Material

Resolution
(x, y, z) μm Advantages reported Disadvantages reported Application

Multi-level sealed
channels with varying
thickness from 50 to
500 μm were achieved

Coating of template is
required

Fabrication of template,
Determination of
micromixer performance
and glucose sensing50

Direct printing of
multi-level microfluidic
chip

n.r. Determination of H2O2

and glucose sensing52

Rapid, cost effective
process

Limitation in
resolution, post
treatment is required

Fabrication of chaotic
advective mixer,
peristaltic valve and
injection on demand
microfluidic devices51

Sensitive method n.r. Fabrication of solid
phase extraction
preconcentrator for
selective extraction of
trace elements and
removal of unwanted
salt55

Autonomous LOC
sensing on cell phones.
Possibility to operate
on cell phones of
diverse brands

Quantitative glucose
detection via 3D
printed, disposable
unibody LOC,
configured on cell
phone59

B9Creator 3D
printer v1.1

Modified resin
(Irgacure 819
and Sudan I)

50 × 50 × 50 Horizontal channels
with 350 × 250 μm
were 100% accurate

Modification in resin
caused bulk
fluorescence

Fabrication of
microfluidic device with
valves56

n.r. (Shapeways
Frosted Ultra
Detail M.O.)

Clear acrylic
polymer

100 × 100 ×

50
Cost effective, fast
delivery, inexpensive
and clear photoactive
resin.

Limitation in printing
resolution.

Golden gate DNA
assembly in 3D
microfluidics.
Co-laminar mixer61

UV-LED PicoPlus 27
(Asiga)

PlasCLEAR 27 × 27 ×

0.25
Simple, accuracy,
biocompatible

n.r. Microfluidic chip coupled
with light addressable
potentiometric sensor
was printed for cell
culturing54

PlasCLEAR 27 × 27 × 1 Higher resolution.
Microfluidic channels
with less than 100 μm
can be printed

n.r. Formulation of a new
resin for 3D printing
microfluidic channels.
Comparison with other
commercial resins66

FSL Clear
PR48
Modified resin
(PEGDA,
Irgacure 819,
Sudan I)

Laser Viper SL System
(3D Systems)

Water-Shed
XC11122

100 × 100 ×

50
Low cost,
biocompatible skill-less
technique

Limitation in
resolution, and post
treatment is required to
decrease surface
roughness and increase
optical clarity

Evaluation of printing
performance of SLA
printer60

User friendly, low cost,
biocompatible

Limited printing
resolution,
Performance of valve
was inferior than
traditional PDMS

Integration of
microfluidic chip via 3D
printed valves and
pumps57

Effective detection of
pathogen

n.r. Detection of pathogenic
bacteria in food
sample128

Viper pro (3D
Systems)

WaterShed
11122XC

25 × 25 × 50 Post treatment process
make Fototec SLA 7150
more biocompatible

Resins are not
biocompatible with fish
embryo test

Evaluation of
biocompatibility of
inkjet, SLA and FDM 3D
printers37

Dreve Fototec
7150 clear
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Table 1 (continued)

Printing
technology

Model
(manufacturer) Material

Resolution
(x, y, z) μm Advantages reported Disadvantages reported Application

Agilista-3000 AR-M2 39 × 61 × 15 Effective as a mold for
rapid production of
PDMS microfluidic
chips

Lack printing accuracy Study of concentration
gradient of soluble
factors within PDMS
microfluidic channels
and their effect on
human cell129

Form1+ Clear
photopolymer
(FLGPCL02)

300 × 300 ×

25
Cost effective, rapid
fabrication and clear
photoactive resin.

Limitation in printing
resolution.

Golden gate DNA
assembly in 3D
microfluidics.
Co-laminar mixer and
3D micromixer61

n.r. (FineLine
Prototyping M.O.)

Somos
WaterShed
11122 XC

n.r. Modular and
reconfigurable fluidic
components

n.r. A sample library of
standardised microfluidic
component and
connector67

EnVisionTEC
(180 W Hg Lamp)

Own
formulation
(PDMS based)

30 × 30 ×

100
Orange dye increases
resolution. Effective
direct printing of gas
permeable PDMS
membranes.

Optical clarity is
sacrificed

PDMS CO2 permeable
membrane65

Two-photon polymerisation (2PP)a

Femtosecond
Laser

Ti:sapphire laser
(Coherent Mira
900-F)

Modified resin
(SU-8 2150
based)

n.r. Fabrication speed was
increased from 200 μm
s−1 to 1 cm s−1

Preparation of resin is
time consuming

Fabrication of template86

Ti:sapphire laser
(Kapteyn-Murnane
Laboratories Inc.,
CO)

SU-8 2025,
negative
photoresist

n.r. Fabrication time was
45 min

Time consuming
process for the
complicated structures

Fabrication of template
for trapping yeast cell87

n.r. SU-8 negative
photoresist

n.r. Does not require mask n.r. Fabrication of
mirochannel88

n.r. Modified
positive
photoresist

n.r. Hollow microstructure
occupies small portion
of microfluidic chip

Positive resist involve
subtractive type of
fabrication

Fabrication of
mirochannel89

n.r. SU-8 negative
photoresist,
NOA 61

n.r. Surface profile
scanning reduces
fabrication time

Not effective for thin
and porous structure,
Additional UV exposure
is required

Fabrication of free
standing and mechanical
microvalves, levers,
nanoshell90

n.r. PDMS n.r High resolution
microfluidic structure

n.r. Fabrication of
microchannels91

Fused deposition modelling (FDM)b

Extrusion Fab@Home
Version 0.24 RC6
freeform

Acetoxysilicone
polymer
(LOCTITE
5366)

n.r. Reusable, inbuilt and
self-healing bespoke
reactionware. Low-cost,
reconfigurable and
highly accessible
format

Poor resolution Fabrication of
reactionware for organic
synthesis and analysis111

3DTouch Polypropylene 125 × 125 ×

200
Inert and low cost
material, time and
cost-effectiveness

Suitable for 3D-printed
milli-devices. Blockage
may occur due to for-
mation of precipitate

Miniaturised fluidic
reactionware fabrication
for chemical syntheses112

Dimension Elite ABSplus-P430 178 × 178 ×

178
Biocompatibility
increases with
treatment with ethanol

High surface roughness
for FDM

Evaluation of printing
performance for
microfluidic features28

Dimension SST
768

ABS-P400 254 × 254 ×

254
Variable widths were
achieved in single
device at low cost

Surface roughness
effect laminar flow,
Choice of polymer is
limited

Characterisation of
capillary valves in
centrifugal microfluidics
devices114

n.r. (modified
desktop 3D
printer)

Sugars PDMS 100 × 100 ×

n.r.
Biocompatible, cost
effective microfluidic
devices with acceptable
printing accuracy

Nozzle blockage may
happen with sugar
purity lower than 95%.

3D sugar printing of
microfluidic chip116

MakerBot
Replicator 2X

PLA 400 × 400 ×

200
Low cost and portable
device

Detection limits are
lower, sequential task
must be completed by
operator

Electrochemiluminescent
immunoassay for the
detection of cancer
biomarker proteins117
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a digital light projector (DLP).39 The bath configuration is the

classical setup for SLA in which a UV beam traces a 2D cross

section onto a substrate submerged in a tank of photoactive

resin that polymerises upon illumination as shown in

Fig. 7A. After completion of the 2D cross section, the sub-

strate is lowered further into the resin by a predefined dis-

tance, and the UV beam begins the addition of the next layer,

which is polymerised on top of the previous layer. In between

layers, a blade loaded with resin levels the surface of the

resin to ensure a uniform layer of liquid prior to another

round of UV light exposure. In this configuration the height

of the printed object is restricted to the tank size. Chemical

reactions with ambient air, resin waste and extensive

cleaning procedures are serious concern of bottom-up

approach.

The constrained surface approach is also called ‘bat’ con-

figuration due to the fact that the object is created hanging

from the movable substrate like a bat from a ceiling as

shown in Fig. 7B. The movable substrate is suspended above

the resin reservoir. The light source is located beneath the

tank which has an optically clear bottom, and a non-stick

layer so that the printed structure does not adhere to the sub-

strate. The constrained surface approach has several advan-

tages over the bath systems and is increasingly being applied

in stereolithography.40 The surface of resin being illuminated

is smoothed and refreshed through gravity and by letting the

surface rest over a given settling time. Only small amounts of

resin with low viscosity are required as the object is pulled

out of the resin, rather then submersed in it. The illuminated

layer is not exposed to the atmosphere, so oxygen inhibition

is limited. The height of printed object is not restricted and

it requires minimum cleaning steps as compared to bath

configuration.39,41 However, a cured layer is sandwiched be-

tween the previous layer and the resin vat. The solidified ma-

terial may adhere strongly to the bottom of vat causing the

object to break or deform when the build platform moves up

from the vat during the building process.42

Exposure with a DLP has emerged as a promising source

for illuminating the resin. A digital mirror device (DMD) with

an array of several million mirrors is used and is essentially a

digital projector modified to only emit UV light. The attrac-

tion in using a DLP is that by projecting a 2D pixel-pattern

Table 1 (continued)

Printing
technology

Model
(manufacturer) Material

Resolution
(x, y, z) μm Advantages reported Disadvantages reported Application

PET ABS 400 × 400 ×

200
Reusable, mechanically
stable devices with
reproducible detections

Semi-transparent
devices

Low cost 3D-printed
fluidic mixer for H2O2

sensing via flow-
injection amperometry
using Prussian blue
nanoparticles119

Easy3DMaker PLA 100 × 100 ×

80
Rapid, sensitive,
specific detection of
influenza virus

Optimization steps
needed

Electrochemical
detection of influenza
hemagglutinin for
infectious diseases121

Profi3Dmaker ABS 100 × 100 ×

80
Rapid and sensitive
detection of pathogens

n.r. Detection of pathogens
in food120

Airwolf3D HD2x PLA 350 × 350 ×

60
Low cost versatile
mixers

n.r. Different mixer channel
were designed, coupled
with three different
spectroscopic pro be118

a Resolution in 2PP is very high compared with the other 3D printer techniques explained here (<1 μm). Resolution of the printer is normally
not reported. b XY resolution was based on the nozzle diameter of the FDM printers. M.O. mail order; n.r. not reported.

Fig. 7 Two SLA printing configurations. (A) Laser-scanning SL with the free surface/bath configuration. (B) DLP SLA with the constrained-surface/

“bat” configuration.43 (Copyright 2015 Elsevier).
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onto resin, a complete layer of resin can be cured at the same

time. This means that build times are quicker when com-

pared to a rastering laser, as they only depend on the layer

thickness and on the required exposure time, and not the XY

build size of the model.44 They are also mechanically simpler,

only requiring accurate Z-control and a number of low cost

printers (<$5000) have been released by various manufacturers.

Waldbaur et al. established a DLP lithography system

coupled to a high-pressure mercury lamp equipped with

custom-made demagnifying projection optics.45 The projec-

tion optics consisted of thousands of individually address-

able micro mirrors which can be tilted to an on- or off-state.

In order to have maximum flexibility the system was

equipped with high-pressure mercury lamp as the light

source, filtered to the required wavelength. This technique il-

luminates an area of 2.0 × 2.5 mm. This was combined with

a controllable XY-stage to increase the XY build space to 40 ×

30 mm. The projected resolution was 2.5 μm in the XY with a

10 s of exposure time.46 While this approach provides excel-

lent resolution over a reasonable build time, stitching images

increase the print time considerably.

One of the restrictions of using SLA, similar to that of the

inkjet printers, is that the resin must be photopolymerisable.

The stereolithography resins are typically proprietary epox-

ides and acrylate–epoxy hybrids, although there are a few re-

ports of published recipes for home made resins appearing.

The first resins used for the stereolithography process were

acrylate-based and involved photopolymerisation of acrylate

monomers by the free radical mechanism. However, since

then, epoxy-based resins were developed and are now widely

used.39

The performance of laser and DLP-SLA printers can be

judged by the dimensional accuracy and surface roughness

of the printed object. Both these factors are dependent on ob-

ject orientation, layer thickness, resin properties and build-

ing style as mentioned in Fig. 8.47,48

Printing performance of SLA in microfluidics. SLA has re-

cently become a very attractive option for making micro-

fluidics due to the introduction of a number of low cost DLP

printers, including one being developed for $100.49 These

printers have varying resolution in both XY and Z, with reso-

lution in all three of 50 μm achievable with a number of

these.

Comina et al. used a low cost consumer grade 3D printer

(Miicraft, Taiwan) to print a reusable template for casting

PDMS.50 The templates had multiple thickness structures

ranging from 50 μm to several millimetres in a single print.

In order to properly cast the PDMS, the printed resin tem-

plate needed to be manually coated with a protective ink.

Chan et al. used the same printer and demonstrated a three

step treatment (heating-plasma-salinisation) of the printed

template to facilitate the curing of PDMS.51 They developed a

single step molding method from a 3D printed template to

generate true 3D PDMS base microfluidic system. Moreover,

a novel injection-on-demand microfluidic device was devel-

oped, by taking advantages of the cracks formed during the

single step molding process.

There has also been considerable work focused on print-

ing open microfluidic channels. These are harder to print

than templates, but easier to print than enclosed channels

because it is easier to remove the uncrosslinked resin.

Comina et al. again used the Miicraft printer to print a com-

plex open microfluidic channel which was then sealed with

an adhesive tape.52 The device was printed in XY-plane in-

stead of Z, which reduced the surface roughness and printing

time. This printing direction also exploited the resolution

limit of the printer.

Fig. 8 Parameters affecting laser and DLP-SLA print process.

Fig. 9 (a–c) SEM images of basic positive and negative 3D printed

structures printed with an exposure time of 3.5 s and at a 45° angle

with respect to the pixels. (a) L-shaped trenches designed with x or y

dimensions of 300, 350, 400, and 500 μm. Resulting structures are 50

or 100 μm narrower than the original design. (b) Rows with three col-

umns and three holes (same x and y dimensions in each row). The x

and y dimensions from top to bottom were designed to be 500, 400,

350, and 300 μm with a fixed z dimension of 2000 μm. (c) Rows with

three columns and three holes (same x and y dimensions in each row).

The x and y dimensions from top to bottom were designed to be 250,

200, and 150 μm, while the 100 and 50 μm columns were not printed,

with a fixed z dimension at 2000 μm. A size error of 50 or 100 μm,

corresponding to one or two pixels, respectively, was adversely intro-

duced by the slicing software. (d) Photo of five concentric circular

steps with varying heights of 50, 100, 150 and 200 μm (from left to

right, respectively). (e) SEM image of steps that are 100 μm high each

printed with an exposure time of 3.5 s. (f) SEM image of a transverse

section of a closed channel designed to be 250 μm wide and deep.

The model was printed upside down.53 (Copyright 2014 ACS).
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Shallan et al. demonstrated the first use of the Miicraft

printer for the direct fabrication of transparent microfluidic

devices having enclosed channels with a dimension of 250

μm.53 The printer accuracy was determined by printing posi-

tive and negative features of varying shape and dimensions

(Fig. 9). The dimension of printed channels was 50 or 100

μm greater/smaller than original design due to positioning of

the sliced image over the pixels. The roof of the sealing chan-

nel was rough because of back side effect – i.e., the penetra-

tion of light into resin to a depth greater than the layer thick-

ness. This could be improved by changing curing depth,

intensity, exposure wavelength, time and the resin itself. The

transparent propriety resin exhibits 60% transmission from

430–620 nm for a 50 μm thick layer. The Miicraft was

presented as a good compromise between price, resolution

and printing time for microfluidics, printing a range of

microfluidic functional units including droplet generators,

gradient generators, and a complex microchip that had vari-

able detection path lengths and could also perform standard

addition for the quantitation of nitrate in water.

The microfluidic assembly shown in Fig. 10 was directly

fabricated by a 3D printer (Asiga, Picoplus 27). It consists of

two independent open channels with an additional glass slip

that enables the observation of cells under a microscope, as-

sembled on a light addressable potentiometric sensor (LAPS)

chip.54 The biocompatibility of the printed microfluidic chip

was determined by comparing the cell growth curve obtained

from culturing cells within printed microfluidics and in a cell

culture flask. The identical growth curve showed that both

had similar biocompatibility. The demonstrated process sim-

plicity and biocompatibility make this a promising achieve-

ment in rapid prototyping manufacturing for microfluidics.

Miicraft was used to fabricate a solid phase extraction

(SPE) pre-concentrator consisting of two extraction channels,

micromixer and fittings for connectors.55 Each extraction

channel was filled with 29 layers of ordered cuboids (0.4 ×

0.4 × 0.2 mm), including 526 cuboids in total. The fabrication

time of each preconcentrator was around 38 min. The acry-

late base resin (electron donor group) within the printed de-

vice was capable of extracting trace elements. The specific

polymer-metal ion interactions (electron donor–electron ac-

ceptor interactions) provided the selectivity for the extraction

of trace metals ions from samples in high salt solution.

Rogers et al. fabricated microfluidic devices with integrated

membrane base valves.56 The device was directly printed on a

glass substrate. The resin was modified to print the smallest

channel (350 × 250 μm) with 100% accuracy. Due to modifica-

tion of the resin, the printed device was not fully transparent

and showed bulk fluorescence, but this was the first demon-

stration of a 3D printed fluidic device with an integrated

pneumatic valve. Au et al. printed fluidic valves and pumps

for the automation of microfluidic devices using the Viper

SLA printer.57 The valves were added into a digital design as

a module to form multi-way switches and pumps. These fluid

automation devices were user-friendly. Printing resolution

and material choices were still the critical constraints and

made the performance of these printed valves inferior to

PDMS. Recently Comina et al. has introduced the integration

of check valves for a unibody lab on chip (ULOC) fabricated

through Miicraft.58 In another work, Comina et al. printed a

ULOC consisting of two modules, a microfluidic level and the

optics.59 The device manually commands the preparatory se-

quence of mixing two reagents and three analyte concentra-

tions with minimal user intervention, limited to finger actua-

tion at a single point. The focusing optics created with the

same 3D printer, was conceived to image the ULOC detection

region on different cell phone cameras. They demonstrated a

sensible combination of technologies to enable practical au-

tonomous LOC sensing on cell phones.

Au et al. evaluated the resolution limit of laser-rastering

SLA printer (Viper SL system) in optically clear printed de-

vices using a mail-order facility.60 The CAD file was sent to

an external manufacturer with printed devices received a few

days later. They found that microchannels between 50 to 200

μm sealed during post curing, while channels having a di-

mension above 400 μm exhibited a deviation from the

expected width of less than 30 μm each (Fig. 11). The optical

clarity of the devices was improved by coating the outer sur-

face with a silicon oil. The Watershed XC material met bio-

compatibility standards but it had poor gas permeability,

which prohibited long term cell study on a chip.

Fig. 10 LAPS chip with attached microfluidic channels.54 (Copyright

2015 WILEY).

Fig. 11 (A–F) Micrographs of 500 μm tall channels built in a range of

widths. The actual width of each channels showed deviation of almost

30 μm from design. The 300 μm wide channel could only be partially

cleared of resin, while the smaller channels did not clear at all and

larger channels were fully cleared.60 (Copyright 2015 RSC).
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Patrick et al. printed fluidic open channel devices using

consumer-grade laser-rastering SLA 3D printer (Form1+

Formlabs) and compared this to a i3DP on-demand 3D print-

ing service (Frosted Ultra Detail, Shapeways, New York).61 It

was observed that the smallest circular channel that the

Form+1 printer could print had a diameter 900 μm and the

smallest square was 650 μm. The smallest circular channel

with the Shapeways printer was 300 μm and the smallest

square was 250 μm. The surface roughness was compared

through SEM images as shown in Fig. 12. Striation was

clearly visible with the Form1+ as seen in Fig. 14A and B

which increased the surface roughness. Each fluidic design

cost less than $6. This work demonstrates the care that must

be taken when selecting the right SLA printer to use.

Materials for SLA are typically proprietary often with

poorly characterised surface properties. Wang et al. demon-

strated a facile and effective approach to fabricate structural

devices by 3D printing.62 An initiator monomer was added

into the Miicraft resin to allow simple modification of the

surface. This could produce material with any desired surface

properties such as from extremely hydrophobic properties to

extremely hydrophilic properties. This method made 3D print-

ing technology more practical in the field of microfluidics.

Recently, Macdonald et al. assessed the biocompatibility

of various resins, including Watershed 11122XC and Fototec

SLA 7150 Clear, against zebrafish embryos.37 The results

showed that all of the photopolymers were highly toxic to the

embryos, resulting in fatality. While the exact composition of

the resin was a trade secret, the material safety data sheet

(MSDS) indicated that these resins contain acrylate and

methacrylate which are toxic.63 However, the post-printing

treatment of Fototec 7150 with ethanol increased the biocom-

patibility and made it suitable for zebrafish culture.64

Due to some attractive features of PDMS, such as its gas

permeability and flexibility, a PDMS resin has been devel-

oped.65 Such direct 3D printing of PDMS enabled rapid pro-

duction of novel chip geometries for a lab on a chip applica-

tions. However addition of orange dye in the resin, necessary

to print PDMS with an acceptable resolution, sacrificed the

optical clear nature of PDMS. This is due to the photoblocker

used (Sudan I) and with a different blocker, this could poten-

tially yield optically transparent PDMS.

Recently, Gong et al. determined the effect of optical prop-

erty of resin on channel size and formulated custom resin

containing polyĲethylene glycol) diacrylate (PEGDA), 1%

Igracure 819 and varying concentrations of photoblocking

agent Sudan I.66 It was demonstrated that there is fundamen-

tal trade-off between the homogeneity of the optical dose

within individual layers and the critical dose that penetrates

into a flow channel during fabrication. The minimum chan-

nel size 60 μm × 108 μm for 10 μm build layers was achieved

by increasing resin absorbance and increasing x–y plane reso-

lution of the projected image from the DLP micro-mirror ar-

ray. It was consistently printed with PEGDA by addition of

0.6% Sudan I. This work is significant in the push towards

printing microfluidic features less than 100 μm.

A sample library of standardised microfluidic components

and connectors was manufactured by using stereolithography

by Lee et al.31 and also Bhargava et al.67 These were used to

create a number of modular, reconfigurable microfluidic

units containing fluidic and sensor elements, adaptable to

many different microfluidic circuits. This system can make

discrete microfluidics; a valuable development vehicle for

complex designs. With a wider library of passive and active

components, this system can replace monolithically integrated

devices for many microfluidic applications. In addition, this

system will benefit significantly from additive manufacturing

technologies, allowing for the further miniaturisation of ele-

ments and development of a larger selection of elements and

materials.

Strengths and weaknesses of SLA printing. Desktop SLA

printers strike a balance between resolution, price and per-

formance. Among various desktop DLP stereolithography ma-

chines, the MiiCraft (MiiCraft, Taiwan) has been used most

frequently by a number of groups around the world. There

are now dozens of different desktop SLA printers, both laser

and DLP based, and one needs to consider carefully the re-

quirements as to which is the best choice. For example, the

Miicraft gives a good surface finish with the microfluidic

channels as small as 200–300 μm53,60 whereas Form1+

(FormLabs, Somerville, Massachusetts, USA) can only print a

minimum 650 μm.61 However the Miicraft uses toxic resin

and constant care is required to maintain the Telfon tank

bottom, while the Form1+ has sliding resin tank, which sim-

plifies cleaning process, in addition to a larger build area

than other DLP printers. Recently, Form+1 has begun market-

ing flexible resins which could be used to print elastomeric

fluidic devices similar to those achieved by PDMS. It is im-

portant to note that printer resolution is not always equiva-

lent to minimal structural dimensions – it is a property of

both the printer and the resin, hence the number of studies

to date looking at fundamental performance of the different

printers and the smallest channel sizes that can be achieved.

Despite its attraction for microfluidics, there are still a

number of issues that need to be resolved. First the

Fig. 12 SEM images of open channels printed using the Form1+ (A

and B) and Shapeways Frosted Ultra Detail (C and D). Each piece was

designed to be 5 mm on a side. Channels were designed to be 1500

microns wide in A & C and 300 microns wide in B & D.61 (Copyright

2015 Patrick et al.)
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resolution is limited by both the physical resolution of the

DLP/Laser and also the properties of the resin. It is important

to note that hardware resolution isn’t the main limitation at

the moment, but achieving this with a usable build space for

microfluidics within a reasonable timeframe. Using the 2PP

nanoscribe system, it is possible to create objects with sub

μm structures and voids, albeit over a few mm, at a very high

price. Continued development will see this improve, as well

the advent of continuous liquid interface printing (CLIP)

which demonstrated print speeds 10× quicker than all cur-

rent SLA printers.68 This translates to a 30 × 40 × 5 mm

microchip being printed in 2–3 min. Continued development

of this type of printing with improved resolution will see 3D

printers emerge as a low-cost and useful fabrication technique

for microfluidics, however this can only be done with a concur-

rent improvement in resin chemistry. The main challenge with

printing enclosed microfluidic structures is to remove the

uncured resin. This is easier than i3DP because the resin is a

liquid, but it is still challenging for small structures. Lower vis-

cosity resins are required, with the improved ability to con-

strain light to only the exposed region (and depth) being criti-

cal to be able to realise any future improvements in hardware.

As yet unknown, is the influence on the surface roughness

of the fabricated part resulting from the movement of the

stepper motor. This is again addressed with CLIP printing

(Fig. 13), although the impact of the steps and rough surfaces

on microfluidic performance has yet to be clearly understood,

it nevertheless allows a level of control over surface rough-

ness that is unprecedented.

Although the stereolithography process was introduced al-

most 25 years ago, there is still enough room for further en-

hancement in the process. Recently, novel microdiamond

based composite resin was used by Miicraft to print ther-

mally conducting prototype.69 It indicates that proprietary

resin can be exploited according to the particular application.

One of the major limitations of all current SLA printers is

that they are restricted to a single print material at a time.

Choi et al. have developed a prototype multimaterial SLA

printer which uses four different resin baths, but the process

is complex and each layer requires multiple exposures in

each resin, making it inefficient.70 Continued development

in this area is required for SLA to be the ideal method of

choice for microfluidics.

Two-photon polymerisation (2PP)
Fundamentals of 2PP printing

Two-photon polymerisation (2PP) is a laser based technique

which uses a near-infrared femtosecond laser. The transpar-

ent photocurable epoxy resin enables the direct creation of 3

dimensional structures. 2PP was first described theoretically

by Maria Göppert-Mayer in 1931 (ref. 71) and first demon-

strated practically in 1961 by Kaiser and Garrett.72 The fully

focused femtosecond laser pulses scanned the photosensitive

resin from the bottom slice to the upside slice. The two pho-

tons are absorbed simultaneously by the molecule which in-

duces photochemical reaction between photo-initiator and

monomers.73 The synergic effect of optical, chemical and ma-

terial non-linearities makes it possible to achieve reproduc-

ible resolution of tens of nanometers.74 The fundamental dif-

ference between SLA and 2PP is that in SLA a single photon

is used to build 3D structure. Furthermore, in 2PP solid resist

can replace epoxy resin for the direct fabrication of micro

and nano-structures.

The schematic illustration of 2PP is given in Fig. 14, which

consists of a laser source, beam direction system (left col-

umn), in situ monitoring system (middle column), beam

steering and motion stage (right column).

Most of the materials used for 2PP are designed for con-

ventional lithographic applications and both negative and

positive photoresists. In the case of negative photoresists, the

two-photon exposure results in the crosslinking of polymer

chains through radical polymerisation, making the exposed

area insoluble in the solvent and writing the structure

Fig. 13 (A) Schematic illustration of CLIP printer. (B–C) CLIP enables

fast print speeds and layerless part construction.68 (Copyright 2015

AAAS).

Fig. 14 Schematic femtosecond laser direct writing system. The

femtosecond laser focused by a lens (1.4, oil immersion used here).

The laser scanning path was precisely controlled by computer

according to the pre-programmed structures from the bottom slice to

the upside slice until the entire 3D structure is achieved. The imaging

system using a charge couple device (CCD) is useful both for optical

adjustment and for in situ fabrication monitoring. PBS: polarization

beam splitter; OL: objective lens; PZT: piezoelectric transducer.75

(Copyright 2015 Elsevier).
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directly in the sample. With positive photoresists, the oppo-

site occurs; two-photon absorption causes the photoresist poly-

meric chains to break and become soluble in the development

solvent, so the reverse structure is written in the sample. Nega-

tive photoresists containing acrylic oligomers or epoxy resins

are the most popular photoresists for 2PP. Their fundamental

ingredients contain photo-initiators used for radical genera-

tion, and monomers and cross-linkers constituting the main

skeleton of micro or nanostructures. Commercially available

resins have the disadvantage that they cannot be easily modi-

fied or combined with active components for added functional-

ity. However new, organic/inorganic hybrid sol–gel materials

are specifically designed for 2PP applications. These materials

have high optical quality, post-processing chemical and electro-

chemical inertness, and good mechanical and chemical

stability.76,77

In 2PP fabrication, microstructures are built from voxel

(unit volume of a material) that can overlap each other. The

fabrication accuracy of 2PP is determined by the voxel size.

The high spatial resolution, precision and accuracy of 2PP

can improved by considering the factors mentioned in

Fig. 15.

Until now considerable work has been done on improving

the resolution of 2PP by optimising different parameters.

Kawata et al.78 achieved a milestone with a resolution of 120

nm. Other attempts include the use of new photo-

initiators,79,80 continuous scanning mode,81 shorter wave-

length,82 longer exposure time,83 and confining the polymeri-

zation phenomenon using a quencher molecule in the

photopolymerisable system.27,84 Sugioka et al. comprehen-

sively reviewed fundamentals and the fabrication of 3D micro

and nanocomponents based on 2PP.85

Performance of 2PP in microfluidics. 2PP has shown great

potential for the fabrication of a microfluidic chip. Kumi

et al.86 described the fabrication of a master for casting

PDMS having rectangular micro-channels with varying

heights and widths, by modifying commercially available SU-

8 resin with novel photoacid generator. By using the new

resin the fabrication speed was increased from 200 μm s−1 to

1 cm s−1 with a total print time of 1 h. However, this tech-

nique required extensive preparation of resin and had a slow

build speed. Stoneman et al. coupled the 2PP process with

emission detection to construct a master for microfluidic de-

vices.87 In this method, linear features were fabricated by

scanning a photoresist-coated microscope slide through the

focal point of tightly focused near-IR beam from a femtosec-

ond laser. The fluorescence emitted during exposure was

monitored through a CCD camera to allow real-time monitor-

ing of printing process. However this method involves prior

extensive knowledge of photoresist emission function.

Venkatakrishnan et al. reported single fluidic channel geome-

try of 110 nm on glass substrate by 2PP.88 Zhou et al. demon-

strated the fabrication of an embedded open microchannel

structure by 2PP using a positive photoresist89 as shown in

Fig. 16(a and b). The use of positive photoresists seems a

good choice as the hollow microchannel occupies only a

small proportion of a whole microfluidic chip, thus making it

more time-economical where only the microchannels are ex-

posed in contrast to negative resists where the chip body

needs to be exposed.

Despite the fact that commercial negative photoresists

have better modeling and conformal capacities, they are not

frequently used for fabrication of microfluidic structure as

prolonged processing time is required due to additive type

fabrication. However, Wu et al. proposed a profile scanning

method for the prototyping of a microfluidic chip

(Fig. 16c and d) using negative-tone photoresists.90 The sur-

face profile scanning followed by additional UV irradiation

reduces the processing time for formation of structures with

large interior volumes, but this process is not effective for

high porosity or thin structures. Ober et al. presented a very

interesting approach utilising PDMS base resin instead of

classical photoresist for microfluidic channels having dimen-

sions of few tens of microns.91

2PP technologies used by different researchers for direct

fabrication of microfluidic chips or masters are mentioned in

Table 1.

Fig. 15 Parameters affecting 2PP print process.

Fig. 16 (a–b) Schematic illustration of a 3D microchannel structure

fabricated by two-photon using positive photoresists. Microfluidic

structure consists of two rectangular cavities (width, 100 μm; length,

20 μm; depth, 20 μm) and a sloped side wall that are connected by 12

microchannels. (b) Scanning electron micrograph of the final structure,

viewed normal to the substrate and two-photon fluorescence images

of the final structure at and below the surface.89 (Copyright 2002

AAAS) (c–d) A conceptual microfluidic device fabricated by 2PP of SU-

8. SEM view of the 3D microfluidic systems with 100 μm diameter disk

and 15 μm height. Here, the internal portion of the background volume

is solidified by additional ultraviolet exposure.90 (Copyright 2009 RSC).
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2PP has been used for the formation of micro or nano-

devices which can be integrated into open or closed micro-

fluidic channels prepared by other techniques. The typical ex-

ample of the integration of various functional units includes

micro-sieves,92 micro-over-passes,93 micro-mixers,94–96 micro-

heaters,97 optofluidic devices,98 surface enhanced Raman

scattering (SERS) monitors99 and catalytic micro-reactors.100

The hybrid approach that involves the combination of other

techniques for making a single microfluidic is not the focus

of this article. Xu et al.101 and Sugioka et al.102 critically re-

view the integration of functional micro-devices within a

microfluidic chip.

Strengths and weaknesses of 2PP printing. The attraction

of 2PP technology is that it can create computer-designed,

fully 3D structures with high spatial resolution, in the range

of sub-100 nm with precision and accuracy and can produce

the highest resolution 3DP structures currently known. A

wide array of processable materials makes 2PP a promising

enabler for both the fabrication and functionalisation of

microfluidic chips. Similar to SLA, the only post-processing

required is the washing and removal of the non-illuminated

and non-photopolymerised material, which can be challeng-

ing when making small fully enclosed structures as it is diffi-

cult to remove this material.

Despite these unique capabilities of 2PP and its potential

applications in microfluidics, it is not viewed as the best fab-

rication tool at this stage, unless it is for its outstanding reso-

lution. This is due to a number of factors: first, it is exten-

sively time consuming process, with for instance, the time

required to fabricate a 1 mm3 volume microfluidic structure

exceeding 104 days.85 Several methods like surface profile

scanning, multifocal scanning and use of parallel multi

beams have been developed for increasing the speed but are

not widely available. Second, the high costs of femtosecond

lasers, positioning systems and optics is another hindering

factors. Furthermore, it needs absolute clean room condi-

tions. Finally, as with SLA, multi-material print capability is

difficult. These barriers have prevented the use of 2PP in the

field of microfluidics outside of niche applications that re-

quire the construction of nm–μm sized structures.

Extrusion printing
Fundamentals of extrusion printing

In 1989, Scott Crump filed a patent for a technology called

fused deposition modeling (FDM).103 He co-founded the com-

pany Stratasys Ltd to commercialise the technology. Currently

it is one of the most widely used additive manufacturing

technologies. In FDM a thermoplastic material is extruded

through a high temperature nozzle to build a 3D model layer-

by-layer.104 The nozzle contains a temperature control unit

that maintains the temperature of thermoplastic material just

above its melting point so that it can flow easily through the

nozzle. The molten material, after flowing from the nozzle,

immediately solidifies in the desired area. Once a layer is

built, the platform lowers, and the extrusion nozzle deposits

another layer. This process continues until the whole object

is formed (Fig. 17). The layer thickness and vertical dimen-

sional accuracy is determined by the extruder die diameter.

While FDM is the most popular extrusion type printer, it is

also important to recognise that since its original inception,

there have also been other extrusion printers developed that

can print gels and other biocompatible structures, al-

though these will not be discussed in detail here.105,106

A notable advantage of FDM is that it can process almost

all types of thermoplastic polymers. This is important be-

cause thermoplastics are used for mass replication fabrica-

tion with hot embossing or injection molding. This means

that FDM chips can be made in materials that are compati-

ble with mass production techniques. Acrylonitrile butadiene

styrene (ABS), polystyrene (PS) and polycarbonate (PC) are

commonly used materials107 and there is a wide range of bio-

compatible polymers including polycarpolactone (PCL), poly-

lactic acid (PLA), polybutylene terephthalate (PBT) and poly-

glycolic acid (PGA).108 Beside these conventional materials,

access to composite materials such as reinforced polymer

composites109 and nano composites make FDM an attractive

choice for the fabrication of objects for different

applications.

FDM machines offer a number of process parameters

(Fig. 18), which allow the user to fabricate devices ranging

from solid to honeycomb structures with varying strength,

surface quality, accuracy, and mechanical properties. These

are also capable of printing multi-materials, traditionally

equipped with multiple heads to accommodate the different

polymer based materials, but more recently several early

stage nozzle designs have been published enabling material

switching inside the nozzle. While it is common that one of

Fig. 17 Schematic illustration of FDM 3D printer. The feedstock

filament of thermoplastic material is drawn from a spool into the FDM

extrusion head, in which it is heated into a semiliquid state and then by

drive wheels it is extruded out through nozzle on a built platform.20

(Copyright 2008 Custom Part Net).
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the materials is a support material (and most software as-

sumes that this is the case), it is possible to print multi-

material devices without a support opening the way to inte-

grated functional fluidic devices.

Performance of extrusion printing in microfluidics. In

FDM, the filament material is extruded through the circular

hole of the nozzle and the deposited layer has a round pro-

file. The bottom surface is typically printed on a heated bed,

and can provide a smooth base, while all other surfaces have

undulating features from the deposition of the fibre. This will

produce a staircase effect on curved surfaces and results in a

grainy surface finish. As a consequence, devices fabricated

through FDM technology faces the inherent limitations in di-

mensional accuracy and surface texture.110

The simplicity, low cost and availability of a wide range of

materials, encourages researchers to use FDM technology in

the field of microfluidics. Lee et al., performed an extensive

study by printing microfluidic features via FDM printer (Di-

mension Elite, Stratasys) for evaluating printing resolution,

accuracy, surface roughness and biocompatibility of ABS

plus-P430 filament.28 It was observed that the accuracy of

printed features had an average deviation of 60.8 μm and

71.5 μm along the Y and X axis, respectively. The printed

channels had a rough surface with protruding filament

strands (Fig. 19).

Symes et al. demonstrated the production of reusable, ro-

bust and self-healing bespoke reactionware through

Fab@Home extrusion printer using acetoxysilicone poly-

mer.111 The reactionware, with built-in catalyst, enabled the

reaction to be monitored in situ and was used for organic

and inorganic synthesis. In another study, Kitson et al. fabri-

cated polypropylene based reactionware, having cylindrical

channels 0.8 mm in diameter and a total reaction volume of

60 μL.112 A benefit to these organic reactionware devices was

that they can be fabricated in a few hours and, due to the

millimeter scale of the devices, can avoid blockages due to

the formation of precipitates. Furthermore, the potential of

3D manufacturing was demonstrated by stopping mid-print

to deposit solid reagents into a chamber which was then

sealed with the printer, something not easily done with i3DP

or STL. Fabrication of such miniaturised reactionware pro-

vides an alternate to the traditional passive-vessel

approaches.113

FDM was used for the fabrication of capillary valves in

centrifugal microfluidic disc.114 Microfluidic structures

containing valve channels with different widths, heights and

radial distances from the center of rotation were compared

with the capillary valve theories.115 Trapezoidal modules each

containing one microfluidic architecture having widths of

254 μm and 508 μm with variable heights of 254, 408, 762

and 1016 μm were printed. Due to the printing process, the

produced valve channels possessed a ridged pattern. It was

concluded that as the height of the valve channel was re-

duced, the critical rpm was found to become progressively

more width-dependent. Operable centrifugal valves with

ridged surfaces could be printed for complex fluid handling.

He et al. demonstrated a simple, low cost microfluidic

chip with a novel 3D sugar printer.116 A desktop extrusion

printer was modified with a redesigned extruder that ex-

truded melted sugar (maltitol) with pneumatic force. Sugar

lines were printed on PDMS base layer followed by casting

PDMS onto the sugar layer. This process was repeated and

microchannels were sealed. The sacrificial sugar was re-

moved by placing the chip in boiling water; printed structure

size was 25 × 25 × 2.2 mm having microchannels with a di-

ameter of 200 μm. The printing quality was dependent on

printing speed, and impressively small channels a few

microns wide could be achieved using a very small sized noz-

zle. With a nozzle size of 0.3 mm, a minimum microchannel

diameter was 40 μm. The 3D printed microfluidic chip was

used for cell culturing.

A low cost and sensitive microfluidic immunosensor for

multiple protein detection was printed through MakerBot

Replicator 2X.117 The device was composed of PLA, with 40

mm length × 30 mm width at the base, having three reagent

chambers connected to a microfluidic channel with a height of

200 μm and a volume of 160 μL. The device had could detect

three prostrate cancer biomarkers simultaneously in 35 min.

Kise et al. fabricated a sandwich-format mixer having

three different designs with 3D printed spacer using FDM

technology, coupled with three different spectroscopic

probes.118 A polymer spacer was sandwiched between two

transparent windows, which created a closed microfluidic

system. The channels of the mixer were defined by regions in

the polymer spacer that lacked material. Each mixer design

had a diameter of 25 mm and layer thickness was 200–250

Fig. 18 Parameters affecting FDM process.

Fig. 19 (A) Channels printed by FDM, (B–C) Staircase effect causing

roughness in channels.28 (Copyright 2015 Springer).
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μm. Two optically transparent windows sandwiched a spacer

for the assembly of the mixer. The sandwich format alleviated

the requirement of optical transparency of mixer material.

This device offered versatility in microfluidic mixing.

Bishop et al. reported semi transparent fluidic device

using polyĲethyleneterephthalate) with threaded ports which

enable the integration of commercially available tubing as

well as specially designed 3D printed fittings.119 These devices

included channels having dimensions of 800 × 800 μm square

cross sections and were semi-transparent to allow visualization

of the solution-filled channel. A low cost replicator 2X desktop

3D printer (MakerBot) was used for fabrication of the device.

Prussian blue nanoparticles were prepared in a 3D printed

mixing channel and applied to electrode surfaces for H2O2

sensing via flow-injection amperometry.

Chips printed by FDM were used to rapidly monitor the

presence of pathogen microorganisms. Chudobova et al.

utilised ABS polymer and printed a chip via a Profi3Dmaker

printer. The 3D-printed chip was suitable for bacterial cultiva-

tion, DNA isolation, PCR, and detection of amplified gene

using gold nanoparticle (AuNP) probes from 10–500 μL of

sample. A specific interaction between mecA gene with the

AuNP probes was used for detection of pathogen.120 Krejcova

et al. printed a chip with dimensions 42.64 × 14.95 × 4.87

mm for the detection of influenza virus.121 The principle of

microfluidic chip was based on a two-step procedure that in-

cludes isolation based on magnetic beads and electro-

chemical detection. Such fabrication provided a promising

and powerful platform for the diagnostic purposes.

Dolomite has recently launched the fluidic factory that of-

fers the first microfluidic targeted FDM 3D printer. An inno-

vative printer head design allows reliable printing of cyclic

olefin copolymer (COC) while new software has changed the

focus to producing finished surfaces on the inside, while all

other 3D printing approaches at this stage focus on the exter-

nal surface being the best.122 The potential and success of

the printer will be determined over the next few years, but it

has the potential to replace PDMS as the method of choice

for in-house fabrication of polymer devices.

Strengths and weaknesses of FDM printing. FDM ma-

chines are safe, reliable, easy to use, office friendly and have

a low purchase price and hence are well known as 3D

printers throughout the community. There is almost no post-

processing, except for support removal if used, and to im-

prove the surface finish, and the printed object can be han-

dled almost immediately after fabrication. Being an

extrusion-based process, only the required amount of fila-

ment material is used to create an object and support struc-

ture, and it is therefore a very efficient type of printer with

minimal wastage of material. It is compatible with a wide

range of thermoplastic polymers, which means it is ideal for

rapid prototyping of devices for subsequent mass production

using embossing or molding techniques. When combined

with the ability to extrude different materials in a single print

run, it can potentially make quite complex integrated devices

with advanced chemical and physical functionality. The ever

increasing range of extrusion filaments means that there is

considerable choice regarding material properties, and it is

possible to obtain flexible, conducting and magnetic fila-

ments, as well as a range of colours and polymer types.

While showing great promise for microfluidics, dimen-

sional accuracy and surface finish is often compromised dur-

ing FDM printing, and the minimum channel dimensions

are still quite large by microfluidic standards. As the stage

must move linearly throughout the XY plane, before moving

to the next Z layer, print time is dependent on the build size,

and is quite slow in comparison to i3DP and SLA. Despite

these limitations, it is currently the only 3D printing ap-

proach in which materials can be placed inside the half-

printed structure prior to finishing the print run.

Conclusions

The last 2–3 years have shown a phenomenal growth and

interest in 3D printing in general and this has echoed within

the microfluidic community. The unprecedented ease in fab-

rication of complex microfluidic devices, and the low price

tag of consumer-focused desktop printers combined with a

rapidly increasing number of 3D printing service providers

makes 3D printing affordable for many researchers around

the world. Despite the enthusiasm of the early uptakers, its

applicability is limited in part by the technical inability to re-

liably print microfluidic channels with dimensions less than

several hundred microns in a reasonable sized device. No

printer type is perfect with i3DP, SLA, 2PP and FDM having

unique capabilities and features when it comes to printing

microfluidic devices. i3DP allows for printing channels as

small as 25 μm in a range of materials, but is hindered by

the difficulties in the removal of the support material from

small fluidic features as well as by a relatively wasteful print

process. SLA enables similar feature sizes without the need

for a support material, but the materials are limited to UV

curable resins. 2PP currently can achieve the smallest

enclosed channels and features in the nano range however,

the limited build volume and infrastructure required for op-

eration restrict the practicality of using it for microfluidic de-

vices. Lastly, FDM printing allows for the use of a wide range

of thermopolymers and provides therefore a material compat-

ibility with mass manufacturing. Unfortunately, the resolu-

tion that can be obtained with FDM is 100 μm with rough

channel surfaces, reducing its appeal for microfluidics. To se-

cure a future in microfluidics, printer specifications will need

to improve to enable the fabrication of enclosed micro-

channels down to 10 μm, in a range of materials with varying

physical and chemical properties, and allow for the printing

of integrated multifunctional and multi-material devices.

Whether this can be done at a cost and speed that will make

it a viable manufacturing approach has yet to be seen, but 3D

printing certainly has the potential to replace soft lithography

in PDMS as rapid prototyping technique because of the mate-

rial compatibility with commercial production.
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