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Abstract: Meat analogue is a food product mainly made of plant proteins. It is considered to be a
sustainable food and has gained a lot of interest in recent years. Hybrid meat is a next generation meat
analogue prepared by the co-processing of both plant and animal protein ingredients at different ratios
and is considered to be nutritionally superior to the currently available plant-only meat analogues.
Three-dimensional (3D) printing technology is becoming increasingly popular in food processing.
Three-dimensional food printing involves the modification of food structures, which leads to the
creation of soft food. Currently, there is no available research on 3D printing of meat analogues.
This study was carried out to create plant and animal protein-based formulations for 3D printing of
hybrid meat analogues with soft textures. Pea protein isolate (PPI) and chicken mince were selected
as the main plant protein and meat sources, respectively, for 3D printing tests. Then, rheology and
forward extrusion tests were carried out on these selected samples to obtain a basic understanding of
their potential printability. Afterwards, extrusion-based 3D printing was conducted to print a 3D
chicken nugget shape. The addition of 20% chicken mince paste to PPI based paste achieved better
printability and fibre structure.

Keywords: food 3D printing; hybrid meat analogues; rheological properties; pea protein
isolate; chicken

1. Introduction

Meat-based products are popular among consumers due to their unique taste, texture
and nutritional values [1]. With the development of technology, meat is becoming more
accessible to humans’ daily diets. According to predictions, the demand of meat will
continue to grow in the future [2]. However, growing meat consumption is associated with
increasing environmental concerns, including large land use and green gas emission [3–5].
To ensure sustainability, alternative diets or food sources have been suggested to decrease
the average individual meat consumption [6]. Meat analogue is a type of food considered
as a replacer that mimics characteristics of meat.

Traditional meat analogues have been created and developed for many centuries. These
meat analogues were generally made by vegetables or plants rich in protein, to deal with
low meat accessibility or due to religious reasons in different parts of the world [7–9]. Due to
the limitations of the traditional processing technique, traditional meat analogues could not
properly simulate the sensory characteristics and texture of meat. Therefore, scientists have
started researching new methods to improve the quality of meat analogues [9,10].

Currently, the most common technology producing meat analogue is high-moisture
extrusion. It can be used on various plant protein sources and produce different kinds
of meat analogues [9,11,12]. The percentages of moisture in high-moisture extrusion
normally vary from 40 to 80% [13]. The extruded products tend to show higher similarity
to meat, compared with conventional meat analogues. Other novel technologies such as
shearing, and spinning have also been developed to further imitate the meat-like fibres and
microstructure [14–16]. However, these methods have not been widely promoted on an
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industrial scale. Aside from its meat-like structure, the nutritional value and other physical
sensations of meat analogue also need to be improved.

Consumers’ preference plays an important role in the commercialisation of meat
analogues. Currently, the challenges of developing meat analogues mainly include lower
nutrition quality of plant proteins, lack of meaty sensations and high price [17,18]. To
improve the nutritional and sensorial characteristics of meat analogues, one option is to
add low value animal proteins to formulate a hybrid meat analogue. Animal proteins are
generally known to be nutritionally superior to plant proteins.

Additionally, it is worthwhile to develop some meat analogues, which are suitable
for the elderly. There are increasing numbers of elderly that need to be fed. However, the
decreasing tooth strength with aging limits the elderly’s’ food choices [19].

Three-dimensional printing is a novel technology, which could be introduced into
food manufacturing to modify food structure and texture [20]. In addition, it creates
desirable food shapes and improves nutrient selection [21]. Because of these, it has been
used to produce some health care food products for the elderly. Aged people would be
benefited because they have more options, instead of simply consuming conventional
pureed food. Scientists have already shown their interest in producing meat analogues
from plant proteins through 3D printing. Some printed plant-based meat products with
different shapes have been reported [22–24]. However, there is no available literature on the
evaluation of properties of printed meat analogue. The printing of hybrid meat analogue
has also not yet been mentioned by currently available research.

Conventionally, soy is the most common material to produce meat analogues. How-
ever, pea has fewer food allergy issues and GMO concerns than soy [25]. The interest in
research on pea protein has increased in recent years, especially for simulating chicken
products [26,27]. Hence, pea protein and chicken were selected as the main materials to
produce printed soft hybrid meats.

The main objectives of this study were to: (1) Develop a printable formulation mainly
made from pea protein isolate and chicken mince paste. (2) Optimize the formulation to
printing process based on rheology and extrusion tests.

2. Materials and Methods
2.1. Materials

Pea protein isolate (PPI) (containing 80% protein) was purchased from Davis Food
Ingredients (Palmerston North, New Zealand). Commercially available chicken mince
(typically 95% meat and 5% fat) was purchased from a local market (Palmerston North,
New Zealand). It was then blended with a Moulinex Food blender (Masterchef 650, Groupe
Seb New Zealand, Auckland, New Zealand) and finely minced by a Silverson L4RT High
shear mixer (Advanced Packaging System Limited, Auckland, New Zealand) as much as
possible into a paste-like texture.

Other materials included pre-gelatinized maize starch (Hi-Maize 1043; Ingredion ANZ
Pty Ltd., Auckland, New Zealand), beef fat (Premium 100% pure beef dripping, Farmland
foods, purchased from a local market, Palmerston North, New Zealand) and soy lecithin
(Hawkins Watts Ltd., Auckland, New Zealand).

2.2. Sample Preparation

The formulations of PPI based pastes and PPI-chicken pastes (Table 1) were final-
ized based on preliminary extrusion trials. Soy lecithin was mixed and dispersed in
water (69%) with the help of a MicroMix stick blender (Robot Coupe, 220W, Robot-Coupe
Australia Pty Ltd., Auckland, New Zealand). Then, water containing soy lecithin, PPI
(24%), maize starch (3.6%) and beef fat (2.4%) were added and mixed in a Moulinex food
blender (Masterchef 650). All the ingredients were blended for 2 min to prepare a paste.
The blended paste was transferred into metal beakers. The metal beaker containing the
paste was placed in a pot containing boiling water and heated on a hotplate (MR 3001,
Heidolph, Schwabach, Germany) for 10 min. The samples were further mixed during
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heating, using a Silverson L4RT high shear mixer (Advanced Packaging System Ltd., New
Zealand) at 4000 rpm (556× g). The cooked paste was naturally cooled down to room
temperature and used for further experimentation. Fresh pastes were prepared before
each experiment.

Table 1. Pea protein isolate (PPI) based paste and PPI-chicken paste (PCP) formulations.

Ingredients
Percentage (% w/w, Wet Basis)

P Control 1 PS 1 PF 1 PSF 1 20CHK 1 50CHK 1

PPI 30 26.4 27.6 24 19.2 12
Starch 0 3.6 0 3.6 3.6 3.6

Fat 0 0 2.4 2.4 2.4 2.4
Chicken paste 0 0 0 0 19.2 48

Soy lecithin 1 1 1 1 1 1
Water 69 69 69 69 54.6 2 33 2

1 P control represents pea protein isolate paste, PS represents PPI paste with starch, PF represents PPI paste with
fat, PSF represents PPI paste with both starch and fat. 20CHK represents 20% chicken added into PSF paste;
50CHK represents 50% chicken added into PSF pastes. 2 The amount of chicken paste and water are based
on moisture content analysis of the raw chicken pastes. The moisture of the chicken paste was 75.30 ± 0.23%
measured by hot air oven method. The total moisture of these PCP samples was kept as 69%, which is similar to
PPI pastes.

In PPI-chicken pastes (PCP) samples, the amount of added starch, fat, soy lecithin and
total moisture was same as the PPI paste. The total dry matter in the chicken paste was
aimed to replace PPI powder by 20 and 50%. When PPI paste was prepared, it was mixed
with a certain amount of raw chicken paste, as shown in Table 1, using a Moulinex food
blender (Masterchef 650) for 2 min.

2.3. Rheological Properties

Rheological properties of PPI and PCP pastes were studied according to the methodol-
ogy described by Wang et al. [28] with slight modifications, using a dynamic rheometer
(AR-G2, TA Instruments, New Castle, DE, USA). Temperature and frequency sweep experi-
ments were performed on raw and cooked pastes, respectively. Steady shear viscosity tests
were performed on cooked PPI pastes. A 40 mm parallel steel plate geometry was chosen
to test of all samples, and a gap of 2 mm was set between two plates. The strain was set as
0.4%, which ensured all samples were in their linear viscoelastic region. The measurements
on each selected sample were conducted in triplicate. Data were collected and analysed by
TA software (TA Universal Analysis Version 4.5A, TA Instruments, New Castle, DE, USA).

2.3.1. Temperature Sweeps

A temperature sweep test aims to find how the viscoelastic properties of experimental
samples change with heating and cooling. Four different formulations were prepared as
shown in Table 1: PPI control, PPI + starch (PS), PPI + fat (PF) and PPI + starch + fat (PSF).
The preparation method was the same as given in Section 2.2. For chicken paste added
samples, raw chicken pastes were blended with uncooked PSF paste in the proportions of
20 and 50% (Table 1).

Pastes were loaded on the rheometer plate. The temperature was set at 25 ◦C at the
beginning of the test and heated until 95 ◦C at the rate of 4 ◦C/min. After holding for 30 s at
95 ◦C, samples were cooled down from 95 to 25 ◦C at the rate of 4 ◦C/min. At the end of the
test, cooled samples were held for 30 s at 25 ◦C. Storage modulus (G’), Loss modulus (G”)
and tan δ at were recorded. A little amount of mineral oil (Bio-Rad Laboratories, Rosedale,
New Zealand) was applied to the sample edges to minimize the moisture loss.

2.3.2. Frequency Sweeps

P control, PS, PF and PSF pastes were prepared as described in Section 2.2 and cooked
in a boiling water for 10 min. PSF pastes with 20 and 50% raw chicken paste (20CHK and
50CHK) were prepared in the same manner as described in Section 2.2. Chicken paste was
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not cooked because denaturation would decrease the flow ability of samples. Viscoelastic
parameters such as G’, G” and tan δ were determined at 25 ± 0.1 ◦C, with angular frequency
increasing from 0.1 to 100 rad/s. Ten points were recorded within each decade.

2.3.3. Shear Flow Behaviour Tests

Samples used in shear flow behaviour tests were the same as mentioned in the fre-
quency sweep tests. Tests were carried out at 25 ± 0.1 ◦C, while the shear rate was ramped
from 0.1 to 100 s−1. Shear-viscosity curves were obtained after testing, with 10 points
shown within each decade.

2.4. Forward Extrusion Testing of PPI and Chicken Pastes

Forward extrusion tests were conducted with a textural analyser (TA.XT.plus, Stable
Micro Systems, Godalming, UK) with a 50 kg load cell, using the method described by
Kim et al. [29] and Zhu et al. [30] with minor modification. A device consisting of a syringe
and piston was set up on the texture analyser (Supplementary Materials Figure S1). Four
PPI-based pastes, 20CHK, 50CHK and chicken pastes were prepared as described in
Section 2.2. They were carefully scooped to fill into a 60 mL polypropylene syringe with a
spatula. The syringe was placed vertically on a heavy-duty platform (HDP) with a hole
in the centre. The test was conducted by a single compression with a 61 mm cylindrical
probe. Compression force-time curve was obtained, and the maximum compression force
was defined as the extrusion hardness of each food paste.

The compression speed for the forward extrusion test was calculated based on a range
of equations. The relationship between compression distance and paste length is shown
in Equation (1).

πd2
f

4
× compression distance =

πd2
n

4
× paste length (1)

where df is the diameter of the filament, which also equals to the syringe diameter in this
study; dn is diameter of the nozzle. Paste length refers to the length that paste extruded out
from the syringe and nozzles.

If the extrusion time is controlled, Equation (1) can be modified to Equation (2), which
shows the relationship between compression speed and extrusion speed. If extrusion speed
is set, then the compression speed could be calculated by Equation (3).

πd2
f

4
× Speedc =

πd2
n

4
× Speede (2)

Speedc = Speede ×
(

dn

df

)2
(3)

where Speedc is the compression speed; Speede is the speed at which paste extruded out
from the nozzle.

The diameter of syringe used in this study was 28.5 mm. The diameters of two selected
nozzles were 1.54 and 2.16 mm. Thus, the compression speed was set as 0.04 mm/s for the
1.54 mm nozzle and 0.09 mm/s for the 2.16 mm nozzle. This referred to the extrusion speed
of 15 mm/s for each nozzle size. The compression distance was 5 mm and the average
compression force measured and calculated from triplicated observations.

2.5. 3D Printing Process

The printer used in this study was a newly assembled LVE 3D printer (Supplementary
Materials Figure S2). It is a combination of a plastic filament 3D printer frame and an
extruder unit. The frame of the printer belonged to Creality Ender-3 (Creality 3D, Shenzhen,
China). However, the extruder unit was created based on the design from Pusch et al. [31].

In this study, all 3D models for experiments were downloaded from online sources,
which are open to public access through 3D builder (Version 18.0.1931.0; Microsoft Co.,
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Redmond, WA, USA). Then, they were loaded and sliced by Repetier Host (Version 2.1.4;
Hot-World GmbH and Co. KG., Willich, Germany).

PSF, 20CHK and 50CHK were selected for 3D printing based on their rheological
properties. The pastes were prepared as described in Section 2.2 and filled into syringes. A
small nugget shape sample (Figure 1) was printed using a large volume extrusion (LVE)
3D printer. The effect of nozzle size (1.54 and 2.16 mm) on the printability (ability to form
layers) was observed along with the appearance of the printed samples. Printing was
carried out at ambient temperature, with a printing speed of 15 mm/s and 100% infill
density. Printed samples were cooked in sealed polypropylene bags in a boiling water bath.
The structures of both raw and cooked samples were visually evaluated. Fibre formation
was particularly noticed.
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2.6. Statistical Analysis

The data presented in the results and discussions are the mean values of triplicated
measurements. In forward extrusion tests, standard deviation (SD) is also presented. One-
way analysis of variation (ANOVA) and Tukey’s pairwise comparisons were conducted by
Minitab (version 18.1, Minitab Inc., State College, PA, USA) to analyse the significance of
the data. Statistical significance was defined by a p value lower than 0.05.

3. Results and Discussion
3.1. Rheology
3.1.1. Temperature Sweeps
PPI Pastes

In temperature sweep tests, the comparison of storage modulus (G’), loss modulus
(data not presented) and loss factor (tan δ) of four PPI pastes are shown in Figure 2. Both G’
and G” of all samples decreased during the heating process. They dropped down rapidly
before 55 ◦C and then slowly decreased after that. A change in rheological properties
in protein-based food is normally associated with protein denaturation. According to
Shand et al. [32], the denaturation temperature of non-globulin and globulin fractions in
lab-prepared PPI were 67 and 85 ◦C, respectively. However, there are no obvious changes
on moduli at either temperature in Figure 2a. It was reported by Aryee et al. [33] that
processing methods vary the characteristics of PPI products. The decreasing trend in
moduli during heating is generally similar to the study by Moreno et al. [34], in which PPI
with a greater denaturation degree showed a continuous reduction in G’ and G” during
heating. This was explained to be the result of the destruction of polar interactions, mainly
leading to decreased moduli. Hence, the PPI used in this study is assumed to be already
denatured to some extent due to processing. As demonstrated by Jiang et al. [35], denatured
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protein shows a higher extrudability since most native proteins have poor shape-holding
capacity. This could be the reason that PPI paste can be manually extruded in the trials.
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Figure 2. Viscoelastic properties of four PPI pastes during heating (25 to 95 ◦C) and cooling (95
to 25 ◦C) at rate of 4 ◦C/min. (a) Storage modulus (G’) and (b) tan δ. In the figure, P control
represents PPI paste; PS represents PPI Paste containing starch; PF represents PPI paste containing
fat; PSF represents PPI paste containing both starch and fat. Result shown was the mean value of
triplicated tests.

During cooling, G’ and G” of the four pastes increased to different extents. A
similar phenomenon was reported by Sun and Arntfield [36], who investigated the
rheological properties of salt-extracted PPI at different temperatures. In their research,
G’ of all PPI samples increased steeply from 95 to 25 ◦C. The increasing curves of
G’ differ from this study. This could be caused by the different heating and cooling
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rates and sample compositions. As reported by Oyinloye and Yoon. [37], a slower
cooling rate led to a faster increase in G’ and G”. Moreover, different formulations
influenced rheological properties. The storage and loss moduli for the samples with
starch added (PS and PSF) returned to a slightly lower level than at the beginning of
heating cycle. This finding suggested that starch limited the moduli change during
heating and cooling. Therefore, cooling of PS and PSF can be considered as a roughly
reverse process to heating. However, G’ and G” of P control and PF were higher than
the initial values before heating. As can be seen, viscoelastic moduli of P control and
PF rose from approximately 90 to 50 ◦C, while G” of these two samples increased
dramatically from 90 to 70 ◦C.

Phase changes during heating and cooling did not exist, since tan δ of all these
samples was lower than 1 at all temperatures (Figure 2b). Tan δ of all these samples
ranged between 0.1 and 0.25, which means samples were always predominantly elas-
tic [38]. Before the heating process, the initial tan δ of all paste samples was between
0.2 and 0.25. During heating, all pastes showed, generally, a decreasing tendency in
tan δ, indicating that the gel strength is reinforced. The reason was associated with the
protein–protein interactions generated from temperature change, which contributed to
a more elastic gel network [36]. Tan δ of P control and PF was lower than 0.15 at 95 ◦C.
For PS and PSF however, tan δ rose slightly when the temperature was higher than
85 ◦C. During cooling, tan δ of PS increased dramatically at the beginning, dropping
down afterwards and rising again when the temperature was below 83 ◦C. As for
the PSF sample, tan δ steadily increased. The changes in tan δ of P control and PF
during cooling were more complicated. Tan δ of PF increased drastically from 95 to
59 ◦C and decreased smoothly afterwards. PS, PF and PSF samples did not change
hugely during the entire heating and cooling process. Tan δ of P control rose rapidly
and dropped down after 77 ◦C to nearly 0.13, which is much lower than the initial tan δ.
This indicates that the cooling procedure increased the gel firmness of the P control
sample. In general, results show that starch added samples were suitable to be heated
and cooled before printing. This is because they demonstrate a minor reduction in
viscoelastic moduli and a similar tan δ, which potentially create a proper paste fluidity
for printing [28]. More studies on plant protein-based food are needed to explore the
interactions among protein, starch, and fat. A deeper understanding of component
interactions helps to design formulations with ideal rheological properties for printing.

PPI-Chicken Paste

For chicken added samples, the change of viscoelasticity is shown in Figure 3.
During both heating (50 ◦C onwards) and cooling, chicken and chicken paste added
samples showed an increased G’ over that of PPI paste alone. G’ of chicken and chicken
added samples increased steeply when the temperature was between 60 and 80 ◦C
(Figure 3a). A similar rheology investigation was reported by Rabeler and Feyissa [39],
in which the G’ of chicken breast showed a rapid increase from 60 to 80 ◦C. Minor
differences in G’ values reported in this study could be explained by the different
protein contents of the meat samples. As reviewed by Lesiów and Xiong [40], the
denaturation of majority of proteins, including myosin and myofibrils in chicken
meat occurred between 35 and 40 ◦C. The denatured proteins started to aggregate
and form gels with the continuously increasing temperature. Tornberg [41] indicated
that denaturation by heating may have caused meat fibre contraction and connective
tissue solubilization. Such changes formed a denser network that enhanced G’ of meat
during heating.
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The variation of G” in the four samples showed a similar trend to G’ in the entire
process (data not shown). However, G” of chicken and 50CHK reduced slightly from 75 ◦C
onwards during heating. G” of 20CHK had a slight increase during heating after 50 ◦C.
The increase in G’ and G” during heating declined with the increasing amount of chicken
paste, indicating that meat protein has more sensitivity to temperature than PPI at a high
temperature. Both G’ and G” of chicken and chicken-added samples increased steeply after
the heating and cooling process.

Compared with PSF and chicken, the extent of increase in tan δ after the entire process
for the 20CHK and 50CHK samples were greater. This might demonstrate that interactions
between plant and animal proteins simulate the change in tan δ during temperature change.
Rheological properties of emulsion gel systems containing pea protein and animal protein
have been studied by Graca, Raymundo and de Sousa [42]. Their investigation showed
that tan δ of a food sample containing pea protein and collagen protein in a ratio of 50:50
increased to over 1 from 40 ◦C during heating. It represented a breakdown of the original
emulsion structure. The deformation was maintained until 80 ◦C when a new gel structure
formed (tan δ < 1). This trend did not appear in samples containing either a higher amount
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of pea protein or purely collagen protein. It could explain why only 50CHK exhibits an
increasing tan δ between 50 and 60 ◦C in this study (Figure 3b).

3.1.2. Frequency Sweeps

During frequency sweeps, G’ and G” of four PPI pastes both progressively increased
with the growing angular frequency (Figure 4). In addition, G’ was always higher than G”,
indicating that these pastes show a weak gel behaviour [43]. For both G’ and G”, PS paste
showed the highest value than other pastes during the whole frequency sweep test among
all plant protein only samples (Figure 4a; data for G” not presented). Interestingly, cooked
P control and PF pastes did not exhibit a high value for viscoelastic moduli after the heating
and cooling cycle, similar to the temperature sweeps (Figure 2). This may be because
cooked samples were cooled at a different rate than in the conditions of the temperature
sweep. Higher G’ and G” values could be caused by adding starch, which potentially
decrease the fluidity [28,44]. In contrast, the addition of fat could enhance fluidity, which
was agreed by Lille et al. [45]. This phenomenon may benefit the printing process.
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chicken added into PSF paste; 50CHK represents 50% chicken added into PSF paste. Result shown
was the mean value of triplicated tests.
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Similar to PPI pastes, G’ of 20CHK, 50CHK and chicken was higher than G”, and both
increased progressively during the frequency sweep. It shows that chicken added samples
also behave similar to a weak gel. G’ and G” of cooked PSF pastes were reduced by the
addition of raw chicken paste, with 20% chicken paste showing lower values than 50%
during the experiment. Raw chicken showed a higher G’ than 20CHK, but a lower value
than 50CHK (Figure 4a). G” of 20CHK was lower than chicken when the angular frequency
was lower than 0.6 rad/s but surpassed it afterwards (Figure 4b). This demonstrates that
the 20CHK sample had the highest fluidity among all three samples, which demonstrates a
better flowability [28].

All seven pastes showed a decreasing tendency on tan δ below 1 rad/s (Figure 4b).
In this stage, tan δ of chicken paste showed the sharpest reduction. When the angular
frequency is over 1 rad/s, tan δ of PPI and chicken added pastes increased slowly. For
chicken paste, the tan δ value remained stable between 1 and 10 rad/s and rose slightly to a
higher angular frequency. Savadkoohi et al. [46] explained that this change was associated
with the damage to the gel network. In their research, similar plateaus of tan δ of chicken-
based samples in a higher angular frequency range (1 to 100 rad/s) was observed. PF
expressed the lowest tan δ among all PPI pastes after the frequency sweep. Tan δ of PSF
showed minimal change before and after the whole process.

3.1.3. Shear Flow Behaviour

In this study, all samples were pseudoplastic materials, showing a shear-thinning
behaviour (Figure 5). This indicates that all samples are suitable to extrude, which is in
agreement with the findings of Lipton [47]. The reduced viscosity caused by applied
shear force enables food gels to be extruded from nozzles [35]. Among all PPI pastes, PS
showed higher viscosity than the three other pastes (Figure 5). This indicates that starch
increases the viscosity, which could be explained on the basis that cooked starch absorbs
water and forms an intensive gel structure [48,49]. However, adding both starch and
fat did not negatively influence the flow behaviour. This might be because the addition
of fat reduced the viscosity, as PSF and PF samples both showed low initial viscosity
among all the PPI pastes. A similar finding was reported by Lille et al. [45], namely
that a food formulation with semi-skimmed milk powder was less viscous than with
skimmed milk powder. In addition, the viscosity of the paste was decreased when the
raw chicken paste was added.

At a shear rate higher than 10 s−1, PPI pastes (except the PS sample) become less
viscous than chicken-added pastes and chicken. The most drastic reduction existed in the
shear-viscosity curve of the P control paste, showing that P control paste is easy to deform
when a shear force is added. A slight infinite shear viscosity plateau was shown in PF
when the shear rate was above 40 s−1 (Figure 5).

As phase change was not involved during rheological testing in this study, shear-flow
behaviour can be an important parameter to evaluate the sample’s extrudability. According
to Hölzl et al. [50], the viscosity of bio-ink for extrusion-based printing can range from
3 × 10−2 to 6 × 104 Pa s. In addition, a high zero-shear viscosity was also considered as a
suitable property for extrusion type printing [51]. Nevertheless, Wang et al. [28] claimed
that food material showed a poor printing performance if the zero-shear viscosity was
too high. In their research, a food gel with zero-shear viscosity (viscosity at shear rate
0.1 s−1) around 30,000 Pa s was extrudable but not capable of expressing a proper printing
appearance. In this study, the zero-shear viscosity of PS and P control pastes are both
close to 30,000 Pa s (25,723 and 22,427 Pa s, respectively), which potentially means these
two pastes are not suitable for a smooth 3D printing process.
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Figure 5. Apparent viscosity of samples at shear rate between 0.1 and 100 s−1. Comparison of shear
viscosity curve of PPI pastes, chicken and PPI-chicken pastes. In the figure, P control represents
PPI paste; PS represents PPI paste containing starch; PF represents PPI paste containing fat; PSF
represents PPI paste containing both starch and fat; 20CHK represents 20% chicken added into PSF
paste; 50CHK represents 50% chicken added into PSF paste. The result shown was the mean value of
the triplicated tests.

3.2. Forward Extrusion Test

The extrusion force of various samples was measured by a forward extrusion test.
As shown in Table 2, paste samples (except PS) showed a lower extrusion force from a
2.16 mm nozzle than a 1.54 mm nozzle. It was also shown by Zhu et al. [30] that tomato
puree exhibited lower extrusion stress through a bigger (1.2 mm) nozzle than a smaller
(0.8 mm) one. These findings suggest that a bigger nozzle is easier for extrusion. Raw
chicken paste was not able to be extruded from a 1.54 mm nozzle. The reason for this
is that the presence of big particles constrains the flow, which leads to big variations in
different tests. It suggests that mincing at 556× g is not enough to break down some big
muscle particles in chicken paste. Mincing at a higher rotation rate or filtering out big
muscle particles may be helpful to produce smooth flows. However, it would possibly lead
to a low shape-forming capacity during extrusion (as preliminary trials). Hence, chicken
paste was not suitable to be directly used for 3D printing in this study. However, it can be
added into PPI based pastes since 20CHK and 50CHK samples were able to extrude from
both nozzle sizes. The P control paste exhibited the lowest extrusion force, demonstrating
that it was easiest to extrude. The reason might be that the viscosity of the P control paste
decreased dramatically at a high shear rate (Figure 5). PF showed the highest extrusion
force of all the samples (Table 2).

A correlation between extrusion force (or extrusion stress) and rheological properties
was shown by Zhu et al. [30]. They pointed out that the extrusion stress of food sam-
ples expressed a linear correlation with flow stress. A higher flow stress contributes to
higher extrusion stress. However, there was no correlation between extrusion stress and
viscoelastic properties. The reason was assumed to be that viscoelastic properties refer to
the characteristics of a sample in a non-deforming stage, while flow stress and extrusion
stress are both parameters related to deformation. Such correlation was suitable for various
water-based food pastes, but not for oil-based food pastes. In addition, extrusion force
was related to the materials’ printability, which is defined as the capacity of deposited
materials to support their own weight [21]. Kim et al. [29] showed that the printability of
hydrocolloid samples was positively correlated with the extrusion force. According to their
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finding, hydrocolloids with a higher methylcellulose concentration exhibited an increasing
extrusion force, which simultaneously led to a lower deformation rate of a printed cylinder
shape. Nevertheless, this correlation was not suitable for food samples with multiple
ingredients. This is because interactions among ingredients creates a complex food matrix,
which deserves further investigations. Currently, there is no available research that sys-
tematically assesses the relationship between extrusion force and printing performance. It
is still necessary to correlate extrusion force and printing experiments, especially for food
with numerous ingredients and complex structures.

Table 2. The extrusion force of tested materials with 1.54 and 2.16 mm nozzle sizes.

Samples 3

Extrusion Force (N) 1,2

Nozzle Size

1.54 mm 2.16 mm

P control 57.74 ± 1.86 a 49.91 ± 1.98 a

PS 73.47 ± 4.30 b 83.64 ± 2.18 d

PF 141.10 ± 9.43 e 98.80 ± 2.13 e

PSF 87.88 ± 3.63 c 62.13 ± 2.85 b

20CHK 106.31 ± 3.06 d 83.22 ± 2.50 d

50CHK 84.27 ± 0.85 b,c 74.07 ± 0.54 c

Chicken N/A 67.73 ± 1.78 b

1 Results are shown as means ± SD (n = 3). 2 According to Tukey’s pairwise comparison, different letters in
each column show a significant difference (p < 0.05). 3 P control represents PPI paste; PS represents PPI Paste
containing starch; PF represents PPI paste containing fat; PSF represents PPI paste containing both starch and fat;
20CHK represents 20% chicken added into PSF paste; 50CHK represents 50% chicken added into PSF past.

3.3. Printing Performance
3.3.1. Appearance of Printed Meat Analogues in Different Formulations and Nozzle Sizes

Printed samples with a small chicken nugget shape are shown in Figure 6. In general,
both PSF and chicken paste added samples formed more desirable shapes through a
1.54 mm nozzle, compared with a 2.16 mm. Since PSF, 20CHK and 50CHK all showed
lower extrusion force with a 2.16 mm nozzle size, it may indicate that a lower extrusion
force results in lower printability. This agrees with the finding of Kim et al. [29]. During
printing through a 2.16 mm nozzle, the poor printing performance could be related to the
shear rate and viscosity. The relationship between shear rate and viscosity in extrusion
printing can be shown by Equations (4)–(6) [52]:

.
γ =

4Q
πr3 (4)

Q = πr2 × Speede (5)

.
γ =

4 × Speede
r

=
8 × Speede

d
(6)

where
.
γ is shear rate; Q is the volumetric flow rate, referred to extrusion rate in this study;

r is the radius of the nozzle; Speede is the extrusion speed; d is the diameter of the nozzle.
Therefore, increasing the nozzle diameter with a controlled printing speed leads

to a lower shear rate, resulting in a higher sample viscosity (Figure 5). It is assumed
that higher viscosity causes poor extrusion behaviour. Although there is no available
research that quantifies the relationship between shear viscosity and printability, similar
investigations were reported by Wang et al. [28] showing that fish surimi with a high
viscosity would reduce the extrusion smoothness. In this study, the viscous extrusion flow
from a 2.16 mm nozzle contributed to an inconsistent deposition line and exhibited a less
desirable appearance. Similar findings were reported by Yang et al. [53]. They reported
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that a bigger nozzle tended to result in poorer printing quality. Wang et al. [28] also
tested printing performances through different nozzle diameters. In contrast to this study,
however, they found that a printed sample from a smaller nozzle demonstrated poorer
printing performance than from a bigger nozzle. The reason might be that printing through
a small nozzle demanded a higher pressure, which caused an extremely low viscosity and
a low shape-building capacity.
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Figure 6. Printed meat analogues using 1.54 and 2.16 mm nozzles (15 mm/s, 100% infill). PSF
represents PPI paste containing both starch and fat; 20CHK represents 20% chicken added into PSF
paste; 50CHK represents 50% chicken added into PSF paste.

The printing smoothness declined with the increasing amount of chicken paste. Printed
50CHK samples through both nozzle sizes show many printing defects. This is associated
with the hypothesis that a difference in smoothness of PSF paste and chicken paste may
lead to a heterogeneous mixture and non-continuous flow during extrusion from nozzles.
For meat paste samples, Dick et al. [54] recommended the use of nozzle sizes bigger than
2 mm to enable extrusion of some components containing big particles. A similar finding
was shown in Section 3.2, namely that big particles in chicken blocked the 1.54 mm nozzle
and stopped the extrusion process. Although 50CHK and 20CHK showed extrudability
through a 1.54 mm nozzle, varied flow resistance of a chicken portion and a plant protein
portion could cause a non-smooth extrusion. PSF paste was able to deposit bottom layers
stably. Although printing defects also appeared on the surface layer, the general nugget
shape based on the 3D model was formed. The reason could be that PSF paste has a more
uniform structure than 50CHK and 20CHK samples.

3.3.2. Appearance and Macrostructure of Printed Meat Analogues after Cooking

The comparison of three cooked samples is presented in Figure 7. Chicken paste added
samples showed a more acceptable colour after boiling in water. The shapes of the printed
samples were slightly damaged after cooking. Although heat-sealed bags were used to
prevent damage of the shape, the edges of the printed samples were not protected perfectly.
Lipton et al. [55] tried cooking printed meat in a controlled vapour oven. The overall shape
of printed turkey meat was protected from being damaged by the package. Nonetheless,
cooking in a controlled vapour oven caused inward shrinkage of the meat, which made the
shape bow upwards. To improve the printability of meat analogues, shape-maintenance
after cooking is a challenge that needs to be overcome.
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Fibrous structure formation is a pivotal characteristic to assess the quality of meat
analogue. As found from fractured sections, PSF sample was insufficient to form a fibrous
structure without adding chicken (Figure 7). According to previous studies, the fibrous
structure of PPI was formed in the thermal extrusion system above 120 ◦C [25]. In a
shearing processing system, the same conditions of temperature were required [56]. To
develop a printed product from a PPI based formulation without adding meat, the post-
printing cooking method should be changed. This is because the temperature of the boiling
water bath (100 ◦C) was inadequate to build fibrous structures. Pan-frying, microwaving
and baking were suggested, since these methods enable cooking samples at a higher
temperature. Moreover, the addition of some ingredients such as wheat gluten would
help fibre formation [56]. Fibres were found in 20CHK and 50CHK, indicating that meat
fibres were generally provided by chicken paste. More fibres were found in 20CHK
than the 50CHK sample because of its stable printed shape. This is associated with the
proper extrusion and deposition performance of the 20CHK sample. Thus, 20CHK paste is
considered as the optimal material for printing in this study.

4. Conclusions

This study investigates the printing of 3D nugget shapes by using plant-only and plant-
meat-based formulations. PPI combined with maize starch, beef fat and water expressed
suitable rheological properties for extrusion-based 3D printing. Both PPI paste and PPI
chicken paste showed a weak gel behaviour according to rheology tests. The addition of
maize starch increased the viscosity of food paste, while it minimized the moduli change
during temperature sweep. The combination of chicken and PPI-based paste reduced the
viscosity change with the increasing shear rate. The addition of raw chicken paste to cooked
PPI–based paste was recommended, since it provided a suitable flow behaviour. Forward
extrusion tests helped understand the general extrusion difficulties of different samples.
However, the correlation between the extrusion force and other characteristics was not
identified in this study.

Printing through a 1.54 mm nozzle showed better 3D shape forming capacity than a
2.16 mm nozzle. It was explained that a bigger nozzle size led to a higher shear viscosity,
resulting in poor printability. The PPI-paste sample without chicken showed a more
desirable appearance, while the addition of chicken paste into PPI paste created a fibre-like
structure. Considering both printing performance and fibre formation, PPI paste with 20%
chicken was selected as an optimal formulation.
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The printing speed in this study was set as 15 mm/s, which is slower than many
non-food materials for 3D printing. To scale up and reach the industrial requirements, it is
necessary to develop the methods that allow printing of plant protein-based materials at a
high speed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods11030478/s1, Figure S1. Design of forward extrusion test: A syringe and piston device
attached to a texture analyser. (1) The framework of textural analyser (TA.XT.plus, Stable Micro
Systems, UK). (2) A 61 mm cylindrical probe. (3) A piston. (4) A syringe. (5) HDP/90 platform
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