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ABSTRACT: 

The paper presents a collaborative image-based 3D reconstruction pipeline to perform image acquisition with a smartphone and 

geometric 3D reconstruction on a server during concurrent or disjoint acquisition sessions. Images are selected from the video feed of 

the smartphone’s camera based on their quality and novelty. The smartphone’s app provides on-the-fly reconstruction feedback to 

users co-involved in the acquisitions. The server is composed of an incremental SfM algorithm that processes the received images by 

seamlessly merging them into a single sparse point cloud using bundle adjustment. Dense image matching algorithm can be lunched 

to derive denser point clouds. The reconstruction details, experiments and performance evaluation are presented and discussed. 

 

 

1. INTRODUCTION 

Image-based approaches have become viral for 3D digitization in 

the last years. Requirements and needs of digital replica 

significantly change according to the application field, steering 

the choice of equipment, as well as software tools. In industrial 

metrology, accuracy and reliability are crucial factors, which 

imply the adoption of high-cost, professional-grade camera and 

lens systems, coupled with software applications fully 

manageable only by expert operators. In the geospatial domain, 

completeness of the results, accuracy of georeferencing, handling 

of huge amount of data, reliability and speed of automatic 

procedures, integration and homogenization of data from 

different sources are key topics. Researches and studies in the 

cultural heritage field specifically focus, among other topics, on 

colour fidelity, geometric level of details, handling, visualization 

and sharing of 3D models. 

Today, a range of economic activities, whose origin can be traced 

back to the beginning of the new millennium, is driving the 

digital economy all around the word, i.e. the creative industries 

(EY, 2015). Also referred to as ‘creative and cultural industries’ 
or ‘creative and digital industries’, they embrace thirteen sub-

sectors: advertising, architecture, arts and antiques market; crafts; 

design; designer fashion; film and video; music; performing arts; 

publishing; interactive leisure and software; software and 

computer services; television and radio (Skillset, 2013). People 

working in the creative economy rely on their individual 

creativity, skill and talent, to produce economic values. 

To answer the needs of this growing community, technologies 

and tools are rapidly developing and changing. Emblematic is the 

progress of 3D printers, more and more used to realise fully-

operational, market-ready products rather than quick and cheap 

prototypes (The Economist, 2011). Similarly, we are witnessing 

a ‘democratization’ and massive spread of 3D digitization 
techniques (Alderton, 2016; Nancarrow, 2016; Santos et al., 

2017), with an increasing demand for hardware and software 

solutions economically accessible, easily understandable and 

manageable by almost anyone wills to express his or her 

creativity through 3D digital products. 

                                                                 
1 https://itseez3d.com, last accessed: Oct 2017. 

The work described in this paper arises in this context and 

presents a collaborative image-based 3D digitization pipeline. 

Different users acquire – simultaneously or in separate sessions 

– images with their smartphones and images are then 3D 

processed via a cloud-based server. A smartphone’s app provides 
on-the-fly visual feedback about the 3D reconstruction to users 

co-involved in the digitization process. The idea is to (i) guide 

users during the image acquisitions and (ii) combine images from 

multiple devices from concurrent or disjoint acquisition sessions. 

The developed approach (Poiesi et al. 2017) and the achieved 

results, produced in real-world scenarios (i.e. a cultural heritage 

site and a city square), are compared against reference data, 

produced employing a professional-grade reflex camera and 

state-of-the-art image processing software solutions. 

 

 

2. RELATED WORKS AND MAIN INNOVATIONS 

Image-based 3D reconstruction methods using mobile devices 

have been pioneered in the research domain (Tanskanen et al., 

2013; Kolev et al., 2014; Muratov et al., 2016), and are starting 

to appear on app stores for smart devices (e.g., ItSeez3D1, 

TRNIO2). These methods implement very similar workflows, 

relying on Structure from Motion (SfM) and dense image 

matching (DIM) or Multi View Stereo (MVS) algorithms, run 

either on the phone or on a server. Being the 3D reconstruction 

procedure computationally intensive, a feasible solution is to split 

the process between the mobile device and the cloud-based server 

(Untzelmann et al., 2013; Locher et al., 2016c). In this case, the 

smartphone is used as imaging device to capture images of the 

scene of interest, whereas the SfM and DIM steps are performed 

on the server. Current 3D reconstruction solutions running on 

smartphones only offer feedback to single users during image 

acquisitions, and do not yet seamlessly include collaborative 

approaches with simultaneous feedback to the multiple. The most 

common solution for collaborative mapping, based either on 

Simultaneous Localization and Mapping (SLAM) or SfM 

approaches, is to produce separate maps that are finally fused 

together (Forster et al., 2013; Untzelmann et al., 2013; Morrison 

et al., 2016; Schmuck, 2017). 

2 http://www.trnio.com, last accessed: Oct 2017. 
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Figure 1: Part of the entire REPLICATE workflow (from Nocerino et al, 2017) jointly performed on smart devices and a cloud-based server (left) 

and the collaborative aspect of 3D digitization procedures presented in this article (right). 
 

The procedure presented in this paper is based on an incremental 

SfM approach (Schonberger and Frahm, 2016), which updates 

and augments the global sparse 3D point cloud when a new image 

is uploaded. From video acquired by different smartphones, only 

significant frames are selected, sent to the server and process to 

increment the sparse 3D reconstruction. The updated results 

provide the user with visual feedback during the acquisition 

process and are accessible both on the mobile app and on a web-

based visualization service developed on the server. 

While the sparse reconstruction of the scene is computed on the 

server and constantly updated when new images are sent via the 

SfM procedure, the DIM step produces dense point clouds, made 

available to the users on a web-based visualization window. 

 

 

3. THE PROPOSED PIPELINE 

The implemented approach is part of an image-based 3D 

reconstruction workflow under development within the EU 

funded H2020 project REPLICATE3 (Nocerino et al., 2017, Fig. 

1). A smartphone app allows the image acquisition phase, 

whereas the processing procedure is jointly performed on the 

smartphone as well as on a server (Locher et al., 2016c). 

 

3.1 Image acquisition app and device-server 

communications 

Each user running the smartphone app must first be authenticated 

by the cloud service. A unique smartphone identifier (ID) is 

assigned based on the user’s account credentials, the device’s 
manufacturer, its model and operating system. The smartphone 

app is used to acquire the video stream, extract the best frames 

(Section 3.2) and send them to the server for the 3D 

reconstruction procedure (Section 3.3) Accelerometer 

measurements from the device’s Inertial Measurement Unit 
(IMU) are also transmitted together with the images to aid pose 

estimation and object reconstruction. Smartphone vibration is 

implemented as haptic feedback to help the user to understand 

whether the images are acquired correctly (i.e. the device motion 

is not to fast). 

Network communication between the reconstruction server and 

device is bidirectional and asynchronous. The app offers a user 

the option to start a new acquisition session or to update past 

acquisitions with new images in case of collaborative approaches 

(Section 3.4). To visualize updated point clouds as feedback, the 

smartphone sends periodic requests to the server. 

                                                                 
3 http://www.replicateproject.eu, last accessed: Oct 2017. 

The remote server handles user authentication, processes the 

images and generates updated results visualized by the device 

app and web-based interface. The web page enables users to see 

estimated camera positions and interact with the dense point 

cloud. The user can share the reconstruction job via an email 

option with other users, who become contributors. Contributors 

can then increment the reconstruction of an object by uploading 

more images of new acquisitions. 

 

3.2 Image selection from smartphone’s video stream 

Images are selected from the smartphone’s app based on both 

their quality and on their novelty. The selection is based on the 

computation of a frame’s sharpness and the number of new 
features present (Sieberth et al., 2016). Hence, a ‘content rich’ 
frame should be sharp (i.e. in focus and with no motion blur) and 

it should contain new visual information about the object. 

Newness is quantified by comparing current feature points with 

those extracted from previous frames. The quantification of the 

overlap is calculated for pairs of frames and by using ORB 

keypoints (Rublee et al., 2011). The image overlap is inferred by 

matching descriptors among adjacent frames based on the 

Hamming distance. If no frames were selected for a certain 

minimum interval of time, a frame is transmitted anyway. 

 

3.3 Orientation and 3D reconstruction 

The 3D reconstruction server adopts an incremental SfM 

algorithm followed by the DIM step, using multiple threads to 

process independent and asynchronous uploads of images from 

different users. Two pipelines are under testing: the first, 

described in Poiesi et al. (2017) and Nocerino et al. (2017) is 

based on approaches proposed by Sweeney et al. (2015), 

Schonberger et al. (2016), Locher et al. (2016a) and Locher et al. 

(2016b). The second procedure, hereafter presented, follows the 

SfM/DIM pipeline presented by Schonberger and Frahm (2016). 

 

3.4 Collaborative approach 

The developed method includes also a collaborative 3D 

reconstruction which allows the processing of images coming 

from multiple smartphone devices during concurrent or disjoint 

acquisition sessions. 

For each new image uploaded to the server, the algorithm 

matches news computed features to those from a subset of images 

acquired within the same acquisition job. This subset is 

composed of images already stored in the database featuring high 
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similarities in image content with the new one (Poiesi et al., 

2017). Relative image orientation is initially estimated via 2D-

3D correspondences using feature points extracted on all the 

images, regardless of which smartphone they were captured 

from. If available, the nominal values of the interior orientation 

parameters are derived from EXIF metadata or extracted from the 

database containing already registered devices. The essential 

matrix is then estimated using a five-point algorithm (Nistér, 

2004). When the camera parameters are not available, the 

fundamental matrix is estimated using an eight-point algorithm 

and, subsequently, the essential matrix is inferred (Nistér and 

Stewenius, 2006). 

Successively a Bundle Adjustment (BA) is applied. We are 

currently evaluating two approaches to efficiently handle video 

frames acquired by different devices and progressively process 

them on the cloud-based server. 

The first implementation, used in this paper (Section 4) entails an 

image-variant self-calibrating BA, i.e., for each image, a set of 

interior orientation parameters, comprising the principal 

distance, principal points coordinates and two radial distortion 

parameters, could be estimated.  

The second approach, presented in Poiesi el al. (2017), is based 

on a two-step procedure, where the interior and exterior 

orientation parameters are refined as follows. Images acquired in 

the same session and using same device are forced to share the 

same camera calibration parameters in the adjustment procedure. 

A local bounded BA refines only newly uploaded images with 

their associated points. Once the reconstruction has sufficiently 

grown, a full BA over all images and points is performed, taking 

into account the separate camera calibration groups. The 

implemented two-stage BA saves computation time and 

increases the stability of the BA optimization. 

 

 
Figure 2: Example of on-the-fly visual feedback inside the 

smartphone’s app (left) during a collaborative digitization process 

(here two users involved) or on the web browser (right). 

 

3.5 3D reconstruction preview and visualisation 

All users involved in a collaborative acquisition can visualize 

their (simultaneous or joint) 3D reconstruction progresses via a 

dedicated preview window in the smartphone’s app as well as 
interact with the reconstruction session via a web page. 

The preview model in the app shows to the user, while he/she is 

acquiring images, the sparse point cloud with image positions 

from all concurrent users (Fig. 2). The preview window runs on 

a separate thread that periodically sends requests to the server to 

check and, in case, display the updated scene reconstruction. 

When the user terminates the acquisition and all images are 

uploaded, the 3D reconstruction process is completed on the 

server. 

In a web browser, users can visualize the oriented images and the 

sparse point cloud, download the estimated camera parameters 

and access intermediate reconstructions. 

 

4. EXPERIMENTS AND VALIDATION 

The following section reports three experiments, performed in 

real case scenarios, to showcase the capabilities of the proposed 

pipeline. The collected datasets (4.1 – Table 1) and reference data 

(4.2) are described, and the collaborative reconstruction results 

are shown together with a quality assessment (4.3). All 

experiments, acquired with different smartphones, were 

afterwards processed with 20 cores on an Intel Xeon 2.30GHz 

computer with 128 GB of RAM.  

 

4.1 Datasets 

The experiments entail the acquisition of video streams collected 

using six different off-the-shelf Android smartphones in three 

different locations (Table 1). To the authors knowledge, currently 

there are no datasets that involve multiple and different 

smartphones recording buildings or objects from different 

viewpoints. For this reason, our datasets are available for 

research purposes at the url http://tev.fbk.eu/collaborative3D. 

 

 

Seq. 
Device  

model 

Resolution 

(px) 

No. 

selected 

frames 

Device 

orientation 
S

a
ra

n
ta

 K
o

lo
n

es
 

1 

Huawei P9 

1920x1080 152 L/P 

2 1920x1080 154 L/P 

3 1920x1080 210 L/P 

4 

OnePlus One 

1920x1080 117 P 

5 1920x1080 105 P 

6 1920x1080 59 P 

7 1920x1080 44 P 

8 

Samsung S6 3840x20160 

84 L 

9 54 L 

10 56 P 

P
ia

zz
a

 D
u

o
m

o
 

1 LG Nexus 5X 1920x1080 64 L/P 

2 
Samsung 

Galaxy Alpha 
640x480 91 L/P 

3 SonyZ5 1920x1080 74 L 

C
a

ff
e 

It
a
li

a
 1 LG Nexus 5X 1920x1080 175 L/P 

2 
Samsung 

Galaxy Alpha 
640x480 218 L/P 

3 SonyZ5 1920x1080 107 L/P 

Table 1. Main characteristics of the employed datasets. L stands for 

landscape and P for portrait.  

 

The first dataset (Saranta Kolones) features the ‘Saranta 

Kolones’ monument within the Pafos archaeological area in 

Cyprus. The site is ca 16x16x5m. Ten videos (at 30Hz) were 

recorded by three different smartphones in different orientations 

(landscape and portrait). Due to network connection limitations 

on the Saranta Kolones’s site, the dataset was recorded using the 

video mode of the smartphones and post-processed later by the 

image selection algorithm (Section 3.2). A collaborative 

acquisition approach was simulated by stirring in and 

transmitting to the cloud-based server the extracted frames from 

the different devices. 
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Other two datasets were acquired using the smartphone’s app in 

the cathedral square of Trento, Italy: from the smartphone’s 
camera video feed, frames were selected by the image selector 

algorithm during the acquisition (Section 3.2) and directly 

uploaded to the reconstruction server. The Piazza Duomo dataset 

features the north facing facade of the cathedral (ca 100m wide 

and 30m tall). The third dataset (Caffe Italia) focuses on the south 

facing facade of a painted building in the same square. The facade 

is 30m wide/long and 15m tall.  

Figures from 3 to 6 show the results of the implemented 3D 

reconstruction procedure for the three datasets. 

 

 

Figure 3: The shaded mesh model of the surveyed Saranta Kolones monument. The position and orientation of the extracted frames are shown as 

pyramids with colours indicating the three employed devices (Table 1). 

  

  

Figure 4: The sparse point cloud for the Saranta Kolones dataset. The points are coloured based on the smartphone they are triangulated from (Table 

1); in grey the entire point cloud; in yellow the points triangulated from images belonging to multiple devices. 
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Figure 5: The shaded dense point cloud of the Piazza Duomo dataset. The position and orientation of the extracted frames are shown in different 

colours to indicate the device they were acquired from (Table 1). 

  

  

Figure 6: The sparse point cloud of the Piazza Duomo dataset. The points are coloured according to the smartphone they are triangulated from (Table 

1); in yellow the points triangulated from images belonging to multiple devices. 

4.2 Reference photogrammetric models 

The reference (ground truth) datasets were acquired with a 

professional-grade digital single lens reflex (DSLR) camera, 

processed using state-of-the-art commercial software application 

and evaluated by computing the root mean square error (RMSE) 

on check points, measured through classing topographic 

surveying. For the SarantaKolones dataset, the Nikon D3X was 

equipped with a Nikkor 28 mm fixed focal length lens, 176 

images were acquired and 20 points were used as check, 

providing a RMSE better than 5 mm. 

The photogrammetric survey of the entire Trento cathedral 

square, comprising 359 images, was realised with the Nikon D3X 

camera coupled with two prime lenses, a Nikkor 35 mm and a 

Nikkor 50 mm. The RMSE on 18 check points resulted better 

than 10 mm. 

 

4.3 Evaluation 

To evaluate the metric potentialities of the implemented 

collaborative reconstruction pipeline, the dense point clouds of 

the three datasets acquired with different smartphones (section 

4.1) are compared against the ground truth dense point clouds 

obtained using a standard photogrammetric procedure (section 

4.2).  
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Figure 6: The RGB dense point cloud of the Caffe Italia dataset. The position and orientation of the extracted frames acquired with three 

smartphones are shown using different colours according to the employed device (Table 1). 

 

The point clouds are first cleaned from noisy elements, then 

aligned in a local coordinate reference system to the reference 

data by means of the iterative closest point (ICP) with scale factor 

registration method, implemented in the open source software 

application CloudCompare. The signed distances between the 

corresponding dense point clouds are then computed, using the 

CloudCompare M3C2 plugin, which implements the Multiscale 

Model to Model Cloud Comparison method (Lague et al., 2013, 

Figure 7). The evaluation analyses show that the greater 

differences, up to 50 cm, are localised on the edges of the 

structures, where the poorest image quality of the camera 

embedded in the smartphones is most evident. However, the 

global geometry of the structures in all the three case studies 

features deviations up ten times the average point cloud 

resolution. 

 

5. CONCLUSIONS 

The paper presented a 3D acquisition and reconstruction pipeline 

where multiple users can collaboratively acquire images of a 

scene of interest to produce a 3D dense point cloud.  

The pipeline entails an app running on smartphones that 

automatically selects the best frames out of a video stream and 

uploads them to a cloud-based server. Here the images are 

processed through a SfM and DIM procedures. The users can 

concurrently visualize the camera poses and joint 3D point cloud 

coming from other users / smartphones, either on the device or 

on a web-server page. 

The proposed procedure was evaluated through comparisons 

with reference data produced employing a standard 

photogrammetric acquisition and processing workflow. The 

analyses showed that the achieved results may suffice for the 

purposes of people involved in the creative industries. 

Future works will involve the implementation of Augmented 

Reality-based guidance for the user during image acquisition, 

based on device pose tracking and 3D reconstruction algorithms 

running on the smartphone. Moreover, a semi-automatic editing 

procedure to improve the dense point cloud quality is under 

development. 
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Figure 7: Quality evaluation of the proposed collaborative approach. On the left column, for each dataset the dense point clouds from the reference 3D 

reconstruction and the collaborative approach are shown. The right column shows the colour-coded map of the signed distances computed between the 

reference and the collaborative dense point clouds. The given differences are in meters. 
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