Preprints are preliminary reports that have not undergone peer review.

5 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated infarmation.

3D printed multi-functional scaffolds based on
poly(e-caprolactone) and hydroxyapatite composite

Fan Liu
Wuhan Institute of Technology https://orcid.org/0000-0002-2865-2372

Honglei Kang

Huazhong University of Science and Technology
Zhiwei Liu

Wuhan Institute of Technology
Siyang Jin

Wuhan University of Technology

Guoping Yan (% guopyan2006@163.com )
Wuhan Institute of Technology https://orcid.org/0000-0002-2649-9108

Yunlong Sun

Huazhong University of Science and Technology
Feng Li (% lifengmd@hust.edu.cn)

Huazhong University of Science and Technology

Haifei Zhan
Queensland University of Technology

Yuantong Gu
Queensland University of Technology

Research

Keywords: poly(e-caprolactone), hydroxyapatite, biodegradability, 3D printed scaffolds, bone tissue
regeneration

Posted Date: May 13th, 2021
DOI: https://doi.org/10.21203/rs.3.rs-486510/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Page 1/22


https://doi.org/10.21203/rs.3.rs-486510/v1
https://orcid.org/0000-0002-2865-2372
mailto:guopyan2006@163.com
https://orcid.org/0000-0002-2649-9108
mailto:lifengmd@hust.edu.cn
https://doi.org/10.21203/rs.3.rs-486510/v1
https://creativecommons.org/licenses/by/4.0/

Abstract

Background: Biodegradable polymeric scaffolds are critical to repair a large bone defect, which can
provide a porous and network microenvironment for cell attachment and bone tissue regeneration. A
multifunctional biodegradable PCL/HA composite was prepared with the blending of poly(e-
caprolactone) (PCL) and hydroxyapatite nanoparticles (HA). Subsequently, the PCL/HA scaffolds
implants were produced by the screw extrusion/melting deposition forming method using PCL/HA
composite as a raw material in this work.

Results: Through a serial of in vitro assessments, it is found that the PCL/HA composite possesses good
biodegradability, good biocompatibility, and steady drug release performance, which can improve the cell
proliferation of osteoblast cells MC3T3-E1. Meanwhile, in vivo experiments were carried out for the rats
with skull defect and rabbits with bone defects. It is observed that the PCL/HA scaffolds implants allow
the adhesion and penetration of bone cells, which enables the growth of bone cells and bone tissue
regeneration. With a composite design to load an anticancer drug and achieve sustained drug release, the
scaffolds could enhance bone repair and be expected to inhibit the tumor cells and improve patient
outcomes.

Conclusions: This work signifies that PCL/HA composite can be used as the potential biodegradable
scaffolds for bone repairing after bone malignant tumor resection.

1. Introduction

Due to the losing of osteogenic microenvironment, it is a great clinical challenge to repair a large bone
defect [1-3]. Biodegradable polymeric scaffolds possess porous and network structures, which provide
the matrix and microenvironment for cell attachment and bone tissue regeneration. In particular these
polymeric scaffolds do not need to be removed by second operation since polymers can be completely
degraded in vivo [4-6]. Biodegradable aliphatic polyesters, such as poly(lactic acid) (PLA), poly(e-
caprolactone) (PCL), and poly(trimethyl carbonate) are the attractive polymers that have been widely
used as the tissue engineering matrix and drug controlled release system [7-9]. Specifically, PCL is a
preferred synthetic aliphatic polyester biomaterial due to their good biodegradability and biocompatibility,
low toxicity, and weak inflammatory effect of the degraded products. It has been shown to be suitable for
the fabrication of biodegradable scaffolds for tissue regeneration and tissue engineering [10-12].

The polymer composites containing nanoceramics were reported to possess better mechanical properties
than that of the pure polymers due to additional strength and stiffness provided by the embedded
ceramic nanoparticles. As such, the polymer composite-based scaffolds can withstand a certain level of
physiological loading and function before the new tissue replaces the scaffold matrix (during its gradual
degrading process) [13, 14]. Hydroxyapatite (HA) is a naturally occurring mineral form of calcium apatite
and an important component of human skeleton and teeth. It has been widely applied as the good bone
grafting material, replacement and supplement material because of its convenient production, low
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toxicity, good biocompatibility and high bioactivity [15, 16]. Thus it is of great interest to explore whether
HA can be applied as reinforcements for PCL in biomedical applications.

In the prosthodontic treatment of bone defects, the ideally implanted scaffolds should be biodegradable
while new bone tissue is growing. They should have good bioactivity to promote the bone-binding ability,
and possess other biological actions such as antitumor, antiangiogenic, anti-collagenolytic and anti-
inflammatory properties for bone regeneration. Recently, some physical and chemical methods (such as
surface functionalization and blending) were used to fabricate functional scaffold materials for tissue
engineering applications. For instance, Sarkar et al. [17] fabricated calcium phosphate (CaP) scaffolds
with the encapsulation of hydrophobic biomolecule curcumin (within a liposome), which eradicate the
osteosarcoma cells and also promote osteoblast proliferation, offering new opportunities to treat bone
defects after tumor resection.

This work prepared a polymer composite based on poly(e-caprolactone) and hydroxyapatite with the
addition of doxorubicin (DOX) as an anticancer drug. DOX was chosen as a model drug due to its
widespread use in bone cancer. Biodegradable scaffolds were further fabricated based on this polymer
composite using screw extrusion/melting deposition forming approach. The polymer composite was also
evaluated to be used as the potential biodegradable scaffolds for bone repairing.

2. Materials And Methods
2.1. Materials

All chemicals and solvents were of analytical grade. Toluene and tetrahydrofuran (THF) were purified by
redistillation over sodium. Triethylamine was refluxed under phthalic anhydride and dried over calcium
hydride (CaH,) before use. Tin (ll) 2-ethylhexanoate (Sn(Oct),) was purchased from Sigma-Aldrich (Louis,
MO, United States of America) and purified by redistillation in vacuo before use. PCL was synthesized by
ring-opening bulk polymerization of e-caprolactone using Sn(Oct), as a catalyst [18—-20]. PCL was
characterized by the gel permeation chromatography, "H NMR, Fourier transform infrared spectroscopy,
UV, differential scanning calorimetry, and automatic contact-angle measurements. PCL: "H NMR
(300MHz, CDCls, 6, ppm): 4.25 (m, 4H, C-CH,), 2.06 (m, 2H, C-CH,-C). FT-IR (KBr,cm™1): 3450 (OH), 2963,
2922 (C-C), 1740 (C=0), 1461 (C-C), 1172, 1034 (C-0). The molecular weight (M) was 1.94x10° and
polydispersity was 1.47 as determined by Gel Permeation Chromatography (GPC, Waters Corporation
Milford, MA, United States of America). Hydroxyapatite (HA) nanoparticles with average diameter of
particle sizes of 20 nm were purchased from the Beijing Deke Daojin Science and Technology Co., Ltd.
(Beijing, China).

2.2.1 Instrumentation

The compounds were characterized using a UV-Vis spectrophotometer (UV-2800 series, Unico, Shanghai,
China), a Nicolet is10 Fourier Transform-Infrared (FT-IR) spectrophotometer (Thermo Fisher Scientific Inc.,
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Madison, WI, United States of America), a Varian Mercury-VX300 NMR spectrometer (Varian, Inc.
Corporate, Palo Alto, CA, United States of American) and an automatic contact angle meter (SL200A/B/D
Series, Solon Tech. Inc. Ltd., Shanghai, China). The molecular weight was measured by a gel permeation
chromatography (GPC, Waters Corporation Milford, MA, United States of American) (Waters 2965D
separations module, Waters 2414 Refractive Index Detector, Shodex K802.5 & K805 with Shodex K-G
Guard Column, Polystyrene Standard, DMF solvent, 1.0 mL.min" " flow rate, 323K Column temperature
and 323K Detector temperature). The glass transition temperature (Tg) was measured by a differential
scanning calorimeter (DSC) (NETZSCH DSC 200 F3, Erich NETZSCH GmbH & Co. Holding KG, Gebriider-
Netzsch-Strasse, Selb, Germany). The morphologies were characterized using a SEM (JEOL JSM-7001F,
Japan) at 5-10 kV. Before SEM observation, the specimens were gold-sputter coated using an auto fine
coater (JEOL, Ltd., Japan) under argon atmosphere for 60 s. The elemental distribution of calcium (Ca),
phosphorus (P), oxygen (0), and carbon (C) in the scaffolds was investigated using an EDS (Phenom
World BV, Netherlands). The phase composition was investigated using a XRD diffractometer (German
Bruker Co., Germany) with Cu Ka radiation (A = 0.154056 nm, 40 kV, 40 mA). Before analysis, the scaffold
specimens were fixed on a specimen holder by double side adhesive tape. The data were recorded in the
20 range of 10-75° with scanning speed of 8° min~'. The absorbance (optical density: 0D ,4,) were
measured with a DG-3022A ELISA-Reader (Hercules, CA, United States of American). The osteoblast cells
MC3T3-E1 were provided by the China Center for Type Culture Collection of Wuhan University, China. The
ethical approval was obtained for the in vivo experiments in animals from the Department of Science and
Technology of Hubei Province, China and the Animal Center of Tongji Medical College, Huazhong
University of Science and Technology, China.

2.3. Preparation of poly(e-caprolactone) and hydroxyapatite
(PCL/HA) scaffolds

Two different types of composite (PCL/HA and PCL/HA/DOX) samples were prepared, with one
containing PCL and HA and the other one containing PCL, HA and doxorubicin (DOX). The
dichloromethane was used to ensure even mixture between PCL and HA (or DOX). The mixture was
slowly evaporated to dry under reduced pressure. The residue was cut into small pieces and dried under
vacuum for 48 h to yield PCL/HA composite and PCL/HA/DOX composite.

Thereafter, the 3D printed PCL/HA scaffolds (diameter: 4 mm and height: 6 mm; diameter: 10 mm and
height: 2 mm) and multi-functional PCL/HA/DOX scaffolds containing DOX (diameter: 4 mm and height:
6 mm) were prepared by the screw extrusion/melting deposition forming method using a 3D printer of
melting deposition forming (Hubei Joye 3D High-tech Co., Ltd., Chibi, Hubei Province, China) with PCL/HA
and PCL/HA/DOX composites as raw materials, respectively. The printing conditions were listed as
follows: the printing temperature was 130°C and preheating temperature of the operation desk was 50°C,
the nozzle aperture was = 0.4 mm, the extrusion speed was 220 mm/min, and the printing rate was 70
mm/s. In vivo implanted PCL/HA scaffolds in a thigh-bone defect model of lower limb in rabbits were
further loaded of 3D printed PCL/HA scaffolds and multi-functional PCL/HA/DOX scaffolds by collagen |
respectively according to the method cited in the literatures. [22—-24]
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2.4. In vitro degradation test

PCL and PCL/HA scaffolds (0.1g, diameter: 10 mm and height: 2 mm) were prepared as above and then
dried in vacuum for 24 h. The scaffolds were suspended in 10 mL of PBS in a dialysis bag. The dialysis
bag was sealed and then slowly shaken in 90 mL of PBS (pH 7.4) at 37°C in a 250 mL Erlenmeyer flask.
At predetermined time intervals, the samples were taken out of the degradation medium, rinsed with
distilled water and then dried in vacuo for 48 h. The molecular weight, water absorption and weight loss
were calculated, respectively.

The PCL/HA samples for mechanics testing were further prepared by the thermoforming of PCL/HA
composite materials in a standard mold on an injection molding machine. /n vitro degradation test was
also measured using PCL/HA samples according to the above same method as PCL/HA scaffolds.

2.5. In vitro drug release study

Doxorubicin (DOX, 10 mg) and PCL or PCL/HA composite materials (100 mg) were dissolved in 20 mL of
THF. The solution was homogenized by sonication for 30s and then allowed to evaporate. The resulting
film was cut into small pieces and dried under vacuum for 48 h to obtain 5-DOX-incorporated PCL or
PCL/HA composite materials. The 5-DOX-incorporated PCL or PCL/HA scaffolds were further prepared by
the thermoforming of 5-DOX-incorporated PCL or PCL/HA composite materials in a disc mold (diameter:
10 mm and height: 2 mm) on a thermocompressor with loading pressure of 10 MPa, setting temperature

of 110°C and molding time of 10 min.

The 5-DOX-incorporated PCL or PCL/HA scaffolds were suspended in 10 mL of PBS in a dialysis bag.

The dialysis bag was sealed and then slowly shaken in 90 mL of PBS at 37°C in a 250-mL Erlenmeyer
flask. Aligouts of the solution outside the dialysis membrane (25 mL) were replaced with 25 mL of PBS at
various times intervals and tested at 256 nm by a high-performance liquid chromatography
spectrophotometer (HPLC). The changes of the concentrations of DOX were obtained from curves of the
absorption A versus concentration Cof DOX in PBS on the basis of Lambert-Beer law.

2.6. Cell viability and proliferation assay

The circular 3D printed PCL and PCL/HA scaffolds (diameter: 10 mm, thickness: 2 mm, the content of HA:
5%, 10%, 15%, 20% and 25%) were placed into the wells of 24 wells plate. The scaffolds were sterilized
using Ultraviolet light for 1 hour for each side and secured with a stainless-steel ring. MC3T3-E1 cells
were seeded onto the scaffolds at a density of 4x10% cells/mL and 100 pL of the RPMI-1640 growth
medium was added. Cell counting kit 8 (CCK-8) assay was performed on 1 and 3 days after culture. The
cells were incubated for 1 and 3 days in an incubator (37°C, 5% CO,) and the medium was replaced by

the fresh growth medium. And then 10uL of CCK-8 solution was added to each well and continued
incubating for 3 hours. The absorbance (optical density: OD,q9,) was measured at 492 nm with a DG-

3022A ELISA-Reader and expressed as a percentage relative to control cells (no scaffolds).
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2.7. In vivo implanted assay of PCL/HA scaffolds in skull
defect and histological analysis

Eighteen 6-week-old SD rats were divided into three groups (control, PCL and PCL/HA, for each group, n =
6) and the circular skull defect model (diameter of about 10 mm) was made in the head of each rat.
Subsequently the rat was anesthetized with urethane (10%, 10mL/kg), positioned prone and fixed to a
polystyrene cradle with adhesive tape to minimize motion. The scalp along the sagittal suture was
shaved and the skin was sterilized with iodine. A 15 mm long incision along the sagittal suture was
made, and then, the calvarial bone was exposed by blunt dissection. A 10 mm diameter defect was
created using a trephine bur (3i Implant Innovation, Palm Beach Gardens, FL, United States of America)
on left parietal bone. The circular scaffolds of 10 mm diameter were was sterilized with UV light for 1
hour for each side and implanted into the bone defects for each group (PCL and PCL/HA scaffolds). For
the control group, the rats were treated the same and but without implantation. The periosteum and the
overlying skin were then stitched up using the nylon suture. After one month postsurgery, the rats were
anesthetized and perfused through heart by using 4% paraformaldehyde. The whole calvaria was
harvested and further fixed with 4% paraformaldehyde at room temperature for 2 days for the following
evaluations. To assess the new bone formation in the bone defeat area, micro-computed tomography
(micro-CT) (micro-CT 50, Scanco Medical AG, Bassersdorf, Switzerland) was applied under the fixed
conditions (24 kV, 2 mA, 90 seconds). Area of new bone formation and percentage were measured using
the Image Processing and Analysis in Java (ImageJ-1.51r, NIH, United States of America) software.

Nine 6-week-old SD rats were divided into three groups (control, PCL and PCL/HA scaffolds, for each
group, n = 3) and anesthetized with urethane (10%, 10mL/kg), positioned prone and fixed to a polystyrene
cradle with adhesive tape to minimize motion. The scalp along the sagittal suture was shaved and the
skin was sterilized with iodine. A 15 mm long incision along the sagittal suture was made in the muscle
on the back. The circular scaffolds of 10 mm diameter were was sterilized with UV light for 1 hour for
each side and implanted into the muscle defects for each rat (PCL and PCL/HA scaffolds). For the
control group, the rats were treated the same and but without implantation. The periosteum and the
overlying skin were then stitched up using the nylon suture. After 3 days postsurgery, the rats were
anesthetized and the circular scaffolds were moved. The samples of muscle tissues around scaffolds
were taken out and embedded in paraffin and sectioned at a thickness of 5 um for Hematoxylin-eosin
(H&E) staining. The H&E staining slides were observed under an optical microscope, and the images were
captured under an IX-70 fluorescence inverted microscope (Olmypus Co., Ltd., Japan). Histological
evaluation was performed by two independent examiners.

2.8. In vivo implanted assay of PCL/HA scaffolds in thigh-
bone defect

The 3D PCL/HA scaffolds containing collagen | and multi-functional PCL/HA/DOX scaffolds containing
collagen | and DOX (diameter: 4 mm and height: 6 mm) were further produced by the loading of 3D
printed PCL/HA scaffolds and multi-functional PCL/HA/DOX scaffolds with collagen | accordingly to the
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methods in cited literatures respectively. Eighteen 6-week-old New Zealand white rabbits were divided into
three groups (control, PCL/HA scaffolds with 25% HA content loading of collagen | and multi-functional
PCL/HA scaffolds with 25% HA content loading of collagen | and DOX, for each group, n = 6) and the
circular thigh-bone defect model (diameter of about 4 mm) was made in each rat. Subsequently the
rabbits was anesthetized with urethane (10%, 10mL/kg), positioned prone and fixed to a polystyrene
cradle with adhesive tape to minimize motion. The scalp along the sagittal suture was shaved and the
skin was sterilized with iodine. A 15 mm long incision along the sagittal suture was made, and then, the
thigh-bone was exposed and a 4 mm diameter defect was created using a trephine bur in the cancellous
bone. The scaffolds (diameter: 4 mm and height: 6 mm) were sterilized with UV light for 1 hour for each
side and implanted into the bone defects for each group. For the control group, the rats were treated the
same and but without implantation. The periosteum and the overlying skin were then stitched up using
the nylon suture. After 2 months postsurgery, the rabbits were anesthetized and perfused through heart by
using 4% paraformaldehyde. The whole thigh-bone was harvested and further fixed with 4%
paraformaldehyde at room temperature for 2 days for the following evaluations.

The new bone formation in the bone defeat area was assessed using micro-computed tomography
(micro-CT) (Skyscan1276 X-Ray Microtomograph (Micro CT), Bruker, Belgium) under the fixed conditions
(voltage: 93 kv, current: 800 A, scanning resolution: 6.5 pm). Area of new bone formation and
percentage were measured using the Image Processing and Analysis software in the Skyscan1174 Micro
CT Scanner with taking the femoral implant as the reference baseline. The cylindrical area with a
diameter of 4.1 mm and a thickness of 6 mm was set as the three-dimensional reconstruction area of
interest (ROI). The three-dimensional image was reconstructed with N-Recon software and the three-
dimensional analysis was performed with CT-AN software. Moreover, the bone mineral density (BMD) of
the new bone area was also measured.

2.9. Statistical analysis

All results were expressed as mean differences and were tested for significance by a ttest, P<0.05 being
considered a significant difference.

3. Results And Discussion
3.1. Characterization

The micrographs of PCL/HA scaffolds were examined by scanning electron microscopy (SEM, JEOL
JSM-7001F, Japan) at 5-10 kV and the specimens were coated with gold-sputter using an auto fine
coater (JEOL, Ltd., Japan) under argon atmosphere for 60 s. As shown in Fig. 1a, HA nanoparticles
scatter uniformity in the scaffolds with some aggregated occasions. Uniform pore with different
diameters is observed from the 3D printed PCL/HA scaffolds. Figure 1b shows the mapping distribution
of C, O, Ca, and P elements in the HA powders, which appears uniformly distribute in the scaffolds. Herein,
the elemental distribution in the scaffolds is investigated using an EDS (Phenom World BV, Netherlands).
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In this work, PCL/HA scaffolds with 400—800 nm of uniform pore sizes are chosen as the implanted
samples as such pore size is expected to be beneficial for cell proliferation/differentiation in vivo.

Chemical characterization of pure PCL, HA and PCL/HA scaffolds with different content of HA were
conducted by a Nicolet is10 Fourier Transform-Infrared (FT-IR) spectrophotometer (Thermo Fisher
Scientific Inc., Madison, WI, United States of America) and their characteristic peaks are shown in Fig. 2a.
For the composite samples, many of the absorption bands are overlapped but the properties of the
functional groups remain unchanged. Whereas, the shape, location and intensity of the spectral peaks
change significantly. The spectra of PCL/HA scaffolds show typical ester peaks (at 1724 cm™", 1640

cm™ ') and CH peaks (2923 cm™ ). The increase of HA content in the scaffolds (from 0 to 25%) decreases
the peak intensities. Specifically, PCL/HA scaffolds show spectral features in the range of 1150 and 960
cm™ 1, which are related to the P-O and P = O vibrations of HA. The peak intensities of the spectral range
of 3500 - 3200 cm™ " that represents the absorption peak of OH groups of HA, decrease evidently.

Typical X-ray diffraction (XRD) spectra obtain for PCL/HA scaffolds are presented in Fig. 2b. The scaffold
specimens were fixed on a specimen holder by double side adhesive tape and the XRD diffractometer
(German Bruker Co., Germany) with Cu Ka radiation (A = 0.154056 nm, 40 kV, 40 mA) was utilized. The
data were recorded in the 26 range of 10° - 75° with a scanning speed of 8 min~'. As illustrated in

Fig. 3b, the spectra of PCL/HA scaffolds appear similar as that of pure PCL. In addition to the strong
peaks associated with the crystalline PCL phase, relatively weak peaks at ~25.32°, 32.78°, 41.43°, 45.58°
and 46.58° are observed, which correlate to the crystalline HA phase. These observations imply the
presences of both PCL and HA in the mixture powders. Combined with the above SEM image in Fig. 2a,
these observations indicate that the fine HA nanocrystals are well dispersed in the PCL matrix.

Figure 2c compares the water contact angle of the PCL/HA scaffolds containing different content of HA.
The water angle was measured using an automatic contact angle meter (SL200A/B/D Series, Solon Tech.
Inc. Ltd., Shanghai, China). As it is seen, the water contact angle decreases from 91.6° for pure PCL to
80.70° for PCL with 15wt% HA, and then increases gradually to 81.4° when the HA content increases
further to 25wt%. In all examined samples, the water contact angle on the PCL/HA scaffolds is much
smaller than that on the pure PCL. Such result demonstrates that presence of the nano-HA enhances the
surface hydrophilicity of the PCL scaffolds [21, 22].

The compressive modulus of PCL/HA scaffolds are measured and shown in Fig. 2d. Here, the scaffolds
are fabricated in the form of cylinders (with a diameter of 4 mm and a height of 6 mm) and vertically
placed between two parallel plates in a universal testing machine (MTS Industrial Systems Co., Ltd,
Shenzhen, China,). A compression rate of 1.0 mm min~ " was utilized. Each compressive test was
repeated five times. As it is seen, the compressive modulus increases from 112 MPa to 330 MPa when
the HA content increases from 0 to 25wt%. In literature, the compressive modulus for pure PCL is
measured between 85 MPa and 224.9 MPa [23, 24], which agrees with our measurements. The
enhancement is expected as originated from the higher intrinsic mechanical properties of HA (an average
compressive strength of 174 MPa and a Young's modulus of 6 GPa) [25], and the uniform distribution of
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HA in the PCL matrix which show in the Fig. 1 play a very important role in the mechanical improvement
of PCL/HA nanocomposite [24, 26].

The glass transition temperature (Tg) of the PCL/HA scaffold was measured by a differential scanning
calorimeter (DSC) (NETZSCH DSC 200 F3, Erich NETZSCH GmbH & Co. Holding KG, Gebriider-Netzsch-
Strasse, Selb, Germany). For pure PCL, the glass transition temperature (Tg) is -66.4°C [27]. Figure 3a
shows the DSC curves of PCL and PCL/HA composites, from which the Tg varies from - 70°C to -60°C,
suggesting a good compatibility between PCL and HA. According to Fig. 3b, the degradation temperature
for weight loss at 10% decreases from 389.7°C to 363.3°C when HA content increases from 0% to 25wt%.
Similar result is also observed the degradation temperature for weight loss at 50% (from 515.0°C to
414.0°C). In all, the results from thermogravimetric analysis (TGA) analysis indicate that the addition of
HA in PCL decreased the thermal stability of scaffolds as the starting decomposition temperature
decreases.

Additionally, the in vitro biocompatibility of the PCL/HA scaffolds was carried out in terms of the
proliferation of MC3T3-E1 cells. The osteoblast cells MC3T3-E1 were provided by the China Center for
Type Culture Collection of Tongji Medical College, Huazhong University of Science and Technology, and
raised according to the method described in literature [19]. In general, no significant differences of cell
proliferation activity among all scaffolds are observed after 1 day (Fig. 4.). Whereas, evident differences
of cell proliferation activity start to appear among all scaffolds after 3 days. Specifically, PCL/25wt% HA
content exhibits the similar cell proliferation activity with the control cells. These results signify that
PCL/25wt% HA possesses good biocompatibility and can stimulate cell proliferation well. In all, based on
above analysis, PCL/25wt% HA shows the best comprehensive performances and thus being selected to
assess their biomedical application potentials.

3.2 In vitro degradation property of PCL/HA scaffolds

Ideally, scaffold materials should be biodegradable during the growth of new bone tissue but maintain
good mechanical properties before the bone tissue is completely regenerated. Thus, it is important to
understand the biodegradable behaviors of the scaffolds during the degradation for bone regeneration.
For such purpose, PCL and PCL/HA scaffolds were suspended in 10 mL of PBS in a dialysis bag and
then slowly shaken in 90 mL of phosphate buffer saline (PBS) (pH 7.4) at 37°C. At predetermined time
intervals, the samples were taken out of the degradation medium, rinsed with distilled water and then
dried in vacuo for 48 h.

As illustrated in Fig. 5a, the number of large pores and cracks increases in the PCL/HA scaffolds when
the degradation time increases, and the PCL/HA scaffolds gradually lost their regularity and uniformity.
The degradation of the sample can be well reflected by the weight loss and molecular weight loss shown
in Fig. 5b and 5c. Compared with pure PCL, the weight loss for PCL/25wt% HA sample is a much smaller
during degradation. For instance, after 180 days degradation, the weight losses of pure PCL and
PCL/25wt% HA scaffolds are about 10% and 1%, respectively. These results indicate that mass loss
occurs at a much lower rate for samples with higher HA content. It is probably that the alkalinity of HA
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nanoparticles induces neutralize acidic substances during the degradation of PCL, which resulting in the
inhibition of self-acceleration of acidolysis and decreasing of hydrolysis of ester bonds.

The Young's modulus of PCL/25wt% HA content after degradation are measured from tensile
experiments and summarized in Table S2 (see Supporting Information S2). It is found that Young’s
modulus decreases gradually when the degradation time increases from 0 to 4 month, which aligns with
the weight loss during the degradation process. It is expected that during the first three months, the
degradation processes mainly occur at the end and pendant functional groups of the polymeric chain,
and thus result in a minor influence on the molecular chain. After 90 days, the degradation is expected to
induce remarkable reduction to the molecular weight of the polymeric main chain and thus results in
significant reduction in Young's modulus.

DSC curves of pure PCL and PCL/25wt%HA composites after degradation are also measured and shown
in Fig. S3 (see Supporting Information S3). Pure PCL and PCL/HA are found to keep the characteristic
peaks of glass-transition temperature varying from - 70°C to -60°C after degradation in PBS for months.
Specifically, Tg of both samples is found to decrease slightly with the increase of degradation time.

3.3 In vitro drug-release property of PCL/HA scaffolds

To probe the drug-release properties of the PCL/HA composites, Doxorubicin (DOX) were chosen as a
model drug and mixed in the samples. DOX is a chemotherapy drug that is used to inhibit the growth of
tumors cells [26—29]. In this work, 10 mg of DOX is mixed with each 100 mg of the pure PCL or PCL/HA
composite sample. After mixture, the samples were evaporation and then shaped in a disc mold (with a
diameter of 10 mm and a height of 2 mm) and suspended in 10 mL of phosphate buffer saline (PBS) (pH
7.4) in a dialysis bag with a continuous shaking for 250 h in the dark environment. The DOX loading
capacity was determined using UV-Vis spectrophotometer (UV-2800 series, Unico, Shanghai, China) at
483 nm. The changes of the concentrations of DOX were obtained from curves of the absorption versus
concentration of DOX in PBS following the basis of Lambert-Beer law [28].

Recent studies show that the release amount of DOX at first 100 h could reach over 80% [29, 30], such
high release rate could inhabit the regeneration of new bone tissue in the tissue engineering. Thus, a
controllable release rate is a necessity. Figure 6 compares the DOX-release properties of the pure PCL and
PCL/HA scaffolds. After ~ 25 hours (or a day), the DOX-incorporated pure PCL and PCL/HA scaffolds
display steady drug-release rates (as indicated by the linear profile of the curves in Fig. 6). Compared with
the pure PCL scaffolds, PCL/HA scaffolds exhibit faster drug-release rates, which is suspected as
resulted from the increased drug diffusion coefficient (due to the presence of HA). Moreover, the
PCL/25wt% HA scaffold show higher release rate than that of the counterpart with 10wt% of HA. After 34
days, the cumulative DOX-release percentage is around 22.0% and 37.7% for the samples with 10wt% and
25wt% of HA, respectively, which is much higher than that of the pure PCL scaffolds (about 10.1%). It is
expected that the high content of HA decreases the entanglement degree of PCL, which promotes the
DOX release from the scaffolds [31]. Above results suggest that the DOX release rate can be effectively
controlled by the content of HA in the PCL/HA scaffolds.
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3.4 Cell response of BMSCs of PCL/HA scaffolds

To further elucidate the effect of PCL/HA scaffolds on the differentiation of rat bone marrow-derived
mesenchymal stem cells (BMSCs), cell proliferation was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) assay after culturing for 1 and 2 days, respectively. Cells adhesion
was performed with 4, 6-diamidino-2-phenylindole (DAPI, Sigma) and FITC-Phalloidin (Sigma) as
previously described [32]. The expression of osteogenic differentiation related genes and proteins in rat
BMSCs cell was also evaluated. The mRNA transcript levels of Actin,alkaline phosphatase (ALP),
collagen (COL), runt-related transcription factor-2 (RUNX2), and osteocalcin (OCN) mRNA within rat
BMSCs (cultured in different supplemented osteogenic-inducing medium) were assessed by real-time
polymerase chain reaction (PCR). In both cases, cells were harvested on day 7 and day 14 then lysed in
Trizol (Life Technologies, Carlsbad, CA, USA) and mRNA was extracted according to the manufacturer's
protocol. Reverse transcription was carried out using the RNeasy Plus Micro Kit (Hilden, Germany)) and
the PCR test was performed using S1000™ Thermal Cycler (Bio-rad, Hercules).

As shown in Fig. 7a, the cell proliferation activity on PCL/25wt% HA scaffolds is obviously higher than
the PCL/HA/DOX scaffolds at either day 1 or day 2, whereas the gap between them decreases on day 2.
Fluorescence images show that the rat BMSC cells display good adhesion on the surface of the
PCL/25wt% HA scaffolds (Fig. 7b), which is beneficial for bone tissue regeneration. From Fig. 7c,
PCL/25wt% HA scaffolds support the growth of BMSCs cells and evidently promote the expression of
Actin, ALP, COL, RUNX2, OCN mRNA and proteins. The expressions of those genes and proteins are much
higher at day 14 than that at day 7. These results demonstrate that the PCL/25wt% HA scaffolds possess
good biocompatibility and can stimulate cell proliferation well. Compared with the PCL/25wt% HA
scaffolds, the expressions of those genes and proteins are much smaller in the PCL/HA/DOX scaffolds,
which is expected as resulted from the quickly released DOX.

3.5 In vivo bone regeneration with skull defect

In vivo bone regeneration ability of PCL/HA scaffolds was investigated by measuring new bone
formation using the model of rats with calvarial bone defects. Twelve 6-week-old Sprague-Dawley rats
were divided into two groups, with 6 rats in each group. A circular skull defect (with a diameter of 10 mm)
was created using a trephine bur (3i Implant Innovation, Palm Beach Gardens, FL, USA) on the left
parietal bone of each rat. This size of defect was chosen because it is a defect of this size does not heal
by itself without intervention [11]. Thereafter, a circular scaffold (with a diameter of 10 mm and a
thickness of 2 mm) was sterilized and implanted into the bone defect location for each rat. To assess the
new bone formation in the bone defective area after 4 weeks, micro-computed tomography (micro-CT 50,
Scanco Medical AG, Bassersdorf, Switzerland) was utilized under the fixed conditions (24 kV, 2 mA, 90
seconds). The muscle tissues around the scaffolds were taken out and embedded in paraffin and
sectioned at a thickness of 5 pm for Hematoxylin-eosin (H&E) staining. The H&E staining slides were
visualized under an optical microscope.
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According to the micro-CT data, there is no observable new bone formed in the control group with pure
PCL scaffolds after 4 weeks post-surgery (see Fig. 8a). In comparison, the group with PCL/25wt% HA
shows evident formation of new bone at the edge of the bone defect region (after 4 weeks). In the
meantime, there is a certain amount of new bone deposition in the central area of the defects. Further
histological analysis affirms the new bone formation after 4 weeks in the group with PCL/25wt% HA
scaffolds. These observations signify that the PCL/25wt% HA scaffolds promotes the osteogenic activity,
which can repair the bone defect. In the histological analysis,no obvious inflammation was observed in
the tissue sections in the H&E staining micrographs after 4 weeks post-surgery (Fig. 8b). This observation
further suggests that the PCL/25wt% HA scaffolds possess good biocompatibility and can provide a
good microenvironment for osteoblast proliferation and differentiation.

3.6 In vivo bone regeneration with thigh-bone defect

The effects of the scaffolds on bone formation in vivo are also evaluated in rabbits with a thigh bone
defect in their lower limbs. Eighteen 6-week-old New Zealand white rabbits were divided into three groups
with 6 in each group, including the control group (with no scaffold), the group with PCL/25wt% HA
scaffolds and the group with PCL/HA/DOX scaffolds. A circular thigh-bone defect (with a diameter of 4
mm) was introduced to the thigh bone of each rabbit. The PCL/25wt% HA and PCL/HA/DOX scaffolds
(with a diameter of 4 mm and a height of 6 mm) were firstly coated with collagen | (see Supporting
Information S4), and then sterilized and implanted into the bone defects for each rabbit following the
method used in literatures [33-37]. The implanted position was determined by the magnetic resonance
imaging using M7 Small animal MRI system (1.0 Tesla, Aspect Imaging Ltd, Israel) (see Supporting
Information S5). Area of new bone formation and percentage were measured using the Image Processing
and Analysis software taking the femoral implant as the reference baseline. The cylindrical area with a
diameter of 4.1 mm and a thickness of 6 mm was set as the three-dimensional reconstruction area of
interest. The three-dimensional image was reconstructed with N-Recon software and the three-
dimensional analysis was performed with CT-AN software.

As shown in Fig. 9, there is a large amount of new bone formed in the rabbits either with PCL/25wt% HA
scaffolds or PCL/HA/DOX scaffolds after 8 weeks. Bone tissues are found to gradually penetrate into the
scaffold, adhere on the scaffold surface, and then grow to form a network. Along with the repair process,
the PCL/HA scaffolds degrade gradually. These results indicate both PCL/25wt% HA and PCL/HA/DOX
scaffolds promote the osteogenic activity and can repair the bone defect. To further assess the new
formed bone, Fig. 9b compares bone tissue volume/total tissue volume (BV/TV, %), trabecular thickness
(Tb.Th, mm), number of trabecula (Tb.N, mm~), and bone mineral density (BMD, g.cm™3) after 8 weeks
surgery. Interestingly, more new bone formation is observed from the rabbit with PCL/25wt% HA
scaffolds than the counterpart with PCL/HA/DOX scaffolds after 4 weeks. Probably the large amount of
DOX released from the PCL/HA/DOX scaffolds inhibit the cell proliferation activity due to its high cell
cytotoxicity to the bone cell. The PCL/25wt% HA scaffolds are found to result in higher bone volume
fraction, larger trabecular thickness, larger number of trabecula and higher bone density. It is expected
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that, the slowly released DOX at the earlier stage of implantation is conducive to cell proliferation and
inhibits inflammation.

4. Conclusions

A multifunctional biodegradable PCL/HA composite was prepared by blending PCL with HA and then the
3D printed PCL/HA scaffolds implants were produced by the screw extrusion/melting deposition forming
method using PCL/HA composite as a raw material in this work. /n vitro assessments reveal that the
PCL/HA composite possesses good biodegradability and biocompatibility and promotes cell
proliferation. With the addition of a chemotherapy drug (DOX), it is found that the PCL/HA scaffolds has
a steady drug release performance, and the release rate can be effectively controlled by the content of
HA. Subsequently, in vivo experiments for the rats with bone defects and rabbits with skull defect reveal
that the PCL/HA scaffolds implants allow the penetration of bone cells, which enables the growth of
bone cells and bone tissue regeneration. Therefore the results suggest that PCL/HA composite can be an
ideal biodegradable scaffolds for bone repairing after bone malignant tumor resection.
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Figure 1

The characteristics of scaffolds. (a) Micromorphology of PCL/HA scaffolds in different content (0%,
10wt%, 25wt%) (upper panel: x50, middle panel: x103, lower panel: x105); (b) The optical graphs and EDS
mapping distribution of C, O, Ca, and P elements in the surface of PCL/25wt% HA scaffolds.
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Figure 2

Characterization of different PCL scaffolds with different content of HA ranging from 0% to 25wt%. (a)
FT-IR result; (b) XRD spectra; (c) Water contact angle as a function of the HA content; and (d)
Compressive modulus as a function of the HA content.
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Figure 3

The thermal properties of the PCL scaffolds with different HA contents. (a) DSC profiles for the PCL/HA
composite with different content of HA; (b) Thermogravimetric-differential thermal analysis curves of
PCL/HA scaffolds.
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Cell proliferation results of MC3T3-E1 cells after culturing for 1 and 3 days on the PCL/HA scaffolds with
0%-25wt% content of HA
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Figure 5
The degradation behaviors of the PCL/25wt% HA scaffolds after PBS immersion. (a) SEM micrographs

of the scaffolds with PCL/25wt% HA scaffolds after PBS immersion for 3 months; (b) Weight loss and
weight-average molecular weight (Mn) of the PCL scaffold with 0%, 25wt% of HA content for six months.
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Release profiles of DOX-incorporated PCL scaffold with 0%, 10%, 25wt% of HA content for 250 h.

=Y v/

(a) (b) [
PCL scaffolds PCL/25wt%HA scaffolds

x5

PCL scaffolds

ey

PCL/25wt%HA scaffolds

Figure 8

Page 21/22



In vivo micro-CT images and histological analysis in skull defect. (a) Micro-CT of the skull defect repair in
rats with pure PCL and PCL/25wt% HA scaffolds at 4 weeks; (b) H&E staining of the muscle on the back
of the rats at 4 weeks post-surgery (HE x300).
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Figure 9

Micro-CT analysis of the effect of scaffolds on thigh-bone defect in vivo. (a) Representative three-
dimensional reconstructed micro-CT images showing the effect of PCL/HA scaffolds on the new bone
tissue formation inside the defect site (red dashed line). (left: PCL/25wt% HA scaffolds for 4 weeks and 8
weeks, right: PCL/HA/DOX scaffolds for 4 weeks and 8 weeks); (b) Summarized data showing the micro-
architectural parameters of the new formed bone tissue at 4 and 8 weeks by analyzing the three-
dimensional reconstructed micro-CT images using image analysis software. BMD, BV/TV, Tb.Th and
Tb.N were shown in the panel.
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