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Abstract

In this paper we aim at reconstructing 3D scenes from im-
ages with unknown focal lengths downloaded from photo-
sharing websites such as Flickr. First we provide a minimal
solution to finding the relative pose between a completely
calibrated camera and a camera with an unknown focal
length given six point correspondences. We show that this
problem has up to nine solutions in general and present two
efficient solvers to the problem. They are based on Gröbner
basis, resp. on generalized eigenvalues, computation. We
demonstrate by experiments with synthetic and real data
that both solvers are correct, fast, numerically stable and
work well even in some situations when the classical 6-point
algorithm fails, e.g. when optical axes of the cameras are
parallel or intersecting. Based on this solution we present a
new efficient method for large-scale structure from motion
from unordered data sets downloaded from the Internet. We
show that this method can be effectively used to reconstruct
3D scenes from collection of images with very few (in prin-
ciple single) images with known focal lengths 1 .

1. Introduction

Estimating relative camera pose [13] from image correspon-
dences is an important computer vision problem. Although
it is an old well studied problem [18, 9], new efficient solu-
tions for different camera configuration appeared recently:
the 5-pt relative pose problem [26, 30] for a pair of cali-
brated cameras, the 6-pt focal length problem [28] for cam-
era pair with unknown but constant focal length, the 6-pt
generalized camera problem [29], the 9-pt problem for es-
timating para-catadioptric fundamental matrices [12], the
minimal problems of estimating epipolar geometry and a
radial distortion parameter [19, 6].

The main application of these problems is in 3D recon-
struction. Existing structure from motion (SfM) pipelines

1This work has been supported by EC project FP7-SPACE-218814
PRoVisG and by Czech Government under the research program
MSM6840770038.

Figure 1. A 3D reconstruction of the Fountain di Trevi.

e.g. [27], are mainly based on the 5-pt algorithm [26, 30].
They are reliable and robust but they need completely cal-
ibrated cameras. Information about the calibration, i.e. the
focal length, is in these pipelines usually extracted from the
jpeg-exif headers. Unfortunately many images downloaded
from photo-sharing websites do not contain the jpeg-exif
header, the header is corrupted or the included focal length
is not correct, e.g. due to the image cropping.

The 6-pt algorithm [28], which in principle could exploit
cameras with unknown constant focal length, is rarely used
in reality due to problems with degeneracies, e.g. when op-
tical axes of cameras are parallel or intersecting.

In this paper we provide an efficient and robust float-
ing point solution to the configuration with one completely
calibrated camera and one camera with an unknown focal
length. We show that this solution can cope with most un-
pleasant degeneracies and can be effectively used to recon-
struct 3D scenes from collections of images with very few
(in principle single) images with known focal lengths.

Although this problem looks inferior to the well known
6-pt problem [28] for two cameras with unknown but equal
focal length, it has several nice and useful properties which
standard 6-pt algorithm does not have. The most interesting
is its resistance to several critical motions which are com-
mon in real situations, e.g. when optical axes are parallel
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or intersecting. These configurations are important since
they appear frequently when moving around an object and
taking its pictures or taking pictures while walking or from
a moving car. Although these configurations are degener-
ate for the standard 6-pt problem setting [28] they become
tractable when one of the two cameras is fully calibrated.

This problem of finding relative pose between a com-
pletely calibrated camera and a camera with unknown fo-
cal length was previously studied in [31] where a non-
minimal solution was proposed. After using the 7-pt algo-
rithm for computing the fundamental matrix, the unknown
focal length was estimated in a closed-form solution using
Kruppa equations.

Here we provide two new minimal solvers for this prob-
lem from six point correspondences and compare them with
the existing non-minimal solution [31]. Compared to [31],
our minimal solution has two advantages. 1) It needs 6 in-
stead of 7 points, which is important for RANSAC, 2) it is
more accurate in presence of noise. Our solvers are based
on the Gröbner basis, resp. on the generalized eigenval-
ues computation. Computational complexity of these algo-
rithms is smaller than for the 6-pt problem [28].

We show that these algorithms are useful and practical
when combining calibrated images, e.g. taken by a known
camera, with images from the Internet. Based on our al-
gorithms we propose a new efficient method for large-scale
SfM from unordered data sets downloaded from the Internet
e.g. from the Flickr database [11], see Figure 1.

2. Problem formulation

Consider a camera pair where the first camera is calibrated
up to an unknown focal length and the second camera is
completely calibrated. The constraints on corresponding
image points can be written down as [13]

xj Fxj = 0 (1)

where F is a 3 3 rank-2 fundamental matrix satisfying

det(F) = 0 (2)

Since the first camera is calibrated up to an unknown focal
length and the second camera is fully calibrated, the essen-
tial matrix [13]

E = FK (3)

where K ([ 1]) is a diagonal calibration matrix of
the first camera, containing the unknown focal length . It
is known [13] that:

2 E E E (E E ) E = 0 (4)

The standard way [28] of computing the fundamental
matrix F starts with rewriting (1) as M = 0, where the

vector contains nine elements of F and M contains image
measurements from 6 image matches. Next, a three dimen-
sional basis F1 F2 F3 of the null space of M is computed and
F is expressed as a linear combination of the basis

F = F1 + F2 + F3 (5)

The rank (2) and trace (4) constraints on E are used
with (3) to determine the coefficients . In this case this
brings ten third and fourth order polynomial equations in
three unknowns , , and = 2 in 20 monomials.

Next we describe how to solve this system of equations
using the generalized eigenvalues and eigenvectors and us-
ing the Gröbner basis method.

3. Polynomial eigenvalue method

Polynomial eigenvalue solvers were used previously for
solving the problem of autocalibration of one-parameter
radial distortion from nine point correspondences [10] or
to estimate paracatadioptric camera model from image
matches [24]. In [20], a simpler, faster and numerically
more stable solution to the 6-pt focal length problem [28]
has been presented. Following the approach [20], we found
a solution to our problem by computing generalized eigen-
values of certain matrices.

Polynomial eigenvalue problems are problems of the
form

A ( )v = 0 (6)

where A ( ) is a square matrix, where each element is a
polynomial in . We can expand A ( ) into

A ( ) lCl + l 1Cl 1 + + C1 + C0 (7)

in which the Cj are square coefficient by matrices.
Our problem can be formulated as the simplest “linear”

eigenvalue problem

( B A) v = 0 (8)

which can be directly rewritten into the generalized eigen-
value problem (GEP) [1]

Av = Bv (9)

Generalized eigenvalue problems (9) are well stud-
ied problems and there are efficient numerical algorithms
for solving them [1]. MATLAB provides the function

( ) which solves the problem (8).

3.1. Polynomial eigenvalue solution

The polynomial eigenvalue solver of our problem starts
with 10 equations in three unknowns , and = 2
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as described in Section 2. The system can be rewritten into
the following matrix form

M = 0 (10)

where M is a 10 20 coefficient matrix and =
( 3 2 2 3 3 2 2 3 2 2

2 2 1) is a vector of 20 monomi-
als.

Unknowns and appear in degree three but appears
only in degree one. Therefore, we can select = and
rewrite these ten equations as

( C1 + C0)v = 0 (11)

where v = ( 3 2 2 3 2 2 1)
is a 10 1 vector of monomials and C1, C0

are 10 10 coefficient matrices such that C1

( 1 2 3 4 9 10 11 15 16 19)
C0 ( 5 6 7 8 12 13 14 17 18 20),
where j is the th column from the corresponding
coefficient matrix M.

The formulation (11) is a generalized eigenvalue prob-
lem which can be solved by MATLAB ( C0 C1). Af-
ter solving (11), we obtain 10 eigenvalues, solutions for

= 2 and 10 corresponding eigenvectors v from which
we extract solutions for and . We do this by dividing v by
its last coordinate which gives = v(8), = v(9). Then
we use (5) to get solutions for the fundamental matrix F.

Note that this solver delivers a relaxed solution to the
original problem. The solution contains v’s that automati-
cally (within limits of numerical accuracy) satisfy the con-
straints induced by the problem, i.e. v(1) = v(8)3, and ad-
ditional v’s that do not satisfy them. However, such v’s can
be eliminated by verifying the monomial dependences. No-
tice also that solutions satisfying the monomial constraints
on v will be obtained for exact as well as noisy data. This is
because we are solving a minimal problem and noisy data
can be viewed as perfect input for a different camera con-
figuration. Hence, we again obtain a solution satisfying the
monomial constraints on v.

4. Gröbner basis method

The Gröbner basis method is based on polynomial ideal
theory and multivariate polynomial division and generates
special bases of these ideals, called Gröbner bases [8] .

These bases can be used to construct special action ma-
trices, which can be viewed as a generalization of a com-
panion matrix used in solving one polynomial equation in
one unknown. The solutions to the system of polynomial
equations can be easily obtained from the eigenvalues and
eigenvectors of this action matrix.

More on Gröbner basis methods can be found in [7, 8],
and on their applications in computer vision in, e.g. in [28,

19, 5]. In [21] an automatic generator of polynomial equa-
tions solvers based on this Gröbner basis method has been
proposed.

4.1. Gröbner basis solver

The Gröbner basis solver of our problem starts with 10
equations in three unknowns as described in Section 2.

To create the action matrix, we use the method described
in [19, 21]. Using this method we have found that obtaining
all necessary polynomials for crating the action matrix calls
for generating all monomial multiples of the initial ten poly-
nomial equations up to the total degree five. This means that
we need to multiply our 4th degree polynomial equations
with all 1st degree monomials and our 3rd degree polyno-
mial equations with all 2nd degree monomials.

In this way we generated 36 new polynomials which,
together with the initial ten polynomial equations, form a
system of 46 polynomials in 56 monomials. Then, we re-
moved all unnecessary polynomials by the procedure de-
scribed in [4] and obtain 21 equations in 56 monomials.

After rewriting these polynomials in the matrix form and
performing the Gauss-Jordan (G-J) elimination of the corre-
sponding coefficient matrix M, we obtained all polynomials
which we need for constructing the action matrix.

Before the G-J elimination we can remove columns of
the matrix M corresponding to the monomials that do not
have impact on our solution (they do not appear in the action
matrix). In this way we obtained 21 30 matrix M.

The online solver then does only one G-J elimination of
the 21 30 coefficient matrix M. This matrix contains co-
efficients which arise from concrete image measurements.
After G-J elimination of M the action matrix can be created
from rows of M. The solutions to = 2 can be
found from eigenvectors of this action matrix.

This online solver is exactly what can be obtained using
the automatic generator from [21].

5. Critical motions

It is known that Euclidean structure can always be re-
covered from a pair of images acquired by a moving cali-
brated camera [16]. This is not the case if the cameras are
calibrated only up to an unknown focal length as critical
configurations with constant and varying focal lengths start
appearing [16]. The critical motions for a camera pair with
varying focal length appear (1) when the principal points are
in epipolar correspondence, i.e. the optical axes intersect,
(2) whenever the epipolar planes or optical axes are orthog-
onal. If either principal point coincides with an epipole,
both (1) and (2) apply. Having constant focal length pro-
vides another useful constraint and hence there are less crit-
ical motions. Some of them remain however. For example,
(3) arbitrary planar motions when the optical axes lie in the
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plane (e.g. a driving car with a forwards-pointing camera),
(4) “turntable rotations” about the intersection point of the
two optical axes, when these do not lie in a plane.

In [31] authors demonstrated that none out of (1), (2) and
(4) results in degenerated configuration for a fully calibrated
and an up to focal length calibrated camera pair. Configura-
tion (3) works too except for the configuration in which the
two optical axes are coincident, i.e. pure forward motion. It
is possible to prove these results using methods from [16]
but we omit this proof here due to the lack of space.

Since in [31] these critical motions were not studied in
experiments, in Section 7 we show performance and com-
parison of our algorithms with existing ones in these con-
figurations.

6. Reconstruction pipeline

This section presents an SfM algorithm based on our
novel minimal solvers. This SFM algorithm assumes exis-
tence of very few (in principle single) cameras with known
internal calibration. In Section 7 we show that assuming
zero skew, aspect ratio equal to one, the principal point in
the image center and the focal length extracted from the
jpeg-exif header is sufficient.

6.1. Robust matching

Given an unordered set of images with feature points
and feature descriptors, the algorithm first locates all im-
ages with available calibration information - image seeds.
Then, each image seed is matched to the images in the im-
age set using the robust matching method described below.

We implemented our minimal solver using the DEGEN-
SAC algorithm [14]. The DEGENSAC algorithm samples
6-tuples from the set of tentative correspondences (TC),
evaluates the focal length, the essential matrix and calcu-
lates the number of inliers for the estimated model in a usual
way [13]. When a “better” hypothesis is sampled a degen-
eracy test is evaluated, i.e. test if 5 or 6 points from the sam-
ple are on a plane. Then the plane is used to split tentative
correspondences into points on and off the plane. In DE-
GENSAC [14], only two points off-the-plane are sampled
and the fundamental matrix is calculated using the plane-
plus-parallax algorithm [13]. The existing off-online algo-
rithm [31] can be used here to extract the focal length. How-
ever, we observed better results when we used clustered ten-
tative correspondences and applied the local optimization
algorithm [15] using our minimal solver with 3 off and 3 on
the plane points. This way we get a more accurate solution
or a solution with more inliers. Since DEGENSAC [14] is
capable of detecting dominant planes, it can robustly detect
when images form a panorama or observe a planar scene.
We remove such degenerate pairs from further computation.

6.2. Seed reconstruction

From the previous step we get the essential matrices be-
tween the seed images and some of the remaining images
and the focal lengths of these images. Not all estimated
essential matrices and focal lengths are correct. Hence, un-
reliable geometries need to be removed. We treat each seed
image separately. Fixing a seed image first, we calibrate all
images where a focal length was estimated. We do this also
for cameras where camera calibration is known from the
jpeg-exif header. For such images we compare estimated fo-
cal length and the focal length from the jpeg-exif header. If
the focal lengths difference is below a certain threshold we
increase votes indicating correctness of the jpeg-exif value
of both the seed image and the tested image. This threshold
depends on the absolute focal length and the expected noise
level. The acceptable difference is smaller for smaller focal
lengths and greater for bigger focal lengths. We estimated
these thresholds experimentally by observing deviation of
estimated focal lengths from the ground truth in synthetic
experiments using one pixel noise level. Next we filter un-
reliable essential matrices. We are using a method similar
to [22], i.e. we test if rotation matrices between triplets of
cameras obey transitivity.

First, we extract all rotations between seed images and
the remaining images using the essential matrices [13].
Since the rotation between the th and the th image is miss-
ing we need to calculate it. Common image features be-
tween the seed, the th and the th images (common TC) are
extracted and robust matching estimator is used to find com-
mon corresponding points and the essential matrix. Since
both the th and the th images are already calibrated we
can run calibrated 5-pt [26] solver instead of our 6-pt solver.
However, we use our 6-pt since it returns focal length too.
The focal is expected to be close to one since images are cal-
ibrated. Hence we compare these focal lengths as described
above to detect possible inconsistences. If everything goes
well and the number of inliers is greater than 80% of com-
mon TC between the th and the th image, we extract the
corresponding rotation matrix. Now, rotations must obey
transitivity:

seed,j
T
seed,i i,j (12)

where seed, is the rotation between the seed and the th

resp. th image, i,j is the rotation between the th and the
th image and 1 2 means that the rotation 1

1
2 is

small. We allow at most 5 deg rotation error. If the rotation
is consistent, we increase votes (reliability score) for both
cameras. We observed, that images with at least two votes
were reliable enough, but usually this number was either
zero or more than six.

After unreliable geometries were detected we extract
camera pairs between the seed and the th image and trian-
gulate 3D structure [13]. Each two-view reconstruction is
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Figure 2. Left: Focal length estimation of the solvers on noise free
data set for general motions (solid line), turntable rotation (dash-
dot line), pure sideways translation (dashed line) and a forward
translation with small sideway motion (dotted line). The general-
ized eigenvalue solver is shown in red and the Gröbner basis solver
in green. Right: Comparison of the solvers on the general scene,
see text.

determined up to a scale only, thus we use common 2D-3D
correspondences to fix these scales. We fix the scale accord-
ing to the reconstruction between the seed and the camera
with the highest reliability score. A bundle adjustment [13]
can be used to improve the quality of the reconstruction.
However, we omitted bundle adjustment in scenes recon-
structed in Section 7.

6.3. Seeds registration

After all seeds were reconstructed as described in previous
section we register them together. First we identify two
seeds with the highest number of common images. If more
possibilities exist, we select among them the two seeds with
the highest number of registered images. We transform the
seed with less registered images to the coordinate system of
the seed with the higher number of registered images. Ro-
tations and translations of common cameras are “averaged”
similarly as in the linear method described in [22].

When all possible seeds were merged we can run a bun-
dle adjustment [13]. Then, cameras corresponding to the
registered images with higher reliability score can be de-
clared as calibrated and the algorithm can start again with
new image seeds.

7. Experiments

In this section we evaluate both the generalized eigenvalue
solution and the Gröbner basis solution of the problem and
compare them to the existing non-minimal solution [31].
We study critical motions and compare the numerical sta-
bility and computational complexity of both solvers.

7.1. Synthetic data set

We study the performance of our methods on synthetically
generated ground-truth 3D scenes. These scenes were gen-
erated as random points in a 3D cube. Each 3D point
was projected by a camera with random parameters or pa-
rameters testing degenerate configurations (pure translation,
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Figure 3. Performance of our solvers for general motions with
growing noise level, see text.

etc.). Then, Gaussian noise with standard deviation was
added to each image point assuming a 1000 1000 pixel
image.

7.2. Numerical stability

In this synthetic experiment we study numerical stability
of our solvers in various configurations and compare them
with other solvers. We focus on focal length estimation be-
cause rotation and translation is usually good once we have
a good focal length estimate. Figure 2 shows the perfor-
mance of our solver on synthetic noise free scenes in (i) gen-
eral motion, (ii) turntable configuration, (iii) pure sideways
translation and (iv) forward translation with small sideway
motion of cameras such that their optical axes are not coin-
cident. We know from the previous section that (ii), (iii)
and (iv) are critical configurations for camera pairs with
constant or varying focal length i.e. for the 6-pt [28] and
7-pt [13] algorithms followed by a focal length extraction.

Figure 2 (left) shows that these configurations are not
critical for fully calibrated and up to calibrated camera
pairs. Focal lengths estimated in “critical configurations”
are equally good as those in a general configuration.

Figure 2 (right) shows the stability of the algorithms in
general configurations. We compare here both our solvers
(newEig, newGB) with the non-minimal off-online solver
(7pt on-off) [31] and the polyeig solver of classical 6-pt
problem (peig6pt) [20], the 7-pt (7pt) and the normalized
8-pt (8pt) algorithms [13]. For the 7-pt and 8-pt algorithms
we first calculated fundamental matrices and then extracted
focal lengths using Bougnoux method [3]. In case of the
8-pt algorithm, we used all image measurements to calcu-
late epipolar geometry. Figure 2 (right) shows that our gen-
eralized eigenvalue and the non-minimal off-online algo-
rithm [31] give best estimates of but all methods perform
almost equally.

We have also made a comparison of our algorithms with
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Figure 4. Performance of our solvers in the 4 studied special con-
figurations. See text.

the non-minimal off-online algorithm for all “critical con-
figurations” like in Figure 2 (left). The results of the non-
minimal algorithm for all configurations where almost the
same as the results of our generalized eigenvalue solver and
therefore we didn’t print them here.

In the experiment not shown here we found that the sta-
bility of both our solvers is almost independent from the
true focal length. The results for all reasonable focal lengths
from 25 to 300 were similar to the result from Fig-
ure 2 (right) which was made for the focal length 36 .

Next experiment shows the quality of the focal length
estimation for general camera configurations when adding
noise to image measurements. First, we fixed the focal
lengths of the first camera to 30 and of the second cam-
era to 50 . Then we generated 1000 random camera
poses for each tested noise. Results for the general cam-
era motion are shown in Figure 3. Our solvers (newEig,
newGb) give almost the same results here and they are per-
forming very well even with one pixel noise level. The
results of the non-minimal algorithm (7pt on-off) were for
smaller noise levels similar to the results of our algorithms,
however for larger noise levels the performance of our al-
gorithms was slightly better.

The previous experiment has shown results for a general
camera motion. A different situation occurs when we are
testing these solvers in their critical configurations. Adding
a small perturbation to the image measurements helps re-
moving the degeneracy and lets solvers find an approximate
solution. However, the experiments show that the classical
6-pt [28], 7-pt [13] and 8-pt [13] solvers failed to deliver
any real solution in more than 90% of all tests. Hence Fig-
ure 4 shows plots only for our solvers and the non-minimal
off-online solver in turntable motion, side motion and for-
ward translation with small side motion and non-coincident
optical axes. Our solvers failed to deliver real solutions in
less than 2 cases in 1000 calls. Again the results of the

Figure 5. Correct 3D reconstruction of cameras in a “turntable con-
figuration” by our method. This is a degenerate configuration for
general 6-pt algorithms which often occurs with causal photogra-
phers taking pictures of 3D objects.
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Figure 6. Estimated focal length using different algorithms for turn
table sequence (left) and side motion sequence (right). For 7-pt
algorithm we extract two focal lengths - 7pt f1 (solid line) and 7pt
f2 (dashed line)

non-minimal algorithm were similar to the results of our
algorithms for smaller noise levels and all configurations
similar and for larger noise levels the performance of our
algorithms was slightly better.

7.3. Real experiments - critical motion

In the real data experiments we have aimed at the criti-
cal motions described in Section 7.2. We captured a set of
images of a non-planar scene in a “turntable” configuration
and with a sideways moving camera. Figure 5 shows a re-
construction using our autocalibration method described in
Section 6, without any additional numerical improvements.

Figure 6 (left) shows estimated focal lengths using differ-
ent algorithms. Note that this is a critical configuration for
the standard 6-pt an 7-pt algorithms. We obtained results for
these solvers since image correspondences are not measured
perfectly what helped finding solution which were close to
the critical configuration. However, it can be seen from the
Figure 6 (left), that estimated focal lengths are far from the
ground truth.

Results for the sideways motion configuration are simi-
lar to those obtained for the “turntable” configuration. Es-
timated focal lengths are in Figure 6 (right). Results of the

1808



Figure 7. Single seed reconstructions on the top, full reconstruc-
tion on the bottom.

non-minimal algorithm were similar to the results of our
solvers (new6pt) and therefore are not showed in the figure.

Note that the standard 6-pt algorithm uses the same focal
length in both cameras. Since the difference between esti-
mated focal length and the ground value is high, one cannot
get the correct Euclidean reconstruction. Hence, building
structure from motion using such partial reconstructions is
a hard problem and it is not possible to obtain a good re-
construction, e.g., by using bundle adjustment methods [13]
without specifying additional constraints, e.g., constant fo-
cal length in the whole sequence. We failed to reconstruct
our “turntable” sequence even with a robust state of the art
systems such as PhotoSynth [23].

7.4. Real experiments – images from the Internet

In this experiment we tried to use the previous approach
on a set of images downloaded from the Internet. We have
downloaded 2550 images of Fountain di Trevi and 4000 im-
ages of Notre Dame de Paris from Flickr [11] database. In
such a huge database of images, it is not a problem to find
an image with focal stored in the jpeg-exif and use it as a
seed.

We extracted SURF [2] feature points and descriptors of
all images and used [17] to obtain image matches. For the
best 50 images for each seed we extracted tentative corre-
spondences as points where the best descriptor dominates
by 20% over the second best descriptor [25]. Then we used
our reconstruction pipeline from Section 6 to register im-
ages. We did not generate additional seeds and did not use
bundle adjustment in this step.

The Fountain dataset contained about 10%(239) seed im-
ages with 35 equivalent focal length in the jpeg-exif.
About 14% of them did not contain Fountain scene and 11%
were rejected as wrongly calibrated. Numbers for the Notre
Dame sequence were similar. A 3D reconstruction of both
dataset from a single seed image are shown in Figure 7 (top)

0 100 200 300
0

20

40

60

80

measurement

fo
ca

l l
en

gt
h 

[m
m

]

 

 

calib fl
unk fl
unk fl / calib fl
critical f
general f

40 50 60 70 80 90
0.9

0.95

1

1.05

1.1

1.15

sampled focal lenth [mm]

so
lv

er
 r

es
ul

t

 

 

side motion
turn table
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for critical motion (critical f) is identical to the ratio of the ground
truth focal lengths (unk fl/calib fl). General motion (general f)
configuration is shown in blue. Right: The “sampling” experiment
on the real data sets with constant focal length camera. Graphs
show the ratio of the estimated and sampled focal lengths. The
ground truth ratio is equal to one.

and the full reconstructions in Figure 7 (bottom). We pro-
cessed 4000 Flickr photos in less than a day.

7.5. Interesting questions

Here we try to answer questions you may ask yourself:

Does the method work when all six point correspon-
dences are projections of the points from a plane in the
3D space? No, this is a degenerated configuration [16].

What happens if the calibration of the calibrated cam-
era is inaccurate or even unknown?

Figure 8 (left) tries to answer this question. We have gen-
erated synthetic scenes and used our solver to find an un-
known focal length (unk fl) without doing any calibration
of the first camera. We were interested in the relation be-
tween the evaluated and the ground truth focal lengths.

We found that results for general configurations are al-
most random. However, the experiment has shown that
the estimated focal length is actually the ratio of the two
ground truth focal lengths for cameras in critical con-
figurations. This experiment shows why “sampling” ap-
proach does not help finding absolute focal length given
the ratio of the lengths in the critical configuration. Ba-
sically, one gets for every sampled focal . In case of
the “turntable” and sideways motion sequence from our
real data set, where cameras have constant focal lengths,
we obtained results corresponding to a ratio close to one,
Figure 8(right).

Given a ratio of focal lengths, can we emulate the pop-
ular 6-pt algorithm [28] and avoid degenerated config-
urations ? Using this algorithm we can emulate the six
point problem by sampling the calibrated focal length and
testing if the ratio of estimated and sampled focal lengths
is close to the given ratio. As expected, such algorithm
will not work for critical motions as shown above.
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7.6. Computational complexity

The most expensive part of both solvers is in calculat-
ing eigenvectors. The Gröbner basis solver has to perform
single G-J elimination of 21 30 matrix in order to build
the action matrix. We take sparseness of the matrix into ac-
count and hence elimination time is negligible comparing
to the eigenvector computation. The generalized eigenvalue
solver does not have to perform any elimination but has to
calculate generalized eigenvectors. Still, this involves cal-
culation of eigenvectors of 10 10 matrix. Running time of
both solvers is less than 1 on 3 AMD Sempron mo-
bile. Comparing the two algorithms, the generalized eigen-
value solver is both faster and numerically more stable.

8. Conclusions

We have presented a minimal solution to finding the rel-
ative pose between a completely calibrated camera and a
camera with an unknown focal length given six point corre-
spondences. We presented two efficient solvers to the prob-
lem based on the Gröbner basis, resp. on the generalized
eigenvalues. Both algorithms are fast, numerically stable
and in case of the generalized eigenvalue solver extremely
simple to implement. The source codes to both solvers can
be found at http:/cmp.felk.cvut.cz/minimal.

We have demonstrated that our solvers produce very sta-
ble results for both synthetic and the real scenes with or
without noise and even for critical motions of the state of the
art algorithms. Since it is often easy to get a single image
from a calibrated camera, our algorithm is practical when
working with unknown images, e.g., downloaded from the
Internet. We have show this in experiments and presented a
new efficient method for large-scale structure from motion
from unordered data sets downloaded from the Internet.
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K. Åström. Fast and robust numerical solutions to minimal
problems for cameras with radial distortion. CVPR 2008.

[7] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry.
Springer Verlag 2005.

[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Al-
gorithms. Springer Verlag 2007.

[9] O. Faugeras and S. Maybank. Motion from Point Matches:
Multiplicity of Solutions. IJCV 4(3):225-246, 1990.

[10] A. Fitzgibbon. Simultaneous linear estimation of multiple
view geometry and lens distortion. CVPR 2001.

[11] Flickr. http://www.flickr.com/
[12] C. Geyer and H. Stewenius. A 9-point algorithm for estimat-

ing paracatadioptric fund. matrices. CVPR 2007.
[13] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge Univ. Press, 2003.
[14] O. Chum, T. Werner, and J. Matas. Two-View Geometry

Estimation Unaffected by a Dominant Plane. CVPR 2005.
[15] O. Chum, J. Matas., and J. Kittler. Locally Optimized

RANSAC. DAGM 2003.
[16] F. Kahl and B. Triggs. Critical Motions in Euclidean Struc-

ture from Motion. CVPR 1999.
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