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3D-QSAR studies on Maslinic acid 
analogs for Anticancer activity 
against Breast Cancer cell line 
MCF-7
Sarfaraz Alam1,2 & Feroz Khan  1,2,3

Global prevalence of breast cancer and its rising frequency makes it a key area of research in drug 
discovery programs. The research article describes the development of field based 3D-QSAR model 
based on human breast cancer cell line MCF7 in vitro anticancer activity, which defines the molecular 
level understanding and regions of structure-activity relationship for triterpene maslinic acid and its 
analogs. The key features such as average shape, hydrophobic regions and electrostatic patterns of 
active compounds were mined and mapped to virtually screen potential analogs. Then, field points 
based descriptors were used to develop a 3D-QSAR model by aligning known active compounds onto 
identified pharmacophore template. The derived LOO validated PLS regression QSAR model showed 
acceptable r2 0.92 and q2 0.75. After screening through Lipinski’s rule of five filter for oral bioavailability, 
ADMET risk filter for drug like features, and synthetic accessibility for chemical synthesis, out of 593 
hits, 39 were left top hits. Docking screening was performed through identified potential targets 
namely, AKR1B10, NR3C1, PTGS2, and HER2. Finally, compound P-902 was identified as best hit. This 
study, would be of great help in lead identification and optimization for early drug discovery.

Breast cancer is the most common cancer among women worldwide. It accounts for nearly 1 in 3 cancers diag-
nosed in United States women and accounts for 27% of all cancers in Indian women. Nearly 1.7 million new 
cases diagnosed in 20121. �is constitutes about 12% of all new cancer cases and 25% of all cancers in women and 
supposed to be the leading cause of morbidity and mortality in both pre- and post-menopausal women2. In India, 
cervical cancer has replaced by breast cancer, as the foremost cause of cancer deaths among women. �is growing 
incidence of breast cancer and developing drug resistance to existing anticancer drugs force researchers world-
wide to develop new medications in a speedier way3. �is requirement can be ful�lled by using structure-based 
drug designing approach in lead identi�cation and optimization, which emerged as a powerful tool to enhance 
the drug discovery processes4. Besides, several researchers explored the potential of plant molecules against can-
cer such as, indoles, iso�avones, and resveratrol etc. Natural plant products serve as an excellent source for the dis-
covery and development of modern drugs for cancer treatment. Keeping in mind this, a detailed structure-activity 
relationship study was performed on maslinic acid, a member of the group of triterpenes (oleananes). It is derived 
from dry olive-pomace oil (an olive skin wax) which is a byproduct of olive oil extraction5. It is one of the impor-
tant anticancer compounds, for which, so far, no three-dimensional quantitative structure–activity relationship 
(3D-QSAR) study has been yet reported, so that to highlight the key structural controlling regions and di�erent 
active and inactive sites6. �erefore, a 3D-QSAR study was performed on this natural series, to extract out the 
key regulatory features controlling the anticancer activity and toxicity of maslinic acid. Since no structural infor-
mation is currently available for maslinic acid in its target-bound state, therefore, a common pharmacophore 
was developed. �is employs molecular �eld-based similarity method for the conformational search, to design 
a pharmacophore template which resembles the bioactive conformation. Additionally, the activity-atlas models 
were generated to get a better insight of structure-activity relationship (SAR). 3D-QSAR also revealed the positive 
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and negative electrostatics regions of the active compounds. �is lead, to design more active and optimized ana-
logs of maslinic acid. �is 3D-QSAR approach o�ered a di�erent impact and served as a valuable predictive tool, 
predominantly in the design of pharmaceuticals7. However, getting a good 3D-QSAR is a challenging task. �is 
is, due to the requirements of good and reliable biological data and generation of precise alignments for all com-
pounds with the lowest degree of noise8.

Further, predicted compounds were �ltered through Lipinski’s rule of �ve for oral bioavailability evaluation, 
and ADMET (absorption, distribution, metabolism, excretion, and toxicity) risk assessment. Later screened for 
synthetic accessibility of predicted compounds. A�er this, the docking simulation studies were performed on 
glucocorticoid receptor also known as NR3C1 (nuclear receptor subfamily 3, group C, member 1), a receptor 
of cortisol and other glucocorticoids9. �e docking results revealed the putative binding site pocket residues 
responsible for binding a�nity, selectivity, and potency in terms of docking score, comparable to standard inhib-
itor. �rough this study, a primary level understanding of the mode of action of candidate compound P-902 was 
achieved. Finally, promising compound P-902 was evaluated for detail pharmacokinetics and system pharmacol-
ogy studies. For the �rst time, this research article reports the �eld-based 3D-QSAR modeling, docking, ADMET, 
and system pharmacology studies on plant derived natural triterpene maslinic acid, leading to identi�cation of 
major anticancer target, and thereby de�ning the mechanism of action. Such study would further establish the 
development of pharmacophore based drug designing, optimization, and drug discovery against breast cancer, a 
disease a�ecting millions of lives worldwide.

Materials and Method
Parameters for QSAR model development. Data collection and Structure preparation. �e training 
dataset of compounds was collected through the prior reports/literature. �e two-dimensional (2D) chemical 
structures were transformed into three-dimensional (3D) structures using the converter module of ChemBio3D 
Ultra (PerkinElmer/CambridgeSo�, UK).

Conformation hunt and Pharmacophore generation. As no structural information is currently available 
for maslinic acid in its target-bound state, therefore FieldTemplater module of Forge v10 (Cresset Inc., UK) 
so�ware was used to determine a hypothesis for the 3D conformation. For this, the �eld and shape informa-
tion were used by the template through compounds namely, M-159, M-254, M-286, M-543, and M-659. �e 
FieldTemplater-derived hypothesis for the bioactive conformation was then annotated with its calculated �eld 
points, resulting in a 3D �eld point pattern. �e �eld points were generated by using XED (eXtended Electron 
Distribution) force �eld. Four di�erent molecular �elds such as positive and negative electrostatic, ‘shape’ (van 
der Waals), and ‘hydrophobic’ (a density function correlated with steric bulk and hydrophobicity) were calcu-
lated. �e �eld point pattern provides a condensed representation of the compound’s shape, electrostatics, and 
hydrophobicity. �e XED method was used for the conformational hunt. �is employs molecular �eld-based 
similarity method for the conformational search to design a pharmacophore template which resembles the bio-
active conformation.

Compound alignment and 3D QSAR model development. �e 3D-QSAR method de�nes descriptors by cal-
culating the di�erent molecular properties at the intersection points of a 3D frame or grid. �is method cov-
ers the whole volume of the aligned training set compounds. �e pharmacophore template, obtained from the 
FieldTemplater module was directly transferred into the Forge v10 (Cresset Inc., UK) so�ware, then compounds 
were aligned with the identi�ed template. Field point based descriptors were used for building 3D-QSAR model 
a�er the alignment of 74 compounds with known IC50 value onto the identi�ed pharmacophore template. For 
building the 3D-QSAR model, the maximum number of components were set to 20, the sample point maximum 
distance was set to 1.0 Å, Y scrambles were set to 50, and also used electrostatic, as well as volume �elds. For over-
all similarity, Forge so�ware uses 50% �eld similarity and 50% dice volume similarity. �e overlays with the best 
matching low energy conformations, to the template, were taken into consideration for building the 3D-QSAR 
model. �e experimental activity (IC50) of the data set compounds were converted to its positive-logarithmic 
scale by using the formula: pIC50 = −log (IC50) and de�ned as the dependent variable. All conformers found 
were minimized by using the XED force �eld with a gradient cut-o� value of 0.1. �e partial least square (PLS) 
regression method was used through Forge’s �eld QSAR module10. Speci�cally, the SIMPLS algorithm11 was used 
during QSAR modeling. �e initial training set of total 74 compounds was partitioned into a training set (47 
compounds) (Table S1) and test-set (27 compounds) (Table S2) to evaluate the QSAR model through activity 
strati�ed method.

Validation of the QSAR model. �e best model was validated by regression coe�cient (r2), cross-regression 
coe�cient (q2), and similarity score (Sim) of conformers for each ligand with respect to the pivot. �e derived 
QSAR model was assessed by leave-one-out (LOO) technique to optimize the activity-prediction model. �e 
LOO cross-validation (LOOCV) is considered one of the most e�ective methods of regression model validation 
with small training dataset. Here, training was done with a data size of (N–1) and tested the remaining one, where 
N represents the complete set of data. In the LOOCV method, the training and testing are repeated for an N 
amount of time, to pass each data through the testing process12. �en derived QSAR model was validated by using 
test data (not in the training set) (Table S2).

Visualization of SAR Activity-Atlas models. A Bayesian approach was used to study the global view of 
training data in a qualitative manner. �is approach gives a better understanding of the electrostatics, hydropho-
bic and shape features, which underlie the SAR of a selected set of compounds. �is useful qualitative information 
was achieved by viewing these models in 3D form. �e activity-atlas study revealed the three di�erent types of 
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interrelated biochemical computed data, i.e., an average of actives, activity cli�s summary, and regions explored 
analysis. �e average of actives showed the common part in the selected active compounds. �e activity cli� sum-
mary showed the details about positive and negative electrostatics sites, favorable and unfavorable hydrophobic-
ity, as well as the favorable shape of the active compounds. On the other hand, regions explored analysis showed 
the regions of the aligned compounds which have been fully explored.

Prediction set generation and field pattern contribution to the predicted activity. To identify 
the potential inhibitors, a �eld point-based virtual screening was performed through the ZINC database13. A total 
of 593 prediction set (query set) compounds were retrieved from the ZINC database, based on Tanimoto score 
similarity of more than and equal to 80% with that of maslinic acid structure. Furthermore, these compounds 
were screened through the derived 3D-QSAR model for bioactivity prediction and SAR �eld point’s compliance. 
Mismatched SAR �eld points query/prediction set compounds were removed.

Lipinski’s Rule of five and Drug like score filtering. Lipinski’s rule of �ve14 was used to screen the pre-
diction set as primary screening step for oral bioavailability. �e violating query set predicted active compounds 
by more than one properties were removed. Later, secondary screening was performed on the basis of drug like 
score (ADMET risk score and risk parameters) �lter through ADMET PredictorTM so�ware (Simulations-Plus 
Inc., USA). �e overall ADMET risk range value set to 0–24 scale. �e risk parameters were also provided with 
a unique quantitative feature, where lower score means, more suitable to a drug like compound15. �is method 
was also used to screen out compounds with ADMET risk factor of 10 or more. �e ADMET risk parameters 
were also studied, so that it can be removed or optimized during the experimental chemical synthesis or drug 
designing process. �e identi�ed risk parameters were size, charge, water solubility, volume of distribution, acute 
rat toxicity, and carcinogenicity, SGOT (serum glutamic oxaloacetic transaminase) elevation, hepatotoxicity, and 
inhibition of 3 A4 oxidation of midazolam. Standard anticancer drug topotecan was used for comparative study.

Target identification, docking and synthetic accessibility. Target identi�cation. To �nd out the 
possible drug targets of the candidate compounds or predicted hits, the STITCH v4.0 (search tool for interactions 
of chemicals) database, was used as a source to explore known, as well as predicted interactions of chemicals and 
proteins16.

Protein preparation. To clean and prepare the target proteins for molecular docking simulations, the 3D protein 
crystallographic structures, and the coordinates of predicted target proteins were retrieved from the Protein Data 
Bank (PDB)17. Firstly, the protein preparation protocol was used, which perform tasks such as modeling missing 
loop regions, inserting missing atoms in incomplete residues, deleting alternate conformations and standardizing 
names of the atoms, protonating titratable residues predicted pKs (a negative logarithmic measure of the acid 
dissociation constant) and removed the water molecules or hetero atoms. �e CHARMM (Chemistry at HARvard 
Macromolecular Mechanics; Cambridge, MA, USA) force �eld was used for protein preparation. �e hydrogen 
atoms were added before the processing18.

Protein-ligand Docking Studies. In silico molecular docking simulations and post-docking visualization, studies 
were performed through the Discovery Studio v3. 5 (Accelrys, USA, 2013), so�ware for molecular modeling19. 
�e docking exercise was performed by LibDock program of Discovery Studio molecular modeling so�ware 
(Accelrys Inc., USA) so that to create the bioactive binding poses of potential inhibitors within the active site of 
the predicted drug targets. �is program uses protein site features referred to as hot spots, and are of two types 
(polar & apolar). �en this ligand poses were placed into this polar and apolar receptor interactions site. For 
energy minimization, the Merck Molecular Force Field (MMFF) force �eld was used in the parameterization 
step20. To generate the conformations, a Conformer Algorithm based on Energy Screening and Recursive build 
up (CAESAR) method was used. �e other docking and scoring parameters kept at their default sets. Further, to 
identify speci�c interacting residues of the receptor/target with a bound ligand, a 2D diagram of docking stage 
was also analyzed. Also, analyzed the protein-ligand complexes, to better understand the interactions between 
protein residues and bound ligands atoms, along with the binding site residues of the de�ned or known receptor. 
�e 2D diagrams helped to identify the binding site residues, including amino acid residues, or waters, and/or 
metal atoms (excluded in this study)21. �e score ligand poses protocol was used for the scoring functions, such 
as Jain scoring, LigScore1, the potential of mean force (PMF) and piecewise linear potential (PLP), to evaluate 
ligand binding ability in a receptor cavity.

Synthetic accessibility assessment. To further validate and screened best hit compounds, the synthetic accessibil-
ity of the predicted active compounds was measured by using the SYLVIA-XT 1.4 program (Molecular Networks, 
Erlangen, Germany). It provides a score on a scale from 1 (very easy to synthesize) to 10 (complex and challeng-
ing to synthesize). Many criteria, such as the complexity of the molecular structure, number of stereocenters, 
complexity of the ring system, like commercially available compounds, and the potential for using important 
synthetic reactions have been independently weighted to provide a single value for synthetic accessibility22.

In silico Pharmacokinetics (PK)/Pharmacodynamics (PD) compliance evaluation. The PK/
PD properties were calculated by using different standard descriptors to check the compliance of maslinic 
acid analogs with that of standard drug. �e PK covers the study of how the organism a�ects the drug, while 
PD covers the study of how a drug a�ects an organism. �e standard pharmacokinetics parameters namely, 
absorption, distribution, metabolism, excretion, and toxicity (ADMET) were calculated for in silico evaluation, 
so that to prevent late-stage failure of the active lead. Also, evaluate the solubility, ability to be metabolized by 
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cytochrome-P450 (CYP-P450) and metabolism kinetics of the predicted hits (compounds). Metabolism of pre-
dicted lead compounds was evaluated in detail by a plethora of diverse enzyme families, involved in xenobiotic 
metabolisms, such as CYP450 enzymes, dehydrogenases, �avin-containing monooxygenases, hydrolases, peroxi-
dases, UDP-glucuronosyl-transferases (UGTs), sulfotransferases, and glutathione S-transferases. Besides this, the 
predicted metabolic products and sites of metabolism for Phase-I and Phase-II metabolisms were also estimated 
through ADMET PredictorTM and MetaPrint2D-React so�ware23. �e hepatic clearance data was also calculated 
for evaluation of excretion parameter. Other parameters such as solubility, permeability, the volume of distribu-
tion and BBB (blood-brain barrier) were also evaluated for drug-likeness & pharmacokinetics compliance. Lastly, 
toxicity parameter was evaluated by calculating di�erent standard properties by using ADMET PredictorTM so�-
ware, which o�en takes longer time in the drug development process.

Results and Discussion
3D-QSAR modeling on maslinic acid series for anticancer activity against MCF-7 cell line.  
Bioactive conformation hunt and Pharmacophore generation. Prior studies of maslinic acid derivatives showed 
its promising role in the anticancer activity, but no reports found related to the underlying mechanism of action. 
�erefore, to shed more lights on this series of compounds, a structure-activity relationship was performed by 
using molecular �eld-based 3D QSAR approach. For this, an active conformational hunt was performed on the 
selected �ve compounds as a template, namely M-159, M-254, M-286, M-543, and M-659. Due to the lack of 3D 
protein crystallographic structural data of target protein in complex with maslinic acid, a common pharmacoph-
ore was derived (Fig. 1).

�e derived perception of bioactive conformation was then annotated with its calculated �eld points, resulting 
in identi�cation of a three-dimensional �eld points pattern. �e �eld points were generated by using XED force 
�eld. Four di�erent molecular �elds, namely positive and negative electrostatic potential, shape/van der Waals 
descriptors, and hydrophobicity (a density function correlated with steric bulk and hydrophobicity) were calcu-
lated. �is employs molecular �eld-based similarity method for the conformational search, to design a pharma-
cophore template which resembles the bioactive conformation, for further virtual screening (Fig. 2).

Training set compound alignment and 3D-QSAR model development. Training set compounds were aligned to 
the selected pharmacophore template. Field points based descriptors were used to build the 3D-QSAR model 
a�er the alignment of 74 compounds. �e experimental activity (IC50) of the training data set was converted to its 
positive logarithmic scale by using the formula: pIC50 = −log (IC50), and de�ned as the dependent variable. For 
3D-QSAR studies, a random method was used for dividing the initial data set into two subsets, i.e., 47 compounds 
in the training set (Table S1), and 27 compounds in the test set (Table S2). Robustness of derived 3D-QSAR model 
was represented by the activity interactive graph analysis, which shows the predicted versus actual or experi-
mental activity comparison plot with cross-validation data point (Fig. 3A). Moreover, the derived 3D-QSAR 
model achieved the high activity–descriptors relationship accuracy of 92% as referred by regression coe�cient 
(r2 = 0.92) and a high activity-prediction accuracy of 75% as referred by cross-validation regression coe�cient 
(q2 = 0.75) (Fig. 3B). Keeping in mind the high descriptive and predictive ability, the derived 3D-QSAR model 
was considered highly robust prediction or virtual high-throughput screening (vHTS) application tool for the 
prediction of anticancer/cytotoxic activity of maslinic acid derivatives/analogs against MCF7 breast cancer cell 
line.

SAR mechanism of maslinic acid regulated by field points. Identi�cation of �eld points (coe�cient & 
variance) controlling anticancer activity. To unravel the underlying structure-activity relationship (SAR) mech-
anism of maslinic acid, the derived QSAR model was further visualized in 3D form. For this, training set com-
pound’s bioactivity associated �eld points, namely coe�cient and variance were analyzed in 3D structural form. 
To better understand the space �eld points localization, derived QSAR model points were compared with that 
of reference compound maslinic acid. A high coe�cient and a high variance �eld points were considered truly 

Figure 1. Representation of �ve template compounds and identi�cation of common pharmacophore bioactive 
region on the basis of �eld points for 3D-QSAR model development. Blue color represents negative electrostatic 
potential, red color represents positive electrostatic potential, orange color represents hydrophobicity and 
yellow color represents van der Waals descriptors localization.
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important correlating parameters in a robust model. Results of structural analysis revealed that the derived QSAR 
model was well dominated by the electrostatic e�ects of substituents, as indicated by the large size of red and cyan 
color and therefore, concluded that electrostatic e�ects seem to play a minor role in modulating activity, as shown 
by small size of green and pink �eld points (Fig. 4).

Field contributions to the predicted activity. To evaluate how well maslinic acid and its analogs �ts the derived 
�eld-based 3D-QSAR model and structural �eld points regions regulating the predicted activity, ‘view �eld con-
tributions to predicted activity’ study was performed on maslinic acid and its analogs. �ese �eld contributions to 
predicted activity were shown by a circle (red color), triangle (purple color) and square (blue color) geometries. 
Results showed that structural area of maslinic acid under the circle, indicates electrostatics �eld points region 
with negative regulation ability on predicted activity, i.e., to decrease the predicted anticancer activity. On the 

Figure 2. (A) Molecular representation of aligned training set compounds with their respective �eld points. 
(B) Molecular representation of two highly active training set compounds (H1 and H2) and two low active 
training set compounds (L1 and L2) with their respective biological activity (IC50) and molecular �eld points 
especially the electrostatic potential regions. Blue color shows negative �eld points, which indicates likely 
molecular regions interacting with positive or H-bond donors of target protein, red color shows positive �eld 
points, which indicates likely molecular regions interacting with negative or H-bond acceptors of target protein, 
gold or orange color shows hydrophobic �eld points, which indicates the regions with high polarizability or 
hydrophobicity, and yellow color shows van der Waal �eld points, which indicates the regions with possible 
surface.

Figure 3. (A) Activity interactive graph plot between predicted and actual experimental activity. �e graph 
plot shows separate data series for the training set (green color cross), test set (blue color cross), and training 
cross-validation set (black color cross). (B) 3D-QSAR model performance graph plot between cross-validation 
regression coe�cient, q2 (blue color line), and regression coe�cient, r2 (green color line) ratio and the number 
of components.
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other hand, the area under the triangle and square, indicate steric and electrostatics �eld points regions respec-
tively, with positive regulation ability on predicted activity, i.e., to increase the anticancer activity (Fig. 5).

SAR mechanism identification through Activity-Atlas visualization. To reveal the key features of 
maslinic acid, modulating the anticancer activity for further lead optimization and designing of novel analogs for 
drug discovery, SAR study was performed through activity-atlas visualization approach. To achieve this, studies 
related to the average of actives and activity cli�s summary were studied for maslinic acid. Results showed that 
positive �eld regions within active SAR model of maslinic acid as indicated by red color sites is regulating the 
anticancer activity (Fig. 6A). Higher positive �eld regions (red color site) means higher the cytotoxic/antican-
cer activity. Modeling results also showed that region of average shape, as indicated by white color region, and 
hydrophobic interactions regions, as indicated by yellow color are the likely conserved regions controlling the 
anticancer activity (Fig. 6B). Results also showed that there are favorable (green color) and unfavorable (purple 
color) shape regions regulating the anticancer activity of active compounds under study. However, 3D-QSAR 
modeling results also revealed the region with no strong SAR ability (Fig. 6C). Moreover, modeling results also 
revealed the molecularly conserved sites with positive (red color), as well as negative (cyan color) electrostatics 
regions positively correlating the anticancer activity, i.e., higher the red and cyan color regions, indicates higher 
anticancer activity. Beside this, results also revealed the favorable (green color) and unfavorable (purple color) 
hydrophobic regions controlling the anticancer activity (Fig. 6D).

Models validation through activity prediction of training and test set. Based on derived SAR 
models, molecular features controlling the anticancer activity of the active compounds were extracted for fur-
ther anticancer activity prediction of selected query or prediction data set compounds. Prior to that, prediction 

Figure 4. Molecular insight of maslinic acid structure representing the coe�cients and variance �eld points 
modulating the bioactivity through the derived 3D-QSAR model. (A) Model coe�cient �eld points in red color 
show the region of a strong e�ect on higher activity. (B) High electrostatic variance and high steric variance �eld 
points represent the region of high changes and points with low variance indicates the �elds in that region with 
less or no changes.

Figure 5. Molecular SAR mechanism of maslinic acid derivatives, representing di�erent geometries of �eld 
contributions to the predicted activity. �e red color circle indicates electrostatics �eld points, controlling the 
decrease in predicted activity. �e purple color triangle indicates steric �eld points, controlling the increase 
in predicted activity, while blue color square indicates electrostatics �eld points, controlling the increase in 
predicted activity.
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performance was �rstly evaluated on the training and the test set compounds by predicting anticancer activity 
through derived models and then compared the distance value (error). For comparison, distinct predicted activity 
and distance to model columns were evaluated for each derived model. �rough this study, essential ligand �elds 
were elucidated for target binding and later these features were used for virtual screening.

Ligand-based virtual screening for hits prediction. To proposes the hit, a series of �eld-based 3D 
similarity-based virtual screening experiments were performed. A set of 593 compounds were identi�ed by using 
the descriptors of QSAR model. Only high hits compounds with a value of ‘excellent’ were selected. �is suggests 
that most of the features in the compound were found similar to the training set and therefore predicted activities 
were expected reliable. In contrary, compounds with ‘poor’ �eld points similarities were removed to avoid consid-
eration of unreliable predicted activities of false positive compounds. Further, high hit compounds were predicted 
for anticancer activity by using the derived QSAR model. �e QSAR model quanti�ed the activity-dependent 
chemical descriptors and predicted the logarithm of 50% inhibitory concentration (log IC50) of each compound, 
therefore indicated the potential range of inhibition. �e compounds with predicted IC50 value of more than 
20 µM were removed. �e potential predicted active compounds were further screened through Lipinski’s rule of 
�ve of oral bioavailability (with one rule violation) and later virtually screened through ADME parameters and 
toxicity risk of drug-likeness (Table S3).

Identification of ADMET risk range and risk parameters. �e ADMET risk score was calculated to 
identify the real ADMET problems behind the predicted lead compounds so that to prevent the failure of the 
compound during clinical studies. �is method was also used to screen out compounds with ADMET risk factor 
of 10 or more. �e lower ADMET risk score is a mostly preferable step in drug discovery process. �e parameters 
of the risk were also studied so that it can be removed during designing of drugs. �e predicted compound P-902 
showed a risk of 4.22 in compare to control anticancer drug topotecan, which showed a score of 2.0 (Table 1). �e 
risk parameters of predicted hit compound under study were due to its size, charge, water solubility, the volume 
of distribution, acute rat toxicity, and carcinogenicity, SGOT elevation, hepatotoxicity, and inhibition of 3A4 
oxidation of midazolam (Table S3). Results showed that predicted active compound P-902 may require more lead 
optimization to �ts well with standard drug range.

Assessment of predicted hits for synthetic accessibility. To ensure the viable virtual screening, pre-
dicted compounds were evaluated for synthetic accessibility. Later, results of synthetic accessibility of predicted 

Figure 6. Molecular insight of SAR mechanism models, revealing the di�erent lead optimization sites of active 
compounds including maslinic acid, as detected through an average of actives and activity cli�s summary 
studies. (A) Red color shows positive �eld region controlling the activity. High red color region means, higher 
the activity. (B) White color region shows the average shape of active compounds and yellow color shows 
hydrophobic interactions sites required for activity. (C) Green color shows favorable region, purple color 
shows unfavorable shape region, and red square shows no strong SAR region. (D) Red color indicates positive 
electrostatics region and cyan color indicates negative electrostatics region. Higher the red and cyan color 
region means higher the activity. Green color shows favorable and purple color shows unfavorable hydrophobic 
regions controlling the activity.
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leads were compared with that of standard anticancer drug doxorubicin. Results showed synthetic accessibility 
of predicted hits, similar to standard drug doxorubicin. �e SYLVIA scores of hits and standard drug were found 
similar and therefore results of hits indicate the synthetic ability of predicted leads.

Potential anticancer drug targets identification. Following the development of the QSAR model, hits 
prediction, �ltering through the Lipinski’s rule of �ve for oral bioavailability and ADME compliance evaluation, 
toxicity risk assessment and synthetic viability, best hits or predicted active maslinic acid analogs were further 
evaluated for target binding a�nity through molecular docking simulation studies. Prior to docking, potential 
cellular targets of predicted maslinic acid analogs (best hits) were identi�ed through the STITCH v4.0 so�ware. 
�rough this, potential anticancer targets were predicted, such as aldo-ketoreductase family-1 member B10 
(AKR1B10)24, nuclear receptor subfamily-3 group-C member-1 (NR3C1)9, and prostaglandin-endoperoxide syn-
thase (PTGS2)25 (Figure S1). Besides, predicted best hits were also evaluated by docking against known anticancer 
target, viz., human epidermal growth factor receptor 2 (HER2), mostly expressed in about 25% cases of breast 
cancer patients26. �e primary purpose of docking simulation study is to elucidate whether the identi�ed best hit 
compounds able to bind and regulate the anticancer targets/receptors and also to study their possible mechanism 
of action and measure the binding a�nity. For this, predicted best hits were evaluated by docking studies against 
identi�ed anticancer targets. None of the predicted compounds docked with HER2 (PDB ID: 3PP0) and PTGS2 
(PDB ID: 4FM5) but showed low docking score with AKR1B10 (PDB ID: 1ZUA). However, predicted best hit 
maslinic acid analogs well docked with NR3C1 (PDB ID: 4UDD), a known anticancer target and reported to have 
a role in promoting cancer cell survival and induce chemoresistance in breast cancer patients9. �e 3D crystallo-
graphic protein structure of NR3C1 with a resolution of 1.8 Å was retrieved from PDB database. �e NR3C1 also 
known as glucocorticoid receptor (GR or GCR) is a receptor for binding of cortisol and other glucocorticoids. 

Risk Absorption
P450 
oxidation Mutagenicity Toxicity

ADMET 
Risk Risk Parameters

Range 0–8 0–6 0–4 0–7 0–24

P-902 3.26 0.0 0.0 0.96 4.22 Size, charge, water solubility, 
lipophilicity

Topotecan (control) 0.0 0.0 2.0 2.0 2.0 Hepatotoxicity, inhibition of 
3A4 oxidation of midazolam

Table 1. Details of predicted in silico ADMET risk range and risk parameters of compound P-902 and standard 
anticancer drug topotecan.

Figure 7. (A) Protein crystallographic structural model of human NR3C1 (PDB ID: 1ZXM) with the co-
crystallized inhibitor CV7 binding site (orange color sphere). (B) Binding site pocket residues with best �t 
con�rmation of maslinic acid analog P-902 (yellow color). (C) Binding site pocket residues with docked 
maslinic acid analog P-902 (green color) and control drug CV7.
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�e NR3C1 can function both as a transcription factor that binds to glucocorticoid response elements in the 
promoters of glucocorticoid responsive genes to activate their transcription, and as a regulator of other transcrip-
tion factors. �is is found in cytoplasm, but transported to nucleus a�er ligand binding. �e NR3C1 involved in 
in�ammatory responses, cellular proliferation, and di�erentiation in target tissues27. Prior studies suggest role 
of NR3C1 against cancer such as, acute lymphocytic leukaemia (ALL), prostate cancer, multiple myeloma, and 
stomach cancer (http://www.cancerindex.org)28. Results of molecular docking with target NR3C1 revealed that 
except predicted compounds, viz., P-902 and P-701, rest showed low binding a�nity docking score in compared 
to control co-crystallized inhibitor CV7, therefore both the predicted compounds were considered best-predicted 
leads.

Potential of these best hit compounds was measured through LibDock docking score. �e best hit compounds 
(maslinic acid analogs), namely, P-902 & P-701, when docked with NR3C1 showed the LibDock scores of 123.691 
& 103.797, respectively, which were found lower but under the limit to control drug CV7 docking (LibDock) 
score of 167.349. Molecular docking results of predicted active compound P-902 revealed two hydrogens (H) 
bonds with their binding site amino acid residue Tyr735 and single H-bond with amino acid residue Met601. On 
the other hand, no H-bond found with the binding site residues for predicted best hit compound P-701. However, 
control drug CV-7 showed three H-bonds formation with the binding site amino acids, namely Gln570, �r739, 
and Asn564. In the studied work, optimum orientations (i.e., most active con�rmations) of candidate compounds 
were also evaluated (Fig. 7). �e inhibitory activity of P-902 was explained by two major factors: docking score 
and H-bond interactions. �e docking reliability was validated by using the experimentally known crystallized 
X-ray 3D structure of target protein receptor complex from PDB database. For docking protocol optimization 
and validation con�dence, the co-crystallized drug (i.e., CV-7) was re-docked on to the known binding site and 
the docked conformations with the highest docking score were selected as the most probable active binding con-
�rmation. Results showed that docked compounds were almost in the same position with that of co-crystallized 
drug CV-7. Further, docking experiments for binding a�nity evaluation of predicted hits were measured in terms 
of di�erent standard scoring functions, such as LigScore1, PLP2, Jain score, PMF, and PMF04, and then com-
pared with that of positive control drug (Table 2). Besides, molecular insight was revealed by 2D diagram anal-
ysis, which showed various molecular interactions, such as H-bonds, atomic charge interactions, and Pi-sigma 

Compound 
ID

LibDock 
Score H-bond LigScore1 PLP2

Jain 
score PMF PMF04 Amino acid residues

P-902 123.691 Tyr735(2) Met601 6.7 101.12 10.88 157.86 22.66

�r556, Ile559, Met560, Leu563, Asn564, Gly567, 
Gln570, Trp600, Met601, Met604, Ala605, Leu608, 
Phe623, Ile629, Met639, Gln642, Cys643, Met646, 
Leu732, Tyr735, Cys736, Phe749, Leu753

P-701 103.797 No 5.11 92.47 8.09 145.41 16.61

�r556, Ile559, Met560, Leu563, Asn564, Gly567, 
Gln570, Trp600, Met601, Met604, Ala605, Leu608, 
Leu621, Phe623, Ile629, Met639, Gln642, Cys643, 
Met646, Leu732, Tyr735, Cys736, Leu753

CV7 
(control, 
inhibitor)

167.349 Gln570 �r739 
Asn564

7.85 139.78 12.63 174.38 45.28

�r556, Ile559, Met560, Leu563, Asn564, Leu566, 
Gly567, Gln570, Trp600, Met601, Met604, Ala605, 
Leu608, Arg611, Phe623, Ile629, Met639, Gln642, 
Cys643, Met646, Leu732, Tyr735, Cys736, �r739, 
Ile747, Phe749, Leu753

Table 2. Details of LibDock scoring functions, H-bond and interacted binding site amino acid residues for 
maslinic acid analogs & control drug docked on anticancer target NR3C1.

Figure 8. �e possible metabolites of candidate compound P-902.

http://www.cancerindex.org


www.nature.com/scientificreports/

1 0SCIENTIFIC REPORTS | 7: 6019 | DOI:10.1038/s41598-017-06131-0

interactions between the ligand and the surrounding residues, so that to unravel the molecular mechanism of 
action behind activity & stable binding speci�city. �e presence of covalent bond means higher chances of ther-
apeutic activity and binding stability, and mostly these compounds refer as ‘covalent inhibitors’. In 2D diagram 
results, for more clarity, di�erent colors were used to highlight the di�erent molecular interactions, e.g., pink 
color indicates electrostatic interaction, purple color indicates covalent bond, and green color means van der–
Waals molecular interaction. Beside this, solvent accessibility of the ligand atom and the amino acid residues was 
represented by light blue color shades surrounding the respective atoms or residues. High shades indicate more 
exposure to solvent (Figure S2).

In silico PK/PD analysis for compound P-902. �e most potent maslinic acid analog and best-hit com-
pound P-902 was further evaluated for in silico pharmacokinetics parameters (i.e., absorption, distribution, 
metabolism, excretion, toxicity; ADMET) compliance with standard range. �e calculated pharmacokinet-
ics parameters of maslinic acid analog P-902 were compared with that of standard anticancer drug topotecan 
(Table S4). �e calculated results of ADMET studies showed that compound P-902 was slightly lipophilic in 
nature with good solubility but slightly lower than topotecan. �e calculated molecular di�usion coe�cient (in 
water) for best hit maslinic acid analog P-902 was 0.539 cm2/s × 105 and octanol-water distribution coe�cient 
(LogP/D) was 5.858. �e compound P-902 showed a tendency to supersaturate in water and revealed native water 
solubility of 0.008 mg/mL. Likewise, the calculated solubility of compound P-902 in a fasted state at gastric �uid 
was 4.015E-4 mg/mL, and in a fasted state at intestinal �uid was 0.079 mg/mL, whereas in a fed state at intestinal 
�uid it was 0.201 mg/mL. �e compound P-902 was also analyzed for permeability compliance, a key determi-
nant factor in ADMET studies or prior to clinical trials, with the help of human skin and human jejunal e�ective 
permeability parameters, along with apparent Madin-Darby Canine Kidney Cells-On-Sheet (MDCK COS) per-
meability, and permeability through rabbit cornea. �e permeability through human skin was 113.623 cm/s × 107 
and the Pe� (e�ective jejunal permeability) was found to be 3.686 cm/s × 104. �e MDCK permeability was 
50.684 cm/s × 107, and the permeability through rabbit cornea was 224.475 cm/s × 107. Moreover, ADMET results 
of predicted best-hit compound P-902 revealed liver high intrinsic passive uptake capacity, which is considered 
safe in sense of pharmacology studies. Also, calculated the volume of distribution which was detected 0.477 L/
kg. �e compound P-902 showed low ability to cross the BBB. �e brain/blood partition coe�cient was detected 
(in logarithm) −0.649, whereas the percent unbound to blood plasma proteins was detected 1.657. �e blood to 
plasma concentration ratio was predicted to be 0.57 for compound P-902.

�e major cytochrome family enzymes involved in the metabolism of compound P-902 were also predicted by 
using structural data. Results revealed that compound P-902 was a substrate of CYP1A2, CYP-2C8 and CYP3A4 
in human and indicate general inhibitory action against CYP2C9 and CYP3A4. �e speci�cally predicted sites 
of human CYP2C8 mediated oxidation were C33(897), C20(869), C1(642), while the predicted sites of human 
CYP3A4 mediated oxidation were C33(768), C3(678), C20(551), C1(545) and C18(478). �e compound P-902 
was found to be the inhibitor of the CYP3A4-mediated metabolism of midazolam and the predicted inhibition 
constant (Ki) value for midazolam inhibition was 46.028 µM. In identifying the a�nity of compound P-902 with 
CYP-P450 enzymes in quantitative terms, the Km value and Vmax were calculated, which provide the knowledge 
of the rate of metabolism. �e kinetic Michaelis-Menten Km constant for predicted sites of CYP3A4 mediated 

Figure 9. �e possible phase II metabolites of candidate compound P-902 developed through di�erent 
biochemical reactions. (A) Oxidation, (B) Glucosidation, (C) Sulfation, (D) Aromatization, (E) 
Phosphorylation, (F) Hydroxylation, (G) Acetylation, (H) Glucuronidation, and (I) Methylation.
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metabolism was 51.402 µM, whereas the Vmax constant for predicted sites of enzyme CYP3A4 mediated metab-
olism was 6.456 nM/min/nM. �e intrinsic clearance constant (Clint) for predicted sites of CYP3A4 mediated 
metabolism was 13.940 µL/min/mg. �e kinetic Michaelis-Menten Km constant value for CYP3A4 mediated 
metabolism from human liver microsomes was 51.168 µM, while Vmax constant for predicted sites of CYP3A4 
mediated metabolism from human liver microsomes was 2.344 nM/min/nM. �e intrinsic clearance constant for 
predicted sites of CYP3A4 mediated metabolism of human liver microsomes was 45.813 µL/min/mg. �e derived 
metabolism kinetics data may be used to calculate the hepatic clearance and also for the in vitro and in vivo 
relationship. �e overall intrinsic clearance in human liver microsomes was, 11.051 µL/min/mg for compound 
P-902, a maslinic acid analog. �rough the metabolic rate information of other metabolites, precise knowledge of 
elimination rate can be used to calculate the candidate drug’s half-life and total clearance (Table S5).

In addition to the cytochrome P450s, there is variety of other drug metabolizing enzymes that can a�ect 
how much of an orally administered drug reaches the systemic circulation including other oxidases, hydrolases, 
reductases, and dehydrogenases (oxidoreductases). �e drug metabolism is commonly divided into two phases; 
phase-I (or functionalization reactions) and phase-II (conjugative reactions). �e reactions of phase-I are thought 
to act as a preparation of the drug for the phase-II reactions. �is drug metabolism produces several metabolites 
which may have di�erent pharmacological and physicochemical properties. �e study of predicting potential 
metabolism-mediated drug interactions of derived metabolites may show signi�cant implications for both drug 
e�cacy and safety. In this perspective, computational approaches were used for investing drug metabolism in 
identifying the e�ects of compound P-902 and its biotransformation pathway for phase-I functionalization reac-
tions and phase-II biosynthetic reactions. To study this, metabolic site, metabolites, and type of reactions involved 

Properties P-902 Topotecan

Maximum recommended therapeutic dose, administered orally Below 3.16 mg/kg/day Above 3.16 mg/
kg/day

Estrogen receptor (rats) Non-toxic Toxic

Quantitative measure of estrogen receptor toxicity in rats Non-toxic 4.3531

Androgen receptor toxicity Toxic Toxic

Quantitative measure of androgen receptor toxicity in rats 0.037 0.0599

Allergenic skin sensitization (mice) No sensitization No sensitization

Allergenic respiratory sensitization in rat No sensitization No sensitization

Fathead minnow lethal toxicity a�er 96 hours of exposure 0.31 mg/L 1.5 mg/L

Daphnia magna (water �ea) lethal toxicity a�er 48 hours of exposure 0.893 mg/L 0.549 mg/L

Bio concentration factor 3.781 4.688

Biodegradation No No

Likelihood of the hERG potassium channel inhibition in human No (95%) No

A�nity towards hERG K+ channel and potential for cardiac toxicity 5.060 mol/L 5.24 mol/L

LD50 for lethal rat acute toxicity 204.531 mg/kg 782.92 mg/kg

Tumorogenic dose, rat 84.385 mg/kg/day 9.94 mg/kg/day

Tumorogenic dose, mice 381.422 mg/kg/day 74.25 mg/kg/day

Triggering the mutagenic chromosomal aberrations Non-toxic Toxic

Hepatotoxicity

levels of Alkaline Phosphatase enzyme Elevated Elevated

levels of GGT enzyme Normal Normal

levels of LDH enzyme Elevated Normal

levels of SGOT enzyme Normal Elevated

levels of SGPT enzyme Normal Normal

Causing phospholipidosis Non-toxic Non-toxic

Reproductive/developmental toxicity Non-toxic Non-toxic

Mutagenicity (pure compound)

TA97 and/or TA1537 strains of S. typhimurium Negative Positive

TA98 strain of S. typhimurium Negative Negative

TA100 strain of S. typhimurium Negative Negative

S. typhimurium and/or WP2 uvrA strain of E. coli Negative Positive

TA1535 strain of S. typhimurium Negative Negative

Mutagenicity (microsomal rat liver 
metabolites)

TA97 and/or TA1537 strains of S. typhimurium Negative Positive

TA98 strain of S. typhimurium Negative Negative

TA100 strain of S. typhimurium Negative Negative

TA102 strain of S. typhimurium Negative Negative

TA1535 strain of S. typhimurium Negative Negative

Table 3. Details of calculated toxicity risk parameters for compound P-902 and control drug topotecan. 
Abbreviations: LD50, lethal dose 50%; hERG, human Ether-a-go-go-Related Gene; SGOT, serum glutamic 
oxaloacetic transaminase; SGPT, serum glutamate-pyruvate transaminase; GGT, gamma-glutamyl 
transpeptidase; LDH, lactate dehydrogenase.
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in candidate compound P-902 were studied in detail. Details of cytochrome P450 mediated metabolites of com-
pound P-902 were summarized (Fig. 8). Additionally, possible metabolic sites and metabolites were predicted 
for di�erent biochemical reactions through oxidation, glucosidation, sulfation, aromatization, phosphorylation, 
hydroxylation, acetylation, glucuronidation and methylation (Fig. 9).

Moreover, compound P-902 also showed glucuronidation potential by uridine 5′-diphospho- 
glucuronosyltransferases 1A3 and 2B7 enzymes, which have the ability to transform the small molecules to water 
soluble form. Since the compound P-902 was slightly lipophilic in nature, thus its renal clearance will decrease, 
while metabolic clearance may increase. �ese metabolites may be helpful in designing new compounds, as well 
as to optimize the pharmacological e�ects.

In silico toxicity risk assessment for compound P-902. �e safety of the lead compound is an impor-
tant parameter for a successful drug. �e candidate compounds P-902 predicted to be a non-biodegradable and 
therefore evaluated for di�erent toxicity parameters and side e�ects so that to minimize the failure during clinical 
studies. �e maximum recommended therapeutic dose for the compounds P-902 was predicted to be below 
3.16 mg/kg/day. �e compound P-902 was found non-allergenic, respiratory sensitizer and non-skin sensitizer. 
Regarding hepatotoxicity, compound P-902 was evaluated through di�erent liver enzymes. Results showed that 
compound P-902 may elevate some of the liver associated enzymes, such as alkaline phosphatase, but at the same 
time, no e�ect observed in the GGT (gamma-glutamyltransferase), SGOT & SGPT (serum glutamate-pyruvate 
transaminase) level, except LDH (lactate dehydrogenase) enzymes. Results suggest that candidate compound 
P-902 may not cause the phospholipidosis, developmental or reproductive toxicity, and estrogen receptor toxicity 
in rats, but may cause the androgen receptor toxicity in rats, either through original form or metabolites. Toxicity 
results also showed no chance of triggering the mutagenic chromosomal aberrations and showed negative muta-
genicity, when evaluated through the TA97, TA1537, and TA98 strains of Salmonella typhimurium and the TA100, 
TA102, TA1535, WP2 uvrA strains of Escherichia coli. �e calculated carcinogenic potency of compound P-902, 
measured in terms of tumorigenic dose 50% (TD50) for the rat was 84.385 mg/kg/day and for the mouse, it was 
381.422 mg/kg/day. �e calculated lethal dose 50% (LD50) for acute rat toxicity was 204.531 mg/kg. Results sug-
gest that compound P-902 was within the limit of standard toxicity parameters range and suitable for further drug 
discovery stages. �ese �ndings will be helpful to set dose ranges for in vivo animal assays, and in planning future 
chemical synthesis for pharmaceutical product/formulation development. besides this, the negative decimal log-
arithm of the 50% lethal concentration (pLC50) for Daphnia magna (water �ea), the calculated lethal toxicity a�er 
48 hours of exposure of candidate compound P-902 was 0.893 mg/L, and the 50% lethal concentration (LC50) for 
Fathead minnow, the calculated lethal toxicity a�er 96 hours of exposure was 0.31 mg/L. However, these predicted 
toxicities can be minimized by the help of dose limit studies. Moreover, the candidate compound P-902 was pre-
dicted to be non-toxic for estrogen receptor, but seems toxic for the androgen receptor and also may not cause 
phospholipidosis (Table 3).

Conclusion
�e virtually screened compound P-902 was found best �t maslinic acid analog clearing all �lters, and predicted 
to be cytotoxic/anticancer active against human breast cancer cell line MCF7. A �eld based 3D-QSAR model 
was proposed as a virtual screening tool for the identi�cation of anticancer active or optimized leads against 
breast cancer. �is 3D-QSAR model de�nes the molecular level understanding and regions of structure-activity 
relationship for triterpene maslinic acid and its analogs. �e key features such as average shape, hydrophobic 
regions and electrostatic patterns of active compounds were mined and mapped to virtually screen potential 
analogs. �e �eld point based descriptors were used for development of 3D-QSAR model by aligning the training 
set compounds onto identi�ed pharmacophore template. �e derived PLS regression QSAR model showed the 
acceptable regression coe�cient of 0.92 and cross-validation coe�cient of 0.75. For better understanding of the 
electrostatics, hydrophobic, and shape features responsible for SAR, a global view of training set was studied by 
using Bayesian approach and later visualized as the activity-atlas models, which revealed the average of actives, 
activity cli�s summary, and regions explored. A total of 593 prediction set compounds (with more than 80% 
structural similarity to maslinic acid) were virtually screened with the help of derived QSAR model, as potential 
hits retrieved from the ZINC database. A�er virtual screening through Lipinski’s rule of �ve �lter for oral bio-
availability, ADMET risk �lter for drug like features, and synthetic accessibility �lter for chemical synthesis, out 
of 593 hits, only 39 top hits were found under limit. Later, AKR1B10, NR3C1, PTGS2, and a known anticancer 
target HER2 were identi�ed as potential cellular targets for docking. Based on high binding a�nity or low energy 
docking scores, out of 39 hits, only two compounds namely, P-902 and P-701 were found best �t against NR3C1, 
a glucocorticoid receptor. A�er comparing all screening parameters, compound P-902 was found top most hit. 
Results showed that identi�ed compound P-902 was under standard limit of in silico PK/PD, and toxicity risk 
parameters, by comparing with anticancer drug topotecan. �ese, results may be of great help in early anticancer 
drug discovery, and lead optimization from natural active sca�old.
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