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Abstract We present a novel interactive framework for
improving 3D reconstruction starting from incomplete or
noisy results obtained through image-based reconstruction
algorithms. The core idea is to enable the user to pro-
vide localized hints on the curvature of the surface, which
are turned into constraints during an energy minimization
reconstruction. To make this task simple, we propose two
algorithms. The first is a multi-view segmentation algorithm
that allows the user to propagate the foreground selection of
one or more images both to all the images of the input set and
to the 3D points, to accurately select the part of the scene to be
reconstructed. The second is a fast GPU-based algorithm for
the reconstruction of smooth surfaces from multiple views,
which incorporates the hints provided by the user. We show
that our framework can turn a poor-quality reconstruction
produced with state of the art image-based reconstruction
methods into a high- quality one.
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1 Introduction

Image-based 3D reconstruction includes all techniques that
employ images to infer the 3D shape of an object, e.g., shape-
from-silhouette, shape-from-shading and multi-view stereo
3D reconstruction. These techniques have become a common
tool for 3D object acquisition thus enabling a complex scene
to be rapidly reconstructed from a set of digital images on a
consumer PC with publicly distributed software to produce
a dense reconstruction starting from a set of input images.
Such software includes VisualSFM, which is a bundled appli-
cation which includes several Open Source algorithms such
as Bundler [37] and PMVS [17] to produce a dense recon-
struction starting from a set of input images. This can be also
be achieved also with online services such as the Autodesk
123D Catch Web application.

One weakness of most of the MVS algorithms is that
the quality of the final reconstruction depends on some
assumptions that are not always met. Incomplete or noisy
reconstruction can be caused by various quite common con-
ditions, such as a few overlaps between images, camera
movements that provide insufficient parallax information,
homogeneous color appearance (lack of texture) of the object
to be reconstructed, hard shadows, and moving occluders
such as cars or people. These unfavorable conditions often
happen for man-made functional elements, such as build-
ings, streets, bridges, pipes and toys which often consist of
smooth/flat surfaces of a homogeneous appearance.

To account for these and similar problems, many algo-
rithms use different shape priors to increase the quality of
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the final reconstruction. For example, Sinha et al. and Gallup
et al. [18,36] assume that the surfaces in the scene are flat,
while Furukawa et al. [15] assume that adjacent surfaces are
flat and form a quasi-right angle (the so-called Manhattan

world assumption). More complex shape priors may be used,
such as the swept surfaces adopted by Wu et al. [42] for the
reconstruction of architectural buildings. Another method to
improve the reconstruction of missing/incomplete parts spe-
cific for architectural buildings is the one of Chen et al. [44]
which approximates the building surface with planar and
curve surfaces in a robust fashion, taking into account that,
in general, in this case many of the reconstructed points
are inliers. However, there are cases where many different
hypotheses for the missing surface may be consistent with
the data. In these cases, additional geometric constraints are
not sufficient and a semantic interpretation of the images is
necessary. Bao et al. [3] introduce semantic priors, that is,
high-level priors (e.g., a car) which are extracted and col-
lected in a learning phase.

We propose an interactive framework to enable the user
to provide high-level geometric information to improve the
reconstruction. The user can specify with a few strokes the
object of interest and the geometric constraints on one or
more images, i.e., parts of the object that have one or more
directions of zero curvature. These hints are not helpful where
the reconstructed surface is something like a tree or a bas-
relief, but they are very useful for man-made objects such as
walls, pipes, panels and toys. For example, if a region is flat,
the user can draw two orthogonal straight lines, if the region
follows a cylindrical path, as in a pipe (see Fig. 4), the user can
draw a single line along the pipe, and so on. The object selec-
tion is accurately propagated between all the images and on
the reconstructed 3D points by a novel multi-view segmen-
tation algorithm using a joint 2D–3D graph cut formulation.
This algorithm can be seen as an extension of the Grab-
Cut [33] algorithm. The final surface, expressed as a union
of depth maps, one for each calibrated image, is obtained
by recasting the segmentation and the curvature hints into
an energy-based multi-view reconstruction problem, which
is solved entirely in GPU. Each depth map is computed by
means of minimizing an energy functional which takes into
account the user indications, the initial reconstruction and
the coherence among different overlapping depth maps. The
multi-view segmentation and the soft constrained energy-
based multi-view reconstruction algorithm of the framework
are the main novel contributions of this work.

2 Related work

This paper contributes to two different fields, both of which
have a substantial body of literature: Image Segmentation and
Multi-View Reconstruction. In the following, we concisely

review the state of the art on both fields, focusing on those
algorithms that are more closely related to our work.

2.1 Image segmentation

Image Segmentation refers to partitioning the pixels of an
image into groups that share similar characteristics. Here,
we are interested in partitioning the image into foreground

pixels, which represent the object of interest, and background

pixels. One of the earliest improvements on the crude man-
ual segmentation was Intelligent Scissors [29], where the
user defines various anchor points along the silhouette of the
object, and a minimization algorithm adjusts the contour to
match the gradient change of the image. Active Contours (or
Snakes) [23] also work by minimizing an energy function
over a contour (that is, a snake) accounting for image gra-
dient and contour bending. More recent approaches do not
work on the parametric definition of the contour but on the
foreground/background classification of the pixels. In their
seminal paper, Boykov and Jolly [6] recast the segmentation
problem as a graph problem. More specifically, an image is
mapped onto a graph where each pixel is a node and is con-
nected to neighbor pixels by arcs. There are also two special
terminal nodes, one for the background and one for the fore-
ground, to which all other nodes are connected. The cost of a
pixel–pixel edge is set to penalize separation between simi-

lar pixels, while the cost of a pixel–terminal penalizes setting
the pixel to the background or foreground (for example, on
the basis of the initial manual pixel annotation by the user).
With this formulation, any cut in the graph corresponds to
a partition of the pixels into two sets: those connected to
the foreground terminal and those connected to the back-
ground terminal. The solution thus has a cost which is the
sum of the cost of the arcs in the cut, which can be minimized
by min-cut max-flow algorithms. Graph Cut methods have
become the de-facto standard for image segmentation [2],
thanks to their conceptual simplicity and to very efficient
polynomial time solvers [28]. Since their inception, the tech-
nique has been strengthened using shape prior information
to disambiguate similar color areas [14], with an inclusion of
Dijkstra’s algorithm to preserve thin structures [40]. One of
the most successful improvements is due to Rother et al. [33]
who proposed an iterative algorithm where each iteration
consists of solving the min-cut problem and re-assigning the
cost functions on the basis of the solution found, until con-
vergence. In addition, they introduced the Gaussian Mixture
Model (GMM) to integrate color information in place of the
simpler intensity histograms.

2.2 Multi-view object segmentation

Now that is common to have a set of calibrated images of an
object, the problem of segmenting a single image has evolved
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into how several images (of the same scene) can be segmented
at the same time. Graph cuts can be naturally generalized to
multiple images and thus many algorithms use them. All the
approaches need to identify a way to connect pixels from
different images. Sormann et al. [38] stack the images to
form a 3D texture and use a preprocessing step to segment
each image in clusters so as to reduce the size of the graph
using one node per cluster and not per pixel. They assume a
short baseline, that is, consecutive images in the stack do not
change too much, so that the neighborhood among pixels of
different images makes sense. Campbell et al. proposed the
Volumetric Graph Cuts [10], where the scene is voxelized
and node-voxels are added to the graph, an idea somewhat
reminiscent of the voxel coloring approach [35]. They use the
fixation hypothesis, that is, that all the images look towards
the object, which consequently is located roughly at the
center of each image. They can thus simultaneously initial-
ize the foreground/background and define the bounding box
of the scene to be voxelized. The voxel nodes are essen-
tially a means to connect pixels from different images. In
a subsequent work [9] by the same authors, the voxel grid
was replaced by adding stereo correspondences and epipolar
constraints to directly connect pixels from different images.
Djelouah et al. [12] use a set of sample points uniformly dis-
tributed in the volume (under a similar hypothesis as in [10])
and consider the tuple of pixels defined by the projection of
the sample point on the images. The key idea is that if all
the elements of a tuple are classified as foreground, then the
point belongs to the object’s surface. Similar to [33], they use
a GMM model and an iterative process for a posteriori estima-
tion (MAP) of the classification variables. Sparse 3D samples
are also used by Djelouah et al. [13], where the problem of
multi-view segmentation is extended on the time dimension
to support multi-view video segmentation and superpixels
are used to reduce the computational complexity.

Other approaches, such as Bleyer et al. [5] and Kowdler
et al. [1], assume that the objects in the scene can be approx-
imated by planes, and that the baseline is so short that a
reasonable depth map can be estimated. In this setting, the
segmentation can be set at an object level and 3D spatial
relations between objects are used.

2.3 Multi-view stereo matching

According to [34], the multi-view dense stereo reconstruction
algorithms can be categorized depending on their proper-
ties, for example, depending on the surface representation
used, on the reconstruction algorithm used, on the initial
requirements, and initial hypotheses regarding the shape to
reconstruct.

Many MVS reconstruction algorithms are based on seg-
mentation. Typically, each image is segmented into the
background and foreground (of the object of interest). One

of the oldest of this class of methods is the shape-from-

silhouette. Such methods estimate the visual hull of the
object, that is the maximal surface consistent with the sil-
houette for all the views, by carving the volume of the
object according to the silhouette in the different views.
More recently, Yezzi and Soatto [43] explored the dual con-
nection between the segmentation of an object in multiple
images and 3D reconstruction of the underlying object. They
employed a level set method, solved with a multiresolution
scheme. Kolev et al. [25] reformulated the problem as a
Bayesian estimation of the most probable shape that would
yield the observed images, making the method more robust
with respect to noise. In Sorman et al. [39], each image in
the set is first clustered using mean-shift and then these
clusters are segmented via GraphCut. However, segmen-
tation happens sequentially, whereupon each segmentation
provides a shape prior to be used in the subsequent one.
Kolev et al. [26] deal with the image segmentation of all
the views by projecting an evolving 3D surface. The prob-
lem is the setup in an energy minimization framework where
the energy terms proposed take into account background and
foreground terms plus a photo-consistency term. In a more
recent work [27], the authors added an anisotropy term to
this energy to also account for the orientation of the evolving
surface. Jancosek et al. [22] compute an over-segmentation
of the dataset as a first step to reduce the computational load
and to provide priors for reconstructing flat areas of uniform
colors. A recent hybrid (silhouette-based/correspondence-
based) method capable to improve the reconstruction of
objects with few visual features (e.g., uni-colored objects)
has been proposed by Hoangminh et al. [31]. This method
exploits the geometry reconstructed by means of standard
SFM approaches to improve the automatic extraction of the
silhouette. Another interesting paper to cite, even if not an
MVS method, is the work of Liangliang et al. [30] which pro-
poses a segmentation-based approach to complete the sparse
reconstruction produced by scanned data.

Many other MVS algorithms work by estimating a depth
map for each image and then integrating these depth maps
into a unique surface. Goesele et al. [19] proposed a sim-
ple and effective algorithm to estimate the depth for each
pixel by evaluating the photoconsistency (using NCC) of
each 3D point estimated. Only pixels with high values of cor-
relation are considered reliable. The sparse depth maps thus
estimated are merged together by applying the volumetric
surface reconstruction algorithm of Curless and Levoy [11].
Bradley et al. [7] developed a high-quality method by propos-
ing a viewpoint adaptive window to drive the stereo matching
between image pairs. The high-quality depth maps thus gen-
erated are then merged together using a lower dimensional
triangulation algorithm [20]. Furakawa et al. [16] proposed
one of the most general and accurate algorithms for 3D recon-
struction from calibrated images. This algorithm is the core
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of the PMVS software and is based on a patch representation
of the surface. The initial oriented patches are estimated, then
expanded to the nearby pixels, and filtered in an iterative way
to produce a dense reconstruction.

Our approach is inspired by the multi-view segmentation-
based methods but uses depth maps as evolving surfaces to
obtain the final reconstruction. A depth map is estimated
for each camera by minimizing an energy functional com-
posed of three terms: a smoothness term, a term to account
for surface coherency which imposes that overlapping depth
maps must coincide, and a term that takes into account the
curvature hints. The curvature hints drawn by the user as
2D curves are expressed per pixel by expanding them over
the selected region (further details in Sect. 4). The advan-
tage of this approach is that depth maps are intrinsically free
of topological and geometrical inconsistencies (e.g., self-
intersections), since the energy value and its gradient only
depend on the depth values. In addition, the existing 3D
reconstruction together with the curvature constraints reduce
the ballooning effects typical of many energy-based methods.
Finally, the GPU implementation guarantees a fast compu-
tation of the final surface.

3 Segmentation on calibrated images

Our approach is mostly a direct extension of Rother et
el. [33] to the case of multi-view datasets. Unlike previous
approaches, 3D points are not only a way to connect pixel
of different images, but are also elements that are classified.
Therefore, the user input is a selection of points or pixels,
depending on which operation is easier on the given dataset.
Let V be the set of reconstructed vertices. We know that each
vertex in V corresponds to a pixel in two or more images,
that is, the pixels that were matched to infer the 3D position
of the vertex. So we indicate with Corr(v) the set of pixels
corresponding to vertex v. Let G = (V ∪ P, E) be a undi-
rected graph where V is the set of input vertices and P is the
set of pixels of all images. The set of edges E is defined as:

E = {(pi , p j )|pi adjacent to p j } ∪

{(pi , v j )|pi ∈ Corr(v j ), v j } ∪

{(vi , v j )|‖vi − v j‖ < τ } (1)

where we use p to refer to pixels and v for vertices. The
first type of edge is the regular pixel–pixel edge used in
the single image segmentation algorithm. The second type
connects pixels that were matched to create a vertex with
the vertex itself, thereby generating a 2D–3D connection.
Finally, the third edge type connects vertices that are closer
than a threshold in 3D space. This means that a selection
made in one image can propagate through space and end up
in other images. Choosing the weights for the pixel–vertex

and the vertex–vertex edges entails taking into account the
specific algorithm. Here, we use this general idea to extend
the GrabCut [33] algorithm.

The GrabCut algorithm [33] employs two Gaussian Mix-
ture Models (GMM), one for the foreground and one for
the background, to model color distribution. These GMMs
are mixtures of K full-covariance Gaussians. A vector α ∈

{0, 1}N assigns to each element (pixel) a flag indicating
foreground or background. In addition, Rother et al. [33]
introduced the idea of using also a vector k

¯
assigning an

element to a specific component of the mixture model. The
element themselves, that in our system can either be pixels or
vertices, are indicated with vector z

¯
∈ P ∪ V . The algorithm

proceeds by globally minimizing a Gibbs energy function of
the form

Es(α, k
¯
, θ, z

¯
) = U (α, k

¯
, θ, z

¯
) + V (α, z

¯
) (2)

where θ are the parameters of the Gaussian mixtures, i.e., the
weights for the components, and the means and covariance
matrices of the individual components. The data term U is
computed as in the original formulation by evaluating the log-
likelihood w.r.t the assigned Gaussian from the GMM, with
the difference that our elements can be vertices in addition
to pixels. More precisely:

U (α, k
¯
, θ, z

¯
) =

∑

N

(− log p(z
¯n|αn, k

¯n, θ) − log π(αn, k
¯n))

(3)

The smoothness term is instead specified with respect to an
augmented neighborhood system C , which takes into account
2D–2D links between adjacent pixels (the only type of link
in the GrabCut), 3D–2D links between a vertex and its pro-
jection onto the images and 3D–3D links, between neighbor
vertices in 3D space.

V (α, z
¯
) = γ

∑

i, j∈C

⎧

⎪

⎨

⎪

⎩

e−β||zi −z j || if i ∈ P, j ∈ P

Γ if i ∈ P, j ∈ V

e−(β||zi −z j ||τ ||vi −v j ||) if i ∈ V, j ∈ V

(4)

Constants β is set as in the 2D case, that is:

β = 2 (�zi − z j �)
−1 (5)

where �.� indicates the expected value, and z is in CIElab
color space, and constant τ for the 3D–3D links is found by
extending the same idea as τ = 2 (�vi − v j �)

−1 where v

is the position in 3D space. Γ is a big constant that ensures
that a pixel and its projected vertex do not get classified in
different sets.
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The background and foreground pixels marked by the
user are used to initialize two Gaussian Mixture Models for
the foreground color distribution and the background color
distribution. This initialization is performed with a k-means
algorithm. The algorithm then iteratively performs the fol-
lowing operations:

1. assign each unknown pixel and vertex either to the back-
ground or to the foreground GMM (estimate α)

2. assign a specific Gaussian within the assigned GMM to
each pixel/vertex (estimate k

¯
)

3. re-estimate mean and covariance for each Gaussian in the
GMM based on assigned pixels/vertices (estimate θ )

4. solve minimization by GraphCut, estimating sink and
source energies according to the GMMs (estimate α)

5. repeat from step 2 until convergence.

Figure 1 shows some results of our technique vs. the Grab-
Cut approach. As expected, the multi-view version is more
accurate and requires less precise user interaction. This is the
obvious consequence of using multiple images in our setting.
Additionally, we show in Fig. 2 a comparison with an auto-
matic state of the art multi-view image segmentation method,
i.e., the approach presented in [12], on a dataset where the
object of interest, the car, is not fully visible in all of the
images. It can be seen how, although both the algorithms
produce acceptable results, our approach is able to correctly
classify the car’s pixel even behind vegetation. Moreover, the
technique [12] applied to the Museum dataset (the one used
in Fig. 1) cannot produce any usable result due to the fact
that the object of interest (the tree) is not in the center of the
images.

Fig. 1 The proposed algorithm vs. the standard GrabCut algorithm
(1st row user input, 2nd row result, 3rd row details). Note that only 1
out of 27 images received input from the user

4 Defining curvature hint

The aim of the curvature hints provided by the user is to know,
for a specific subregion of the image, that the directional
curvature along certain directions is zero.

To better explain how these curvature hints work, we will
refer to a practical example. Figure 3 shows a drawing of a
gas pipe. The user wants to hint that the surface curvature is
zero along the direction of the pipe and does so by drawing
a line like the red one shown in the figure. The intended
meaning is that on any location of the line the curvature along
the tangent vector is zero. The other points of the region
inherit the direction vector of their closest point on the line
so as to obtain a vector field (described by blue segments
in the figure). In other words, we infer a vector field for all
the pixels of the region of interest starting from the input
curvature constraints.

To achieve this, first, the input line L is sampled as
Ls = {(l0, t0), . . . , (lk, tk)}, where li is the position of the
sample and ti is the tangent vector at li . Then, the sam-
ples are projected onto the 3D surface obtaining L ′

s =

{(l ′0, n0, t ′0), . . . , (lk, ni , tk)} where l ′i is the projection of li ,
ni is the surface normal at l ′i and t ′i is the projection of ti
on the tangent plane passing through l ′i , that is, the tangent
plane at l ′i . So far, we have obtained the direction of the zero
curvature for the sampled points. The next step is to propa-
gate this information to the rest of the surface. We obtain the
direction orthogonal to t ′i as bi = ni × ti and then define a
new grid node (l ′i,1, ni,1, t ′i1

) where: l ′i,1 is the 3D point found
by walking a distance 	 from l ′i,1 along bi , ni,1 is the normal
at l ′i,1 and t ′i,1 = bi ×n′

i,1. We iterate this process along bi and
−bi for all i until we obtain a grid covering the projection
of the selected region on the surface, where the direction of
zero curvature and the distance from the point on the same
line of the grid is associated with each node.

The final step is to interpolate the directions stored at the
grid nodes for all the pixels. This can be simply done using
rasterization, by rendering the grid as filled quads and letting
attribute interpolation do the work. However, note that, unless
the line is a straight one, pixels would be covered by more
than one quads, while our goal is to get the value from the
closest point on L ′

s (see Fig. 4). This problem is solved using
an idea proposed by Hoff et al. [21] to compute a voronoi
diagram of points and lines. To each grid node, we assign a
z coordinate (in view space) as its distance from the line L ′

s .
From the fragments with the same coordinates, the depth test
will thus automatically return the one closest to the line.

5 Reconstruction

The reconstruction algorithm takes as input the reconstructed
geometry, the selection as defined in Sect. 3, and the cur-
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Fig. 2 Example of joint 2D–3D dataset segmentation. Top row the 4 images out of 55 where the user provided input for segmentation. Second row

some of the output image; third row the same image with the technique introduced in [12]

Fig. 3 Scheme of the curvature hint. The user input is shown as a red

line, the inferred vector field with blue short segments

vature hints. Then, it gives in output a set of depth maps
Z = {zh |h = 0 . . . N }, that is the depth values for the pixels
of the regions rh , which altogether form the final recon-
structed surface.

The algorithm proceeds by minimizing a four term energy
function E(Z), defined as

E(Z) =
∑

∀h

S(zh) + F(zh) + R(zh) + C(zh) (6)

S(zh) is a term to ensure the smoothness of the surface, F(zh)

is a term to ensure that the surface approximates the origi-
nal points, R(zh) ensures that different depth maps agree on
overlapping regions and C(zh) accounts for the curvature
hints given by the user.

The minimization is carried by iterative gradient descent.
Since we want to leverage on the graphics hardware, we per-
form the gradient descent computation camera by camera,
that is:

zi+1
|h = zi + αi,h∇E(zi

|h), h = 0, . . . , k

∇E(zi
|h) = ∇S(zi

|h) + ∇F(zi
|h) + ∇ R(zi

|h) + ∇C(zi
|h) (7)

We use an adaptive step size αi,h which varies with the global
energy as proposed in [4] and increases the convergence rate:

αi,h =
(zi

|h − zi−1
|h ) · 	i

	i · 	i

	i = ∇E(zi
|h) − ∇E(zi−1

|h ) (8)

Note that the unknowns are the depth values of all the pixels
in the ROI. We formulate these energy terms in such a way
that the gradient ∇E(zi ) can be evaluated in the GPU for each
depth map. In the following, we define each of these terms,
while we address the interested reader to the Appendix A for
the complete algebraic derivations of the gradient term.

Please note that the formulas for energies involve deriva-
tions of the depth maps zh along x and y in image space,

more specifically second-order derivatives ∂zxx (i, j)
∂zm,n

∂zxy(i, j)

∂zm,n

and
∂zyy(i, j)

∂zm,n
, while we will need the gradient of these ener-

gies with respect to the z value, that is, the depth of each
pixels, which are the unknown variables of the system.
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(a) (b)

Fig. 4 Curvature hint propagation. a From a user-given line in image space to a regular sampling on the surface with inferred directions. b Inferring
the directions in image space. Point p is included both in q0 and in q1, but it is closer to segment s1 and thus the corresponding direction value is used

5.1 Smoothness term: S(zh)

The smoothness term is defined as the thin plate energy:

S(zh) =
∑

i, j

z2
xx (i, j)

+ 2z2
xy(i, j) + z2

yy(i, j)	x	y (9)

where we dropped the pedix h to simplify the notation.

5.2 Approximation term: F(zh)

The aim of the approximation is to make the final surface
an approximation of the initially reconstructed one. We use
the implicit Moving Least Squares formulation proposed
in [32] to define the surface approximating the input points.
With MLS, the surface is the zero set of a function F ,
s = {x |F(x) = 0}. At initialization time, we sample the
value of ∇F in the neighborhood of the input points, stor-
ing the result in an octree. Note that this is the only term for
which we can pre-compute and store the gradient because it
does not depend on the depth values but only on the input
points.

5.3 Coherence term: R(zh)

The coherence term forces two depth maps to coincide on
their overlapping 3D region. In general, depth maps cor-
responding to the same portion of the real surface do not
actually match. This is due to two factors: first, each depth
map is obtained by interpolating a different set of vertices,
although all of them are approximately on the real 3D sur-
face (see also Sect. 5.5); second, even if the set of vertices
were the same, the image space discretization of the depth
maps would induce large aliasing effects, especially near the
silhouette of each region where the surface is steep w.r.t. the
camera point of view.

Fig. 5 Enforcing coherence between overlapping range maps

The coherence term is defined as:

R(zh) =
∑

∀k

∑

i j

[φ(gk(i, j, zi, j ) − fk(i, j, zi, j ))]
2 (10)

where gk(i, j, zi j ) gives the depth of the projection on the
neighbor camera ck of the unprojection of the triple i, j, zi j

of the camera h and fk(i, j, zi, j ) is the current depth value
stored at the same location, as illustrated in Fig. 5. φ is a
threshold function used to define when two depth values are
close enough to enforce them to be the same. Note that the
outer summation of Eq. (10) runs over the cameras that over-
lap with h. Typically, for each pixel in rh , there are from 0 to
5 neighbors.

5.4 Curvature term: C(zh)

The specified directions of zero curvatures are indicated with
u = [u, v] for the generic pixel and are obtained as explained
in Sect. 5.4. To simplify the formula and avoid floating point
divisions, instead of minimizing the actual curvature we use
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Fig. 6 Propagation of the user-given hint on the direction of zero cur-
vature

the square of the directional second- order derivative of zh ,
which is:

C(zh) =
∑

i j

(uT H(zhi, j )u)2 (11)

where H is the Hessian matrix of zh .
Note that the direction vector has to be specified for all

the cameras. However, it would be very tedious for the user
to manually define the directions of zero curvature for each
image and, worse, it is unlikely to be consistent for all the
cameras. Therefore, we propagate the vector uh on all the
other cameras by projecting it in world space and hence re-
projecting it on each camera.

This is achieved using the depth map zh obtained by the
initialization phase and therefore the approximation of the
depth map will influence the projection (we recall that only
the smoothing term is considered at the initialization phase).
This means that the original vector and its propagation on the
other cameras could be inconsistent on the real 3D surface,
as shown in Fig. 6. To resolve this inconsistency, we perform
the propagation of the vector at each iteration, so that it tends
to converge along with the convergence of all the depth maps.

The full formula is written as:

C(zh) =
∑

i j

(zxx (i, j)u2 + 2 zxy(i, j)uv+zyy(i, j)u2)2

(12)

5.5 Initialization

Since we are using gradient descent, it is crucial to find an
initial solution, i.e., an initial depth map for each camera,
which is close to the global minimum and at the same time
approximates the input reconstructed points. If the projection
of the input points on a given camera is dense (as can happen,
for example, using the output of PMVS, see the Toy Car
example in Fig. 9), we can simply triangulate the projections

and obtain the depth map. On the other hand, if the starting
point is a sparse reconstruction (as with the Pipe and the other
models in Fig. 9), we minimize the energy term S(zh) by
imposing the input points as hard constraints, which is done
by solving the resulting system ∇S(zh) as shown in [41].

5.6 Handling discontinuities in the depth maps

Note that using finite differences for approximating second-
order derivatives always gives an expression of the following
form:

∇(E(Z))i j =

i, j<2
∑

h,k=−2

w(h, k)z(i + h, j + k). (13)

This means that the gradient at pixel (i, j) is a linear com-
bination of values in a 5 × 5 kernel centered at (i, j). In the
derivation of the energy terms shown so far, we have always
employed central differences to express the partial second
derivatives contained in the formula, i.e., ∂ E(z)

∂xx
, ∂ E(z)

∂yy
, ∂ E(z)

∂xy
.

Unfortunately, depth maps have borders, so we have to adjust
the computation of second derivatives on border pixels. A
pixel may be on a border in two cases: either because the
adjacent pixels are not part of the ROI or because there are
discontinuities in the depth maps. The latter case is detected
by a check that is run at the beginning of each minimization
step, by testing if the difference with one of their adjacent
pixels is above a certain threshold. Typically, these disconti-
nuities appear as the surface evolves, while at the beginning,
triangulation alone or the thin plate energy tends not to create
very steep surfaces.

To handle discontinuities, we write the energy term E(zh)

so that differential quantities are discretized using central,
forward or backward differences adaptively, depending on
which adjacent pixels are available.

This is done by computing a bit code for each pixel, that
is, a tag, indicating how each differential quantity must be
computed. Listing 1 shows the algorithm , CxCx, FxFx and
BxBx stand for central, forward and backward difference and
NOxx means that it is not possible to compute the second-
order derivative on that pixel.

Listing 1 Algorithm to create the code for the 2nd order derivative
along x .

CodeDxDx( i , j )
{

i f ( ( i+1, j ) in rh && ( i−1,j ) in rh )
tag = CxCx;

else i f ( ( i+2, j ) in rh && ( i+1, j ) in rh )
tag = FxFx;

else i f ( ( i−1,j ) in rh && ( i−2,j ) in rh )
tag = BxBx;

else
tag = NOxx;

}
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Fig. 7 Example LUT entries for computing the gradient of the smooth-
ness term on a pixel (the central one)

This means that the exact expression of ∇(E(Z))nm

depends on how the differential quantities in the neighbor
pixels are computed. For each pixel of coordinates (i, j), we
compute a code that says how zxx , zyy and zxy are computed.
In a static LUT, for each code, we store the coefficients to
be applied to the neighborhood pixels. Figure 7 shows an
example of three entries of the LUT (see Appendix B for the
derivation of these coefficients).

5.7 Performing the iterative minimization

Figure 8 shows a scheme of the iterative minimization algo-
rithm for a generic camera. We use a fullscreen quad to enable
the fragment shader to output a value for each single zn,m .
Each iteration of the minimization is performed in four steps.
In the first pass, the tag values explained in Sect. 5.6 are
computed and stored in the alpha channel of the target buffer
BufferTag.

In the second pass, BufferTag, which contains the cur-
rent and previous solution and the previous gradient, is bound
as texture. The fragment shader FS_ComputeDelta com-
putes the gradient ∇E(zi ) , passes along the value zi and
computes a first part of the Eq. (7) (that is, the components
to be summed to obtain the dot product).

The third pass consists of summing all the values of the
componentwise products to obtain the two factors of the frac-
tion in Eq. (7). This is done by building a texture pyramid, as

Fig. 8 The flow chart of the minimization algorithm

with mipmapping but summing the four texel values instead
of averaging them. Then, the final 1 × 1 texture is readback
in the main memory and αi can be computed. The fourth and
last step consists of bounding the BufferStepSize as
texture and BufferPos as target and computing zi+1 and
copying zi and ∇E(zi ).

Note that when computing zi+1
|h we need to keep in video

memory only the depth map h and the maps overlapping
with h, which are normally less than five. The need for the
overlapping depth map is due to the only term that is not
separable over the depth maps, that is, the coherence term
R(z).

To speed up convergence rate, we also use a V-Cycle
multigrid method (see [8]) on each camera. The multigrid
approach consists of transferring the solution found for the
original depth (grid) into a coarser grid (restriction phase),
performing some minimization steps and then transferring
back the solution to the finer grid (interpolation phase).

6 Results

We tested our system on several datasets, acquired from urban
scenarios or daily life objects. Here, we highlight five exam-
ples: a pipe, a garbage bin, a van, a toy car and a plastic
bath seat (for babies). Figure 9 shows on the first column a
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Image dataset Input geometry PMVS+Poisson Our Method
Our Method
(textured)

Fig. 9 Results of our experiments (last two columns) and comparison with reconstructions obtained by applying the Poisson surface reconstruction
algorithm [24] to the output of the PMVS algorithm [17] (3rd column)
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Table 1 Model reconstruction
performance (time is in seconds)

Model Camera (#) Segm Segm
strokes

Curvature
hint strokes

Init Recons

Pipe 34 29.56 3; 12 3; 3 42.37 16.20

Van 50 65.95 8; 38 2; 4 184.13 27.63

Garbage bin 19 16.92 3; 10 2; 2 35.04 9.45

Toy car 75 75.63 10; 40 0; 0 1.1 141.32

Bath seat 28 33.205 5; 14 2; 2 829.37 59.76

sample image of the object, on the second the input used by
our system. In these experiments, we used both dense and
sparse reconstruction to demonstrate that the approach can
work well in both cases. The input for the Pipe, the Garbage
Bin, the Van are the points reconstructed by Bundler [37]
after the camera calibration (note that these points are quite
dense for the Van). Instead, for the Toy Car and the Bath
Seat, we use the output of the PMVS algorithm as input.
For comparison purposes, the images of the third row are
produced by the Poisson reconstruction algorithm [24] run
on the 3D points reconstructed using the PMVS [17]. Please
note that the results obtained with the PMVS+Poisson recon-
struction are of a poor quality w.r.t our final reconstruction
(shown on the fourth row) also when the shape is quite
complex like for the Bath Seat case. For the Pipe, the
Garbage Bin and the Bath Seat, we needed only one con-
straint to specify the direction of zero curvature (see Table 1).
Note also that, even if the input points are few and they
are irregularly distributed (especially in the Pipe test), they
are sufficient for a good initialization of our reconstruction
algorithm.

Figure 10 shows two images of the reconstruction of the
Pipe dataset. It can be easily seen how not imposing any
constraint (left image) results in a deformed model where,
although the smooth and overlapping energy terms are min-
imized, the final shape does not correspond to the one of the
original pipe.

6.1 Computation time

The lifecycle of a reconstruction consists of the following
steps

1. The user selects the region of interest on one or more
images.

2. The segmentation algorithm described in Sect. 3 and the
initialization of range maps are run.

3. The user provides curvature hints as described in Sect. 4.
4. The reconstruction phase is run.

where steps 1–2 and 3–4 can be iterated to improve the final
result.

Fig. 10 Reconstruction of the Pipe without any curvature hint (left)
and with curvature hint (right). Note that the reconstruction without
constraints does not meet the cylindrical shape of the original pipe due
to small reconstruction errors in the input points

Table 1 reports the time for the experiments run on a PC
with Intel I7 4820k, 3.70 Ghz, equipped with 32 GB Ram,
graphics board nvidia GeForce GTX 780 and the number of
strokes provided by the user. The segmentation strokes are
provided in the following way: n1; n2, where n1 is the number
of images annotated and n2 is the total number of strokes on
these images. The column “curvature hint strokes” reports the
number of images annotated with the curvature constraints
in the same way. For example, for the Garbage Bin, we put
a vertical curvature constraint on its cylindrical part on two
images; for the Pipe, the curvature constraint follows the
pipe profile in three images. The Bath Seat requires only
one curvature constraint in the center of its white lower part.
The Van requires two strokes, one on the mirror and one on
the hood to convey the right curvature of these two parts.
It can be seen that all the times (segmentation, initialization
and minimization) are roughly proportional to the number of
photographs.
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Note that the reconstruction time is fast (just a few sec-
onds), while the segmentation and initialization times are
quite slow. This is simply due to the fact that our system is
still a prototype written in #F sharp. This limits the overall
performance but not the reconstruction algorithm which is
written entirely in GPU. The time for initialization is all due
to the solution of the thin plate equation for each camera,
except in the case of the Toy Car, where the initial depth
map was obtained by triangulation in considerably less time.
We point out that in the cases like the Bath seat, where the
point’s density is moderate–high both the approaches can
be used. Hence, in this case, the initialization time can be
reduced using the triangulation approach. Also, the number
of strokes is very low in all cases, thanks to the technique
shown in Sect. 4 which allows us to propagate the stroke
done in one photo to the neighbor cameras.

7 Conclusions

We have proposed a framework for the user-assisted improve-
ment of image-based 3D reconstruction of man-made objects.
The framework is based on two novel techniques: a multi-
view segmentation-based algorithm allowing a dataset of
calibrated images to be efficiently segmented, and a GPU-
friendly energy-based reconstruction algorithm with cur-
vature constraints. A natural evolution of the proposed
framework would be to add more possibilities for user hints,
for example, to indicate sharp features or straight segments.
In addition, we aim to modify the initialization phase of the
reconstruction by integrating silhouette-based reconstruction
methods to obviate the need for an initial sparse reconstruc-
tion.

Acknowledgments The research leading to these results was funded
by EU FP7 project ICT FET Harvest4D (http://www.harvest4d.org/,
G.A. no. 323567). The Museum Dataset is courtesy of Chaurasia et al.
[45].

Appendix A: Algebraic derivations of the gradient

of the energy terms

Smoothness term

The derivative of the smoothness term with respect to zm,n

is simply:

∂

zm,n

S(zh) =
∑

i, j

2zxx (i, j)
∂zxx (i, j)

∂zm,n

+ 4zxy(i, j)
∂zxy(i, j)

∂zm,n

+ 2zyy(i, j)
∂zyy(i, j)

∂zm,n

	x	y (14)

The unrolled formula, using central finite differences, is:

∇Es(z)m,n =
∂

∂zm,n

∑

i, j

(zi+1, j − 2zi, j + zi−1, j )
2

+
1

8
(zi−1, j−1 − zi−1, j+1 − zi+1, j−1

+ zi+1, j+1)
2 + (zi+1, j − 2zi, j + zi−1, j )

2

(15)

which finally gives:

∇Es(z)m,n = 25zm,n +
3

2
(zm,n+2 + zm,n−2 + zm+2,n

+ zm−2,n) − 8(zm+1,n + zm−1,n + zm,n+1

+ zm,n−1) +
1

4
(zm+2,n+2

+ zm+2,n−2 + zm−2,n−2 + zm−2,n+2) (16)

Coherence term

d

dzi, j

R(zh) =
d

dzi, j

((gk(i, j, zi, j ) − fk(i, j, zi, j ))
2)

= 2(gk(i, j, z) − fk(i, j, z))

×

(

d

dz
gk(i, j, z) −

d

dz
fk(i, j, z)

)

(17)

So we need the derivatives of gk(i, j, z) and fk(i, j, z).
Since the cameras are calibrated, we know the matrix Rh,k

that transforms the depth values from camera k to camera h:

Rh,k = IkEkI−1
h E−1

h (18)

where I and E are the intrinsic and extrinsic matrices of cam-
era h and k.
gk(i, j, z) is defined as:

gk(i, j, z) = sw ·v(z, i, j) = (r30i +r31 j +r33)z +r32 (19)

where sw is the row vector that selects component w, (i.e.,
sw = [ 0 0 0 1 ]) and the ri j are the components of the R

matrix. The derivative of gk is then:

d

dz
gi, j (z) = (r30i + r31 j + r33) (20)

It is no surprise that the derivative does not depend on
z, because function gk(i, j, z) simply returns the distance
between a point along a line and a plane, which varies lin-
early.

For function fk(i, j, z), things are a little harder, because
it describes the depth map zk along the projection of the line
on the image plane of camera k. Let us define the parametric
function describing such a projection:
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u(z) : R → R
2 =

sxy · v(z)

sw · v(z)
(21)

Function f is then the composition of z(x, y) : R
2 → R

with u, i.e., (zk · u) : R → R. Therefore, the derivative of
the composition is

d

dz
fk(i, j, z) = (zk · u(z))′ =

[

∂zk

∂x
,
∂zk

∂y

]

×(ux (z), uy(z)) ·

[

d

dz
ux (z),

d

dz
uy(z)

]

(22)

We still need to define what d
dz

ux (z) is (and, by symme-
try, this will also yield its y-axis counterpart). This is the
derivative

d

dz
(sx · v(z)/sw · v(z)) (23)

of a function with the form αz+β
γ z+δ

whose derivative is αδ−βγ

(γ z+δ)2 .

Therefore,

d

dz
fk(i, j, z) =

[

∂zk

∂x
,
∂zk

∂y

] [

sxy · v(z)

sw · v(z)

]

×

[

αx r32 − r02γ

(γ z + r32)2
,
αyr32 − r12γ

(γ z + r32)2

]

(24)

where αx = (r00i + r01 j + r03) = dvx , αy = (r10i + r11 j

+r13) = dvy and γ = (r30i + r31 j + r33) = dvw. In
conclusion, the gradient is:

∇ R(z)m,n = 25zk
m,n

+
3

2
(zk

m,n+2 + zk
m,n−2 + zk

m+2,n + zk
m−2,n)

− 8(zk
m+1,n + zk

m−1,n + zk
m,n+1 + zk

m,n−1)

+
1

4
(zk

m+2,n+2 + zk
m+2,n−2 + zk

m−2,n−2 + zk
m−2,n+2)

+ 2(gm,n(zk
m,n) − hm,n(zk

m,n))

(

d

dz
gm,n(z

k
m,n)

−
d

dz
hm,n(z

k
m,n)

)

(25)

Curvature term

Proceeding as for the smoothness term:

∇C(z)m,n =
∂

∂zm,n

∑

i, j

(

zi+1, j − 2zi, j + zi−1, j u
2

+
2

(

zi−1, j−1 − zi−, j+1 − zi+1, j−1 + zi+1, j+1
)

uv

4

+ zi+1, j − 2zi, j + zi−1, jv
2
)2

(26)

which, after a trivial but tedious derivation, gives:

∇C(z)m,n = 2[24(u4 + v4) + 36u2v2) (zm,n)

− 16(u4 − u2v2)(zm+1,n + zm−1,n)

+ (4u4 − 2u2v2)(zm+2,n + zm−2,n)

− 16(v4 − u2v2)(zm+1,n + zm−1,n)

+ (4u4 − 2u2v2)(zm+2,n + zm−2,n

+ (4v4 − 2u2v2)(zm,n+2 + zm,n−2

+ 8(u3v + uv3 + u2v2)(zm+1,n+1 + zm−1,n−1)

− 8(u3v + uv3 + u2v2)(zm−1,n+1 + zm+1,n−1)

+ u2v2(zm+2,n+2 + zm−2,n−2)] (27)

Appendix B: An example of handling discontinuities

with the LUT table

In this section, we show how the coefficients of the LUT table
are derived in a specific case. Let us consider, Eq. (14) for the
gradient of the smoothness term, which is a weighted sum of
second derivatives, and consider one of the terms of the sum:

A =
∂

∂zm,n

z2
xx (n − 2, m) = 2zxx (n − 2, m)

∂zxx (n − 2, m)

∂zm,n

(28)

If zxx (n −2, m) is computed by central finite differences, we
have:

∂zxx (n − 2, m)

∂zm,n

=
∂

∂zm,n

(z(n − 3, m)

−2z(n − 2, m) + z(n − 1, m))

= 0 ⇒ A = 0 (29)

In other words, since zm,n does not appear in the compu-
tation of zxx (n − 2, m) the derivative on zm,n , and thus A,
is zero. Referring to Fig. 7, this is because the entry for this
configuration (first row) is null.

On the other hand, if zxx (n−2, m) is computed by forward
finite differences, we have:

∂

∂zm,n

zxx (n − 2, m) =
∂

∂zm,n

(z(n − 2, m)

−2z(n − 1, m) + z(n, m)) = 1

(30)

and thus:

A = 2zxx (n − 2, m)

= 2z(n − 2, m)−4z(n − 1, m) + 2z(n, m) (31)
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This gives the coefficients to apply as just shown in Fig. 7
(second row).
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