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�e vascular endothelial growth factor receptor-2 kinases (VEGFR-2) are attractive targets for the development of anticancer agents.
Self-organizing molecular �eld analysis (SOMFA) (a simple three-dimensional quantitative structure-activity relationship (3D-
QSAR) method) is used to study the structure-activity correlation of 3-pyrrole substituted indolin-2-ones VEGFR-2 inhibitors.
�e statistical results, cross-validated �2CV (0.5267) and non-cross-validated �2 (0.5623), show a reliable predictive ability. �e
contributions of shape and electrostatic �elds are 42.7% and 57.3%, respectively. Analysis of SOMFA models through shape and
electrostatic grids provide useful information for the design and optimization of new 3-pyrrole substituted indolin-2-one based
VEGFR-2 inhibitors.

1. Introduction

Cancer is the second leading cause of death in the world.
Researchers have found that receptor tyrosine kinases (RTKs)
play an important role in oncogenic transformation of cells
[1]. VEGFR-2 (vascular endothelial growth factor receptor-
2), as a member of the family of RTKs, is widely investigated
in the pathogenesis of several disorders [2–7]. It is not only
widely distributed in the organization of vascular endothelial
cells but also distributed in some tumor cells; it plays an
important role in the cell signalling of VEGF and tumor
proliferation [8]. Recent research has shown that the blockade
of VEGFR-2 signalling by small molecular inhibitors to the
kinases domain can inhibit the growth of solid tumors [9–
12]. �erefore, inhibition of the VEGFR-2 has become an
important research direction in the treatment of cancers [13].

In recent years, a number of VEGFR-2 kinase inhibitors
have been developed as anticancer agents, including ana-
logues of quinazoline, indolin ketones, pyridazine, and
quinoline structures [14–17]. Recent research found that
a series of 3-pyrrole substituted indolin-2-one compounds
show good inhibitory activity against VEGFR-2, shown in
Table 1, including sunitinib (compound 4) which has been
recently approved by US FDA for the treatment of gastroin-
terstinal stromal tumor (GIST) and renal cell carcinoma

(RCC). However, there are fewer quantitative structure-
activity relationship (2D-QSAR and 3D-QSAR) studies and
other molecular modeling works on VEGFR-2 targets [18–
23].

�e self-organizing molecular �eld analysis (SOMFA)
[24] is a simple 3D-QSAR technique, which has been devel-
oped by Robinson et al. �e method has similarities to
both comparative molecular �eld analysis (CoMFA) [25]
and molecular similarity studies. Like CoMFA, a grid-based
approach is used; however, SOMFA only uses steric and
electrostatic maps; which are related to interaction energy
maps; no probe interaction energies need to be evaluated.
�eweighting procedure of the grid points bymean-centered
activity is an important ingredient of the SOMFA procedure.
Like the similarity methods, it is the intrinsic molecular
properties, such as the molecular shape and electrostatic
potential, which are used to develop the QSAR models.

A SOMFA model could suggest a method of tackling
the all-important alignment, which all 3D-QSAR meth-
ods have faced. �e inherent simplicity of this method
allows the possibility of aligning the training compounds
as an integral part of the model derivation process and of
aligning prediction compounds to optimize their predicted
activities.
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Table 1: Structures of 34 compounds and their VEGFR-2 inhibitory activities.

(a)

R1

R2

R3

N
H

N
H

O

Compd. R1 R2 R3 IC50 (�M) pIC50

1 H H H 1.23 5.910

2 H H (CH2)2N(CH2CH2)NCH3 0.3 6.523

3 H H CONH(CH2)2N(C2H5)2 0.05 7.301

4 F H CONH(CH2)2N(C2H5)2 0.08 7.097

5 Cl H CONH(CH2)2N(C2H5)2 0.027 7.569

6 Br H CONH(CH2)2N(C2H5)2 0.032 7.495

7 F H CONH(CH2)2N(CH3)2 0.08 7.097

8 F H CONH(CH2)2-pyrrolidin-1-yl 0.06 7.222

9 F H CONHCH2CH(CH2CH2)2N-CH3 0.025 7.602

10 F H CONH(CH2)2-morpholin-4-yl 0.09 7.046

11 F H CONHCH2-pyridin-4-yl 0.16 6.796

12 F H CONH(CH2)2-triazol-1-yl 0.085 7.071

13 H H (CH2)2COOH 2.43 5.614

14 Br H (CH2)2COOH 1.73 5.762

15 COOH H (CH2)2COOH 0.07 7.155

16 SO2NH2 H (CH2)2COOH 1.26 5.900

17 H OCH3 (CH2)2COOH 8.29 5.081

18 H Phenyl (CH2)2COOH 0.14 6.854

19 H 3-OCH3phenyl (CH2)2COOH 0.3 6.523

20 H 2-OCH3phenyl (CH2)2COOH 4.37 5.360

21 H 4-OCH3phenyl (CH2)2COOH 0.52 6.284

(b)

HOOC

R1

R2

N
H

N
H

O

Compd. R1 R2 IC50 (�M) pIC50

22 H H 0.02 7.699

23 CH3 H 0.2 6.699

24 Br H 0.35 6.456

25 H 3-OCH3phenyl 28.3 4.548

26∗ H 3-OCH2CH3phenyl 1 6.000
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(c)

COOH

R1

R2

N
H

N
H

O

Compd. R1 R2 IC50 (�M) pIC50

27∗ H H 2.14 5.670

28∗ COOH H 0.24 6.620

29∗ SO2NH2 H 0.92 6.036

30∗ H OCH3 1.35 5.870

31∗ H phenyl 0.3 6.523

32∗ H 3-OCH3phenyl 0.09 7.046

33∗ H 2-OCH3phenyl 1.47 5.833

34∗ H 4-OCH3phenyl 0.45 6.347
∗Test set.

�e purpose of this paper is to describe the application
of self-organizing molecular �eld analysis (SOMFA) on a
series of 3-pyrrole substituted indolin-2-one compounds, a
novel class of VEGFR-2 kinases inhibitors. �erefore, our
main objective is to provide some useful structure-activity
information by SOMFA analysis and design novel inhibitors
of VEGFR-2 kinases in the hope that these molecules will be
developed into powerful anticancer agents.

2. Materials and Method

2.1. Data Set. �e structures and bioactivities of 3-pyrrole
substituted indolin-2-one compounds 1–34were chosen from
the papers by Sun et al. [26, 27].�eywere classi�ed into three
groups according to the common parent structure, shown in
Table 1.

�irty-four compounds were divided into two sets. Com-
pounds 1–25 were used as a training set while the remaining 9
compounds were used as a test set. �e training set was used
to build SOMFAmodels and the test set was used to evaluate
the models. �eir activities shown in Table 1 were described
by IC50 (�M), which were converted into pIC50. Higher pIC50
value indicated greater inhibitory activity.

2.2. Molecular Modeling and Alignment. �e 3D structures of
all analogues were constructed with ArgusLab 4.01 so�ware
[28], running on an AMDAthlon 64 X2Dual Core Processor
5000+ CPU/Microso� Win XP platform.

Unless otherwise indicated, parameters are default. Full
geometry optimizations are performed by MM2 method in
the ArgusLab so�ware. �e conformations are then per-
formed by RMS overlapping and �tted with compound 4
as a reference. Two di�erent alignments are selected to
de�ne overlap. �e �rst superposition of molecules, which

N
H

O

(a)

(b)

Figure 1: Superposition of compounds using alignment A, based
on common structure. (a) Common fragment for superposition;
(b) superposition of compounds in training and test sets.

are optimized by energy minimization and overlaid based
on common structure using alignment A, has been shown
in Figure 1. �e second superposition of molecules, which
are optimized by energy minimization and overlaid based
on common structure using alignment B, has been shown in
Figure 2.

For all analogues, the �nal active conformations search
has also been performed by dock into active site method
in eHiTS so�ware [29]. �e crystal structure of VEGFR-
2 in the complex with its inhibitor 00J (PDB entry code
2XIR, resolution: 1.5 Å) is downloaded from RCSB Protein
Data Bank (http://www.rcsb.org/pdb/home/home.do). A�er
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Figure 2: Superposition of compounds of using alignment B, based
on common structure. (a) Common fragment for superposition;
(b) superposition of compounds in training and test sets.

removing inhibitor 00J and water molecules and adding all
the hydrogen atoms, the site where 00J bindswith proteinwas
de�ned as the active binding site.

�e third superposition of molecules, which are obtained
based on the binding conformation and their alignment in
active site of VEGFR-2, has been shown in Figure 3.

According to the three alignments of these analogues,
they are then performed using SOMFAanalysis. UsingVEGA
so�ware [30, 31], the electrostatic parameters of overlaid
analogues are assigned charges by three di�erent Hamilto-
nian semiempirical methods (AM1, PM3, andMNDO). A�er
calculation, they are converted into CSSR �le format, the only
�le format which the SOMFA2 program can accept to process
a SOMFA analysis.

2.3. SOMFA 3D-QSAR Models. In the SOMFA study, similar
to our previous works [32, 33], a 40 × 40 × 40 Å grid originat-
ing at (−20, −20, −20) with a resolution of 0.5, 1.0, and 1.5 Å,
respectively, is generated around the aligned compounds.
Twenty-seven models using di�erent alignments, charges,
and resolutions of grid are shown in Table 2.

For all of the studied compounds, shape and electrostatic
potential are generated. To sum up the predictive power
of these two properties into one �nal model, we combine
their individual predictions using a weighted average of the
shape and electrostatic potential based QSAR, using amixing
coe�cient (�1) as illustrated in the following [24]:

Activity = �1Activityshape + (1 − �1)ActivityESP. (1)

Clearly, multiproperty predictions could have been
obtained through multiple linear regression.

Using (1) instead gives greater insight into the resultant
model by allowing the study of the variation in predictive
power with di�erent values of �1.

With the highest value of �2, the SOMFA models then
are derived by the partial least squares (PLS), implemented
in SPSS so�ware [34] with cross-validation.

�e predictive ability of the model is quantitated in terms

of �2CV which is de�ned in the following:

�2CV =
(SD − PRESS)

SD
, (2)

where PRESS = �(�pred − �actual) and SD = �(�actual − �mean).

SD is the sum of squares of the di�erence between the
observed values and their meaning and PRESS is the predic-
tion error sumof squares.�e �nalmodels are constructed by
a conventional regression analysis with the optimum value of
mixing coe�cient (�1) being equal to that yielding the highest
�2 and �2CV value according to (2).

3. Results and Discussion

SOMFA, a novel 3D-QSAR methodology, is employed for
the analysis with the training set composed of 25 various
compounds, whose biological activities have been known.
Statistical results of 27 SOMFA models are listed in Table 2.

Among the 27 models, the 20th model is the best

predictive model, which showed cross-validated �2CV value

of 0.5267, non-cross-validated �2 value of 0.5623, standard
error of 0.5165, and 	 value of 41.11, proved a good statistical
correlation and predictive ability. It was also indicated that
the SOMFA model was reliable and able to predict activities
of new analogues aswell. According to the value of �1, the con-
tributions of steric and electrostatic �eld are 42.7% and 57.3%,
respectively. Consequently, electrostatic �eld had a slightly
bigger e�ect than that of steric �eld on the bioactivities of the
analogues.

Taking alignments into account, we found that the align-
ment had a profound in�uence on the result. �e model
which was built by docking-based alignment showed the

highest value of �2 and �2CV of the three alignments, because
it re�ected a true pharmacophoric conformation docked in
the cavity of receptor, indicating that it was more reliable and
accurate.

Taking charges into account, according to alignment B
and C, we found that the results were less sensitive to the
quantum chemistry charge. �at is to say, it made a slight
di�erence that we use various semiempirical methods, for
example, AM1, PM3, and MNDO.

Taking resolution of grid into account, we found that

the values of �2 and �2CV presented in model 10–18 indicated
the correlation and reliability of models, 0.5 Å > 1.0 Å >
1.5 Å, while in model 1–10, 18–27, 1.0 Å > 0.5 Å > 1.5 Å,
because it is known that a �ner grid resolution produced a
better correlation and reliability. However, if the grid is far
too �ne, the amount of noise in the data is increased and thus
the model is inaccurate. In model 20, 1.0 Å grid resolution
produced the best result.

Taking the values of �1 into account, we found that the
values of models which were built by alignment A showed
higher values. �at is to say, the contribution of steric �eld
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(a) (b)

Figure 3: Superposition of compouds of using alignment C, based on docking. (a) �irty-four analogues in the active site of VEGFR-2;
(b) superposition of compouds in training and test sets.

Table 2: Statistical results of the various SOMFA models.

Model no. Alignment Charge Resolution of grid ( ́Å) �1 � 	 �2 �2CV �2pred
1 (A) AM1 0.5 0.475 0.5685 28.36 0.4698 0.4541 0.5062

2 (A) AM1 1.0 0.590 0.5650 29.10 0.4763 0.4603 0.5125

3 (A) AM1 1.5 0.465 0.5739 27.23 0.4597 0.4434 0.4972

4 (A) PM3 0.5 0.710 0.5721 27.60 0.4631 0.4491 0.5039

5 (A) PM3 1.0 0.758 0.5672 28.63 0.4722 0.4577 0.5113

6 (A) PM3 1.5 0.661 0.5779 26.39 0.4520 0.4374 0.4952

7 (A) MNDO 0.5 0.838 0.5731 27.39 0.4612 0.4472 0.5066

8 (A) MNDO 1.0 0.869 0.5678 28.49 0.4710 0.4567 0.5141

9 (A) MNDO 1.5 0.805 0.5798 26.01 0.4484 0.4336 0.4984

10 (B) AM1 0.5 0.513 0.5267 38.31 0.5449 0.5281 0.6322

11 (B) AM1 1.0 0.510 0.5272 38.17 0.5440 0.5263 0.6329

12 (B) AM1 1.5 0.432 0.5294 37.61 0.5403 0.5208 0.6316

13 (B) PM3 0.5 0.613 0.5323 36.84 0.5352 0.5223 0.6306

14 (B) PM3 1.0 0.630 0.5346 36.26 0.5312 0.5177 0.6297

15 (B) PM3 1.5 0.553 0.5395 35.02 0.5225 0.5073 0.6326

16 (B) MNDO 0.5 0.584 0.5343 36.33 0.5317 0.5169 0.6254

17 (B) MNDO 1.0 0.595 0.5356 35.99 0.5294 0.5137 0.6246

18 (B) MNDO 1.5 0.511 0.5416 34.50 0.5188 0.5006 0.6213

19 (C) AM1 0.5 0.409 0.5210 39.86 0.5547 0.5171 0.6125

20 (C) AM1 1.0 0.427 0.5165 41.11 0.5623 0.5267 0.6236

21 (C) AM1 1.5 0.345 0.5215 39.71 0.5537 0.5112 0.6124

22 (C) PM3 0.5 0.467 0.5226 39.43 0.5520 0.5159 0.6043

23 (C) PM3 1.0 0.480 0.5176 40.82 0.5605 0.5263 0.6159

24 (C) PM3 1.5 0.420 0.5244 38.92 0.5488 0.508 0.6020

25 (C) MNDO 0.5 0.407 0.5216 39.70 0.5537 0.5164 0.6099

26 (C) MNDO 1.0 0.426 0.5172 40.92 0.5612 0.5255 0.6208

27 (C) MNDO 1.5 0.346 0.5225 39.44 0.5521 0.5093 0.6089

�2: Non-cross-validated correlation coe�cient; �2CV: cross validated correlation coe�cient; �: �-test value; �: standard error of estimate; �1: mixing coe�cient

of SOMFA model. �2pred: predictive �2.

is four times more than that of electrostatic �eld. Due to
the structure-based alignment, they were given such a high
contribution of steric �eld. While according to alignment
B and alignment C, we found that steric �eld had almost
the same in�uence to the electrostatic �eld, indicating that
the steric and electrostatic interactions of molecules could
be two equally important factors for the bioactivities of the
analogues.

�e experimental and predicted activities of training
set and test set are reported in Table 3. Figure 4 shows the
correlation between experimental and predicted activities of
SOMFA model for the training set and test set.

It is known that the best way to validate the 3D-QSAR
model is to predict bioactivities of compounds in test set.�e
SOMFA analysis of the test set composed of 9 compounds is
reported in Figure 4, indicating a satisfying linear correlation



6 Journal of Chemistry

Table 3: �e comparison of experimental and predicted activities of 34 compounds in training set and test set.

Compd. Experimental pIC50 Predicted pIC50 Residuala Compd. Experimental pIC50 Predicted pIC50 Residuala

1 5.910 6.338 −0.428 18 6.854 6.171 0.683

2 6.523 6.503 0.020 19 6.523 5.998 0.525

3 7.301 7.312 −0.011 20 5.360 5.654 −0.294
4 7.097 7.317 −0.220 21 6.284 5.955 0.329

5 7.569 7.337 0.232 22 7.699 7.963 −0.264
6 7.495 7.341 0.154 23 6.699 6.903 −0.204
7 7.097 7.318 −0.221 24 6.456 6.644 −0.188
8 7.222 7.392 −0.170 25 4.548 5.512 −0.964
9 7.602 6.551 1.051 26∗ 6.000 5.683 0.317

10 7.046 7.230 −0.184 27∗ 5.670 6.230 −0.560
11 6.796 7.079 −0.283 28∗ 6.620 6.127 0.493

12 7.071 7.046 0.025 29∗ 6.036 6.123 −0.087
13 5.614 6.043 −0.429 30∗ 5.870 6.061 −0.191
14 5.762 6.344 −0.582 31∗ 6.523 5.955 0.568

15 7.155 6.047 1.108 32∗ 7.046 6.037 1.009

16 5.900 5.817 0.083 33∗ 5.833 5.687 0.146

17 5.081 5.850 −0.769 34∗ 6.347 5.909 0.438
∗Test set; Residuala = Experimental – Predicted.
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Figure 4: Correlation between experimental and predicted activi-
ties of SOMFA model for the training set and test set.

andmoderate di�erence between experimental and predicted
activities. From Figure 4, we found that compound 32 had a
large residual and thus was classi�ed as outlier. �ere may be
a complicated relationship between structure and activity in
this compound. On the whole, the model performed well in
the activity prediction of most of the test compounds.

SOMFA calculation for both shape and electrostatic
potentials is performed, then combined to get an optimal
coe�cient �1 = 0.427 according to (1), indicating that the
electrostatic �eld contribution is of a little high importance.
�e master grid maps derived from the best model are

used to display the contribution of shape and electrostatic
potentials. �e master grid maps give a direct visualization
of which parts of the compounds di�erentiate the activities
of compounds in the training set under study. �e master
grid also o�ers an interpretation as to how to design and
then synthesize some novel compounds with much higher
activities. �e visualization of the shape master grid and
electrostatic master grid of the best SOMFA model is shown
in Figures 5 and 6, respectively, with compound 4 (sunitinib)
as the reference.

Each master grid map is colored in two di�erent colors
for favorable and unfavorable e�ects. In other words, the
electrostatic features are red (more positive charge increases
activity or more negative charge decreases activity) and blue
(more negative charge increases activity or more positive
charge decreases activity), and the shape features are red
(more steric bulk increases activity) and blue (more steric
bulk decreases activity), respectively.

As shown in Figure 5, the shape master grid shows red-
colored regions where steric bulk enhances activity and blue-
colored regions where steric bulk detracts from activity. We
found that there was a high density of blue lattice points
surrounding 6-position of indolinone ring and 4-position of
pyrrole ring, which suggested that more bulky substituents
in these areas would decrease the bioactivities.We also found
a big region of red lattice points appearing near 2-position
and diethylamine group, which suggested that more bulky
substituents in these areas would remarkably increase the
bioactivities.

As shown in Figure 6, the electrostatic potential master
grid shows red-colored regions where increased positive
charge is favorable for bioactivities and blue-colored regions
where increased negative charge is favorable for bioactivity.
We found that there was a high density of red lattice points
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Figure 5: �e shape master grid with compound 4. Red: steric bulk
enhances the activity in this region. Blue: steric bulk detracts from
activity in this region.

Figure 6: �e electrostatic potential master grid with compound 4.
Red: positive charge is favoured in this region or negative charge is
disfavoured in this region. Blue: negative charge is favoured in this
region or positive charge is disfavoured in this region.

surrounding indolinone ring and pyrrole ring, suggesting
that reducing electronic density would increase bioactivities.
While diethylamine group surrounded by blue lattice points
suggested that negatively charged substituents would increase
the bioactivities.

4. Conclusion

In this study, according to di�erent alignments, 3D-QSAR
analysis was carried out to construct a highly accurate and

predictive SOMFA model (�2CV = 0.5267, �2 = 0.5626). �e
contributions of steric and electrostatic �elds are 42.7% and
57.3%, respectively, indicating that the electrostatic interac-
tion of molecules could be a little more important factor for
the bioactivities of the analogues. �e �nal grid maps help
to better interpret the structure-activity relationship of these
analogues. Generally, the small-sized electropositive poten-
tial substituents (e.g., methyl, ethyl, and aliphatic amines) at
the indolinone ring and pyrrole ring increase the activity,
and the big-sized electronegative potential substituents (e.g.,
benzene ring with electron-withdrawing groups and pyridine
ring) at the diethylamine group increase the activity. All anal-
yses of SOMFAmodelsmay provide some useful information
in the design of new analogues of sunitinib.
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