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Abstract

The characterization of the vasculature in the mediastinum, more specifically the pulmonary 

artery, is of vital importance for the evaluation of several pulmonary vascular diseases. Thus, the 

goal of this study is to automatically segment the pulmonary artery (PA) from computed 

tomography angiography images, which opens up the opportunity for more complex analysis of 

the evolution of the PA geometry in health and disease and can be used in complex fluid 

mechanics models or individualized medicine. For that purpose, a new 3D convolutional neural 

network architecture is proposed, which is trained on images coming from different patient 

cohorts. The network makes use a strong data augmentation paradigm based on realistic 

deformations generated by applying principal component analysis to the deformation fields 

obtained from the affine registration of several datasets. The network is validated on 91 datasets by 

comparing the automatic segmentations with semi-automatically delineated ground truths in terms 

of mean Dice and Jaccard coefficients and mean distance between surfaces, which yields values of 

0.89, 0.80 and 1.25 mm, respectively. Finally, a comparison against a Unet architecture is also 

included.
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1. Introduction

The morphological assessment of the Pulmonary Artery (PA) is essential to evaluate several 

Pulmonary Vascular Diseases (PVD). Most patients with Pulmonary Hypertension (PH), 

present a remodeled main PA with a diameter considerably larger than that of a control 

subject and thus, being an important biomarker for predicting and detecting hypertension. In 

the Chronic Obstructive Pulmonary Disease (COPD), a widening of the PA is associated 

with increased risks of exacerbation and decreased survival rates. Pulmonary Embolism (PE) 

refers to the blockage of one of the pulmonary arteries, mostly caused by blood clots. Thus, 

it is essential to monitor the arterial obstruction to evaluate the severity of PE.

Computed tomography (CT) and CT angiography (CTA) play a crucial role in the diagnosis 

and management of PVD since they allow to assess macroscopic pulmonary vascular 

morphology quantitatively. In this study, we aim at lever-aging CTA images of several 

patient cohorts to segment the PA with a new 3D Convolutional Neural Network (CNN) 

architecture. Deep learning has already been applied to segment other vascular structures 

from CT images with promising results [3,7,10], which encouraged us to use it for PA 

segmentation.

2. Literature Review

The segmentation of PA can be challenging due to its complicated and variable shape, 

motion artifacts, and proximity to other blood vessels such as the pulmonary vein that may 

hamper the correct segmentation. Even if there are many studies in the literature about 

pulmonary vascular tree segmentation, they usually focus on vessel segmentation within the 

lungs or pulmonary emboli and nodule detection, without specifically analyzing the PA.

Regarding the segmentation of the PA outside the lung, which is our goal, only a few studies 

have been proposed. In [2] a Hessian matrix based preprocessing followed by a region 

growing method is proposed, which relies on a previous extraction of the lungs and the 

heart. The method in [14] also requires a priori knowledge of the artery morphology 

followed by a fast-marching algorithm and a registration to a target reference volume, which 

did not fully address the variability in PA sizes and shapes. In [6] a semi-automated tool 

which uses level sets and geodesic active contours to segment the main PA is presented, with 

the goal of measuring the PA diameters in patients with PH. From the obtained 

segmentations, the authors extract the artery centerline and measure the diameter, reporting a 

mean error up to 6 mm. A similar study to measure PA cross-sectional area is proposed in 

[9], where the artery is segmented using dilation and erosion operations on 14 normal patient 

CTA scans.

Compared to previous works in the literature, our method combines images from PE 

cohorts, PH cohorts, and control patients and is tested on many volumes. Additionally, it is 

fully automatic, it does not include any shape prior and it yields a mean error when 

measuring PA diameters of 2.5 mm.
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3. Materials

A total of 51 CTA volumes of different patients are employed to train our CNN. Among 

these datasets, 39 patients have PE, 8 of them are control subjects who were thought to have 

PH, and the remaining 4 have hypertension. The mean intensity in the PA is higher than 550 

HU in all the CTA volumes, and motion-related artifacts are present in most of the images. 

Figure 1 shows sample CTA slices of three patients coming from different cohorts.

To test the network, an additional 91 CTA volumes are used, all of them corresponding to 

patients with PE, being it our largest cohort. The mean intensity in the PA in these cases 

ranges between 350 HU and 550 HU.

3.1 Fuzzy Ground Truth Generation

For the 142 patients, ground truth labels are obtained semi-automatically using ITK-Snap 

[16]. The first step consists of selecting a region of interest around the PA, extracting a sub-

volume that starts at the aortic valve and expands until the main PA is not observed.

Then, an initial segmentation is extracted with the region competition snake approach, using 

a thresholded version of the image as the feature image that drives the evolution and forces 

the snake to fit the boundary of the artery. The minimum and maximum thresholds employed 

to create the feature image for the training datasets are set to 500 HU and 900 HU, 

respectively, whereas for the test images, the employed thresholds are 300 HU and 900 HU. 

A seed point is placed within the main PA to initialize the evolution of the snake, which is 

manually stopped when an approximate segmentation is obtained. The parameters that 

control the evolution of the front, i.e. the region competition force and the smoothing or 

curvature force, are set to 1 and 0.5, respectively.

Finally, the output segmentation from the region competition snake approach is manually 

refined, as shown in Fig. 2. Two main corrections are applied:

• Removal of veins and other structures incorrectly labeled as arteries

• Inclusion of clots in the segmentation to ensure a natural artery shape

The resulting ground truth segmentations are considered fuzzy, since it is difficult to have a 

precise delimitation of the artery contour when there is a large clot in the artery. 

Additionally, small artery branches have not been consistently labeled across the different 

datasets.

4. Methods

Hereby, we propose a new 3D convolutional neural network for the segmentation of the PA 

from CTA volumes. The proposed network, fully described in Sect. 4.3, is inspired by the 

3D V-net [8] with modifications introduced from the 2D Fully Convolutional DenseNet (FC-

DenseNet) [5] and the 2D Efficient neural network (ENet) [11]. We employ a training 

strategy that relies on a strong use of data augmentation, mostly generated with realistic 

deformations, as explained in Sect. 4.1. Finally, we validate our network with the test set by 

comparing the semi-automatically generated ground truths with the network predictions in 

Román et al. Page 3

Image Anal Mov Organ Breast Thorac Images (2018). Author manuscript; available in PMC 2020 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms of Dice and Jaccard scores. Since the final clinical goal is to characterize the aortic 

morphology, we also measure the distance at each point between the two surfaces, i.e., the 

ground truth and the output from the network.

4.1 Data Augmentation Using Realistic Deformations

Data augmentation have been largely used in deep learning in the biomedical field due to the 

limited number of annotated datasets. In particular, for the case of 3D datasets, it is difficult 

and time-consuming to obtain a corpus of annotated images that are large enough to account 

for the anatomical variability between subjects. Thus, researchers usually apply data 

augmentation techniques, mostly in the form of rotations and translations to generate new 

volumes. In [12] a new data augmentation approach was proposed, based on applying 

random elastic deformations to the original volumes. The use of these synthetically 

generated volumes seemed to be the key to train a segmentation network with very few 

annotated samples.

Inspired by this work, we efficiently augment our dataset using realistic elastic deformations 

as well as traditional rotations and translations. Unlike in [12], where the applied 

deformations were random, we propose to generate realistic deformation vectors from the 

Principal Component Analysis (PCA) of a subset of deformation fields extracted directly 

from the affine registration of several volumes. The steps are the following:

1. Register 10 CTA volumes to a reference volume of a control subject using 3D 

Slicer [1] and extract the 3D deformation fields corresponding only to the affine 

transformation

2. Extract the mean deformation and the eigenvectors and eigenvalues of the ten 

deformation fields using two PCA models:

• PCA1-Model: considers the correlation between the components of the 

deformation fields, i.e., x, y, and z

• PCA2 Model: considers each component of the fields independently

3. Generate new deformation fields by randomly weighing the first six eigenvectors 

(which account for most of the variability) with values from 0 to the square root 

of the corresponding eigenvalue

• For PCA1-Model the three components are weighted equally

• For PCA2-Model we weight x, y and z independently

4. Generate new synthetic volumes by applying these deformation fields to each 

original CTA volume in the training set, as shown in Eq. 1 for PCA1-Model and 

in Eq. 2 for PCA2-Model.

Ij: ∑
i = 1

6
< wi * Bi > + μ (1)
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Ij: ∑
i = 1

6
< wxi * Bxi > + μx + ∑

i = 1

6
< wyi * Byi > + μy

+ ∑
i = 1

6
< wzi * Bzi > + μz

(2)

where Ij is the generated synthetic image, wi are the weights generated from the 

eigenvalues, Bi are the eigenvectors, and µ is the mean image extracted from the 10 original 

deformation fields.

Following this procedure, we create 50 new volumes per each original input CTA. 30 of 

them are extracted with PCA1-Model, whereas another 20 are generated with PCA2-Model. 

This allows the network to learn invariance to deformations without the need to see these 

transformations in the annotated image corpus. This is particularly important in biomedical 

segmentation since deformation is the most common variation in tissue and realistic 

deformations can be simulated efficiently with the proposed approach. Examples of the 

generated volumes in 2D and 3D are shown in Figs. 3 and 4, respectively.

4.2 Related Networks Served as Inspiration

The V-Net [8] network is one of the few architectures in the literature specifically designed 

to work with 3D images. It is composed of convolution, deconvolution and pooling layers 

arranged in an encoding and a decoding path. Every couple of layers in the encoding path a 

down-convolution is performed, and for every pooling the number of feature maps is 

doubled to allow the network to distribute the information from the previous layer 

throughout the maps, instead of losing it when reducing the spatial resolution. Before each 

down-convolution, a skip-connection is introduced to pass higher resolution maps to the 

decoding path. In the decoding path, an up-convolution is performed every couple of layers 

and feature fusion with the skip connections is applied, improving the convergence time and 

the quality of the segmentation.

FC-DenseNet [5] is one of the most recent networks for 2D semantic segmentation. As the 

V-Net, FC-DenseNet also uses an encoding and a decoding pathway to obtain global 

features, incorporating feature fusion. However, opposed to the idea in V-Net, this 

architecture uses many convolutional layers but each of them with few channels, whereas in 

V-net there are fewer convolutional layers and the information is distributed in more filters. 

Each layer is directly connected to every other layer in a feed-forward fashion and batch 

normalization is implemented before all convolutional layers, which helps to control over-

fitting.

Finally, in [11] the ENet is proposed, which aims at providing real-time semantic 

segmentation by using a low amount of parameters, squeezing in as much information as 

possible in every parameter. A critical contribution of ENet is the introduction of a down-

sampling block that combines max pooling and strided convolution to avoid representational 

bottlenecks.
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4.3 Proposed Convolutional Neural Network

Figure 5 shows the main building blocks of our proposed network, displayed in Fig. 6. It has 

an encoding and a decoding path as the V-Net and the FC-DenseNet. As in FC-DenseNet, 

the input is propagated through the network via dense connections and channels are 

appended throughout. The structure of the encoder is also changed to an ENet style block. 

We also remove some layers as compared to FC-DenseNet, but increase the width. The 

number of filters in each regular dense block is increased gradually. In the decoding 

pathway, we decrease the number of channels steadily to reach an amount that is 

computationally feasible without performing extreme information compression.

The network is implemented using Keras with tensorflow. It is trained with 3468 volumes 

extracted by augmenting the scans of 91 different patients. All volumes are resized to 128 × 

128 × 64 and the intensities are rescaled to 0–1.

The model is built in a Xeon E7 3.6 GHz, 62 GB processor equipped with a Nvidia GeForce 

GTX1080 card, under Linux Ubuntu 16.04 SMP 64 bits. We train the network using ADAM 

optimization with a batch size of 1, an initial learning rate of 1e–03 and plateau learning rate 

decay with a factor of 0.2 when the validation loss is not improved after five epochs, with a 

minimum learning rate of 1e–05. We use the binary accuracy metric and try to minimize the 

binary cross entropy loss function. Early stopping is also applied to avoid overfitting, thus, 

stopping the learning process after 20 epochs, as shown in Fig. 7.

Finally, the model is tested on the 91 less contrasted CTA scans described in Sect. 3. The 

predictions are 3D probability maps where the intensity of each pixel is the probability of it 

being PA. We apply gaussian smoothing to the output grayscale image, followed by Otsu’s 

thresholding that aims at selecting an optimal case-specific threshold when the image 

contains two classes following bi-modal histogram and voting binary hole filling to obtain 

the final binary segmentation.

4.4 Validation Approach

To evaluate the performance of our network, we compare the automatically obtained 

segmentation with the fuzzy ground truths in terms of Dice and Jaccard scores for the 91 test 

cases, and we calculate the mean and standard deviation.

Since the final clinical goal is to characterize PA morphology, i.e. its diameter, we generate 

the 3D surfaces of both segmentations using VTK [13] to calculate the mean distance 

between them. First, we use the Discrete Marching Cubes method to extract the surfaces and 

the normals at every point. Then, we create a Kd-tree spatial decomposition of the set of 

points of each surface. Finally, we use a point locator to find the closest point in the ground 

truth surface for every point in our segmentation, and we measure the Euclidean distance 

between them. The distance between surfaces is the mean distance of all the points in the 

surface, which corresponds to the mean error when measuring the PA radius.
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5 Results

Table 1 summarizes the results for the proposed network using realistic deformation-based 

data augmentation and without using it. Our method yields a mean Dice coefficient of 89% 

and a Jaccard score of 80%. From the clinical point of view, when measuring the PA radius 

our method falls into a mean error of 1.25 mm. According to several studies [4,15], the PA 

diameter of a control subject is smaller than 29 mm and in patients with PH the artery is 

enlarged. Hence, the mean error made with our segmentation approach falls at least below 

8.6%.

Figure 8 depicts the box plots for the validation scores for all the patients used for testing, 

where some clear outliers that negatively impact the achieved mean values are observed. The 

most noticeable two cases correspond to patients with a very big liver, in which the network 

gets confused and segments part of the liver as if it were the artery (see Fig. 10). Our guess 

is that the network may interpret that this region corresponds to the end part of the artery 

branch.

Regarding the use of deformation-based data augmentation, an improvement of 2.3% and 

3.9% is obtained for Dice and Jaccard coefficients, respectively. For the distance between 

surfaces, an improvement of 1.57% is achieved. As shown in Fig. 8, the Dice and Jaccard 

score’s improvement is statistically significant according to the Wilcoxon test but it is not 

for the distance between surfaces.

Finally, we also trained and tested the V-net in [8] to compare the results, which are shown 

in Table 2. Even if the Dice and Jaccard scores are very similar for both architectures, the 

distance between surfaces is much larger in the case of the Unet and the statistical 

significance is notable, with a p-value of 1.73e–09 for the case of the distance according to 

the Wilkoxon test (Fig. 9). This suggest that our architecture enables better quantification of 

mean pulmonary artery diameters.

6 Conclusions

Hereby, we proposed a new CNN to PA segmentation from CTA images, which opens up the 

opportunity for more complex analysis of the evolution of the PA geometry (i.e. going 

beyond just measuring the diameter). The network is based on an encoder-decoder scheme 

similar to the V-net [8], but by including Dense blocks and Enet blocks, we are able to 

improve the segmentation results, mostly in terms of distance between surfaces. Adding 

bootstrapping to the loss function could further increase the accuracy of our model.

Additionally, a novel data augmentation approach has been described, which relies on a 

PCA analysis of deformation fields extracted from the affine registration of several volumes. 

For the current work, 10 different base deformation fields have been extracted by registering 

10 volumes to a reference CTA. Looking at the results, it seems that more fields are 

necessary to account for a larger anatomical variability between patients since the 

improvement as compared to training without this data augmentation is not statistically 

significant regarding the distance between surfaces. However, a tendency is observed in the 

Dice and Jaccard scores, which suggests that with more deformation fields a better outcome 
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may be achieved. Additionally, the fields generated to create the synthetic images after the 

PCA analysis are obtained by varying the weight of each eigenvector with the square root of 

the corresponding eigenvalue, which limits the range of deviation from the mean 

deformation. Weighting each eigenvector with a wider value range could also account for 

more variability in the input data.

Finally, regarding future work, our aim is to incorporate a data augmentation technique that 

simulates non-contrast CT volumes from CTA scans. This may allow to use the same 

network to segment and characterize the artery in cohorts where the use of contrast is not 

usual, such as COPD patients.
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Fig. 1. 
Sample CTA slices of 3 patients from different cohorts. Left - Pulmonary embolism dataset, 

where the arrow points towards a clot; Middle - Control subject; Right - Pulmonary 

hypertension case, where the arrows show a dilated artery.
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Fig. 2. 
Correction of the automatically generated ground truth labels. Left - Automatically obtained 

segmentation; Middle - Correction of the segmentation by including the clot (green) and 

removing the vein (blue); Right - Final fuzzy ground truth used for the CNN.
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Fig. 3. 
Sample axial slices of volumes generated using the realistic deformation based data 

augmentation technique. Right: original axial slice; Middle: corresponding slice generated 

using PCA2-Model; Left: corresponding slice generated using PCA1-Model.
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Fig. 4. 
Sample volumes generated using the realistic deformation based data augmentation 

technique.
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Fig. 5. 
The several blocks that compose the proposed convolutional neural network.
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Fig. 6. 
Scheme of the proposed convolutional neural network.
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Fig. 7. 
Training and validation loss and accuracy curves and fitted polynomial trendline as a 

function of epochs. Over-fitting is observed after epoch 20.
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Fig. 8. 
Plots showing the Dice and Jaccard scores and the mean distance between surfaces for all 

the test volumes when using the proposed data augmentation technique, and without it. The 

p-values corresponding to the Wilkoxon test are also displayed.
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Fig. 9. 
Plots showing the Dice and Jaccard scores and the mean distance between surfaces for the 

proposed architecture and a Unet. The p-values corresponding to the Wilkoxon test are also 

displayed.
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Fig. 10. 
Outlier test case of a patient with a very big liver, which the network segments as artery.
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Table 1.

Evaluation metrics for the proposed network when including realistic deformable registration based data 

augmentation and without it.

Mean Dice Score Mean Jaccard Score Mean distance between surfaces (mm)

Without augmentation 0.87 ± 0.07 0.77 ± 0.09 1.27 ± 0.98

With data augmentation 0.89 ± 0.07 0.80 ± 0.09 1.25 ± 1.17
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Table 2.

Evaluation metrics for the proposed method as compared to a traditional Unet when using the deformation-

based data augmentation.

Mean Dice Score Mean Jaccard Score Mean distance between surfaces (mm)

Unet 0.89 ± 0.04 0.80 ± 0.05 1.66 ± 1.03

Proposed architecture 0.89 ± 0.07 0.80 ± 0.09 1.25 ± 1.17
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