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Received 18 December 2010; Revised 10 October 2011; Accepted 13 October 2011

Academic Editor: Habib Zaidi
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The registration of intraoperative ultrasound (US) images with preoperative magnetic resonance (MR) images is a challenging
problem due to the difference of information contained in each image modality. To overcome this difficulty, we introduce a new
probabilistic function based on the matching of cerebral hyperechogenic structures. In brain imaging, these structures are the
liquid interfaces such as the cerebral falx and the sulci, and the lesions when the corresponding tissue is hyperechogenic. The
registration procedure is achieved by maximizing the joint probability for a voxel to be included in hyperechogenic structures in
both modalities. Experiments were carried out on real datasets acquired during neurosurgical procedures. The proposed validation
framework is based on (i) visual assessment, (ii) manual expert estimations , and (iii) a robustness study. Results show that
the proposed method (i) is visually efficient, (ii) produces no statistically different registration accuracy compared to manual-
based expert registration, and (iii) converges robustly. Finally, the computation time required by our method is compatible with
intraoperative use.

1. Introduction

Due to its low cost, its real-time imaging capabilities, and
its noninvasive nature, ultrasound (US) imaging has become
a popular modality. These attributes have been used for
a large number of clinical applications. In neurosurgery,
ultrasound imaging has been employed in many cases of
brain examinations over the last two decades [1]. Several
studies demonstrated that ultrasonography can be used for
locating tumors, defining their margins, differentiating their
internal characteristics, and for detecting of brain shift and
residual tumoral tissues [2]. At present, 3D US imaging is
integrated within the neuronavigation systems to provide
a useful and efficient intraoperative tool [3]. Ultrasound
imaging has also been shown to be a promising method for

quantifying and for correcting brain shift in Image-Guided
Neurosurgery (IGNS) [4–14].

During a neurosurgical procedure, the ultrasound probe
is tracked by the neuronavigation system which computes
the 3D positions and orientations of the B-scans. Matching
between the intraoperative US images and the preoperative
MR image is ensured by a rigid registration. In phantom
[6] and animal studies [11], the matching accuracy between
intraoperative B-scans and preoperative images has been
quantified between 1.5 mm and 3 mm. Nevertheless, in
clinical context, the matching error can reach 10 mm (see
Table 1). This error includes tool calibration errors (the
position localizer and the US probe), tool localization errors
(tracking system error), and registration errors from the
neuronavigation system.
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Table 1: Manual estimation of the initial error in mm (i.e., error of the registration given by the neuronavigation system).

A priori estimation of the registration: initial error in mm

Mean (std) Expert 1 Expert 2 Expert 3 P value

Patient 1 5.52 (1.15) 4.31 (1.55) 5.00 (1.50) 0.30

Patient 2 8.64 (0.89) 8.31 (1.24) 8.76 (1.04) 0.69

Patient 3 3.56 (1.09) 4.61 (1.39) 4.38 (1.13) 0.13

Registration approaches based on classical image simi-
larity measures such as the Sum Square Difference (SSD),
Mutual Information (MI), or Correlation Ratio (CR) are
known to fail to robustly register MR and US images [15].
Therefore, other options have been investigated.

(a) Landmark-based registration represents the majority
of the approaches [6, 7, 9, 13, 14, 16]. The motivation
is bound to the difficulty of finding a function
matching US image intensities with MR image inten-
sities. These methods are based on the matching of
manually defined points [7], lines representing the
vascular system [6, 13, 14, 16], or cortical surface [9].

(b) Intensity-based approaches using histogram-based
similarity measures tend to overcome the problem by
preprocessing the images in order to register more
similar images [4, 17].

(c) By introducing the Bivariate Correlation Ratio
(BCR), Roche et al. [15] incorporated the transfor-
mation of MR to pseudo-US image as a function into
the similarity measure.

In this paper, we propose a new objective function based
on the matching of the cerebral hyperechogenic structures
such as sulci and the cerebral falx, and the lesion when
the corresponding tissue is hyperechogenic. The registration
is achieved by maximizing the correlation value between
the US image and the probabilistic map of hyperechogenic
structures estimated from MR image. The proposed method
is thus a compromise between landmark and intensity-based
approaches.

(i) As with landmark-based approaches, only regions
considered as relevant are used to drive the registra-
tion procedure. In our method, these regions are the
hyperechogenic structures of the brain.

(ii) As with intensity-based methods, the proposed
approach does not require segmentation of the US
image which is a challenging problem.

2. Materials and Methods

2.1. Method Overview. The scheme of the overall workflow is
presented in Figure 1. First, the “hyperechogenic” structures
present in MR image (i.e., the structures visible in MR
image expected to be hyperechogenic in intraoperative US)
are detected with the MLvv operator [18, 19]. In brain
imaging, these structures are the liquid interfaces such as the
cerebral falx and the sulci, in addition to the lesions when
the corresponding tissue is hyperechogenic (e.g., cavernoma

or glioma). The curvature-based MLvv operator was first
introduced in [18, 19] before being used to detect the sulci
and the cerebral falx in [20–22]. The US image and the
probability map of the hyperechogenic structures extracted
from MR image are then registered by maximizing the
probability for a voxel to be included in hyperechogenic
structures in both modalities.

Contrary to histogram-based approaches that match all
the information in both images, the proposed approach
consists of matching only hyperechogenic structures [23],
which makes it more robust to artefacts such as acoustic
shadows. Indeed, in US imaging, the bright areas provide
information on the underlying structures whereas the dark
areas can correspond to the underlying anatomical structure
or acoustic shadows [24]. Moreover, the accuracy of sulci
matching is an important issue since these structures are used
by the neurosurgeon during the neurosurgical procedure
[25]. Finally, by using the natural property of US imaging to
detect the hyperechogenic structures, the method does not
require segmentation of the US image. This way, the method
is less sensitive to error of US image segmentation and is less
time consuming during the intraoperative stage.

2.2. Probabilistic Objective Function. The proposed registra-
tion process is based on the estimation of the transformation

T̂ maximizing the joint probability for a voxel X = (x, y, z) to
be included in hyperechogenic structures in both modalities:

T̂ = arg max
T

∫

Ω

p(X ∈ ΦUS,T(X) ∈ ΦMR)dX , (1)

where p(X ∈ ΦUS) is the probability for X to be included
in an hyperechogenic structure from the US image and
p(X ∈ ΦMR) is the probability for X to be included in
an hyperechogenic structure (in the sense of the ultrasound
image) from the T1-w MR image. Assuming that the
probabilities are independent, we can write

T̂ = arg max
T

∫

Ω

p(X ∈ ΦUS) · p(T(X) ∈ ΦMR)dX. (2)

Our objective function can be viewed as the maximization
of the correlation value between the two probability maps of
hyperechogenic structures extracted from both modalities.

2.3. Construction of the Probability Maps. In order to con-
struct the probability maps, we define a function f matching
the intensity of both the US image and the MR image
with the probability for X to be included in hyperechogenic
structures:

p(X ∈ Φ) = f (u(X)), (3)

where u : Ω �→ R is an image defined on Ω.
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Figure 1: Illustration of the performed workflow to achieve the registration. The skull stripping, the denoising, the MLvv computation, and
the segmentation of lesion are performed before the neurosurgical procedure. The 3D reconstruction of intraoperative volume, the reslicing
of the MR map, and the estimation of the transformation are then performed during the neurosurgical procedure.
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(a) (b) (c)

Figure 2: Patient 1. (a) The denoised MR image corresponding to US image (b). (c) The probability map based on MLvv operator and
extracted from denoising MR image. The preoperative MR image is resliced with the registration matrix provided by the neuronavigation
system. The matching is not perfect due to the initial error, estimated around 4.2 mm by the experts for this patient. As visible on the US
image, the lesion presents a hypoechogenic central area (indicated on the US image by a narrow).

2.3.1. Intraoperative US Image. For the intraoperative US
image U , by definition f is the identity function:

p(X ∈ ΦUS) = U(X). (4)

The intensity of U is only scaled between 0 and 1 during
surgery to fit with our probabilistic framework.

2.3.2. Preoperative MR Image. For the preoperative MR
image V , the evaluation of f is done prior to surgery and
is based on both the detection of the liquid interfaces with
the MLvv operator and the segmentation of the pathological
tissues.

The Lvv operator is a robust intensity-based curvature
detector [18] based on the first and second derivatives of
the image intensities. The first and second derivatives are
combined to obtain an operator less sensitive to flat areas
with low gradients. This kind of operator is used to detect
ridge-like features in images, with negative value for crests
in the intensity domain and positive value for valleys in
the intensity domain. In [19], the MLvv has been proposed
for multimodal registration of CT and MR images. In
our case, as in [20–22], the MLvv is used to extract the
hyperechogenic structures (sulci, cerebral falx) from T1-w
MR image. Overall, curvature information has been used by
several other authors to characterize cortical features [26–
28]. Most of these methods are based on geodesic curvature
computed on cortical surfaces.

In T1-w MR images, the sulci are valleys (negative ridges)
in the intensity domain. By using the positive values ofMLvv,
the sulci and the cerebral falx can be efficiently detected [20–
22]. Figures 2, 3, and 4 show the positive values of MLvv
operator.

Finally, our function f is defined as

p(X ∈ ΦMR) =MLvv(V(X))IM1(X) + Ψ(X)IM2(X), (5)

where IM is the indicator function for the set M:

(i) M1 = {X ∈ Ω, such that MLvv(V(X)) � 0},

(ii) M2 = {X ∈ Ω, such that X belongs to the lesional
tissue}.

As for the US intensities, the positive values of the MLvv are
scaled between 0 and 1. The MLvv operator is defined in 3D
as

MLvv
(
V
(
x, y, z

))

= −
1
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(6)

where ‖�w‖2 = ∂V(X)2/∂x + ∂V(X)2/∂y + ∂V(X)2/∂z.
Ψ(X) is the probability given to X in the segmentation of
pathological tissue M2. Ψ is used to incorporate a priori
on pathology. For pathological tissue such as cavernoma
or low-grade glioma, Ψ(X) is high since these tissues are
hyperechogenic.

2.4. Preprocessing of the MR Data before Surgery. First,
skull stripping is performed from the T1-w MRI sequence
[29]. We choose to remove the skull prior to MLvv
computation because this structure does not appear in
the area of the craniotomy. The raw MR images are
then denoised using an optimized Non-Local Means fil-
ter (https://www.irisa.fr/visages/benchmarks/) [30] before
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Figure 3: Patient 2. (a) The denoised MR image corresponding to US image (b). (c) The probability map based on MLvv operator and
extracted from denoising MR image. The preoperative MR image is resliced with the registration matrix provided by the neuronavigation
system. The matching is not perfect due to the initial error, estimated around 8.5 mm by the experts for this patient. The red box shows a
sulcal area where the matching between US image and the MLvv-based probability map is visually high. A large acoustic shadow is visible in
US around the ventricle area (indicated in orange on the US image).

(a) (b) (c)

Figure 4: Patient 3. (a) The denoised MR image corresponding to US image (b). (c) The probability map based on MLvv operator and
extracted from denoising MR image. The initial error is estimated around 5 mm by the experts for this patient. In the red box, the MLvv
operator efficiently detects the sulci also visible in the US image. This case presents a limited field of view while the lesion is large. Moreover,
an acoustic shadow is visible on the right lower part of the US image (indicated on the US image by a narrow).

applying the MLvv operator to the brain tissues. The use
of a denoising stage makes the computation of the MLvv
more stable. Indeed, the presence of noise may create
false positive or negative curvatures which could bias the
registration framework. After applying the MLvv operator,
only the positive values (i.e., the sulci and the falx) are
kept in the processing stream. Finally, the MLvv map and
the segmentation M2 are merged together (see Figures 2, 3,
and 4). In our experiments, the segmentation of pathology
was manually performed by the neuroanatomist before
the surgical procedure (see Figure 1). The computational
time required by preprocessing steps performed during
preoperative stage was 4 minutes for skull stripping and 3
minutes for denoising on a Pentium M 2 GHz. In addition,

3–8 minutes were required for manual segmentation of the
lesion according to its size on a Stealth Station TREON
(Medtronic Inc., Minneapolis, USA). Since these steps are
performed before surgery, there is no impact on practical
value of the proposed method.

2.5. Data Acquisition. T1-w SENSE 3D sequences were used
to acquire preoperative T1-weighted MR images on a 3T
Philips Gyroscan scanner (Best, the Netherlands). During
the neurosurgical procedure, the US probe (Sonosite Inc.
Bothell, WA. USA, cranial 7–4 MHz probe) was tracked
by the Polaris cameras of the Stealth Station TREON
(Medtronic Inc., Minneapolis, USA). The SonoNav software
of the neuronavigation system was used to acquire the 2D
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B-scans and the probe positions. From the 2D B-scans
and their positions, a 3D volume was reconstructed with
the Probe Trajectory method [31]. The experiments were
carried out on 3 patients. For each patient, a sequence of
images was acquired before opening the dura. Some studies
have considered quantitative measurement of brain shift
during surgical procedures and showed that nonsignificant
displacement occurred before dura opening [32, 33]. Thus,
we assumed that the transformation between intraoperative
US and preoperative MR was rigid. The characteristics of
reconstructed volumes are

(i) for patient 1 a 3D volume of 486 × 462 × 206 voxels
with a resolution of 0.15× 0.14× 0.14 mm3,

(ii) for patient 2 a 3D volume of 510 × 423 × 174 voxels
with a resolution of 0.21× 0.19× 0.20 mm3,

(iii) for patient 3 a 3D volume of 265 × 450 × 324 voxels
with a resolution of 0.19× 0.17× 0.18 mm3.

2.6. MR-US Registration of the Neuronavigation System. Dur-
ing all the neurosurgical procedure, the coordinate system
of the preoperative MR image and the coordinate system of
the intraoperative field are related by a rigid registration. The
rigid registration of the neuronavigation system is based on
surface matching between the preoperative MR image and
the position of points acquired on the patient’s head with
the position localizer. First, the skin is extracted from the
MR image by manual thresholding. A cloud of points is then
continuously acquired on the patient’s head close to the eyes
region by moving the position localizer. Following this, one
point is acquired on each ear with another point on the
extremity of the patient’s nose. Finally, the neuronavigation
system performs a points to surface matching.

According to phantom and animal studies, the errors in
probe calibration, 3D localization of the probe, and rigid
registration performed by the neuronavigation system lead
to a global error less than 3 mm [6, 10, 11]. The error due to
the 3D localization of the probe is estimated to 0.35 mm for
each marker on a tool from the manufacturer [34]. The error
due to the calibration is generally estimated around 1.5 mm
[6, 11]. In our case, the probe was calibrated with a Z-wire
phantom by the manufacturer. Finally, the error due to rigid
registration performed by the neuronavigation system has
been estimated to be around 1.5 mm in [11].

2.7. Pathology of the Patients. In this study, hyperechogenic
pathologies such as cavernoma (patient 1, see Figure 5 and
patient 2, see Figure 6) and low-grade glioma (patient 3, see
Figure 7) were considered. In T1-w MR images, the central
part of cavernoma is usually heterogeneous (hyper- and
hyposignal) and the outlying area appears in hyposignal. The
low-grade gliomas are more homogeneous and appear in
hyposignal in T1-w MR images. In US images, numerous
studies showed that all solid brain tumors, metastatic brain
lesions, and cavernomas exhibited echogenicity [35–39]. For
brain gliomas, the higher its grade (more malignant), the
more echogenic it is in US and the less homogeneous it
appears. In our study, the corresponding lesional tissues were

considered both homogeneous and hyperechogenic in US
images. As such, Ψ(X) was set to 1 for all segmentation
of pathological tissue M2 (see (5)). Typical examples of
intraoperative images and probability maps are presented in
Figures 2, 3, and 4.

2.8. Parameter Settings. The maximization of the joint
probability (see (2)) is performed within a multiresolution
procedure using the simplex algorithm [40]. During the
experiments, the parameters of the simplex algorithm were
tolerance = 0.1, stepsize = 1.5, and maximum number of
iterations = 100. The coarsest resolution corresponded to the
original volumes downsampled by a factor 3 and the finest
resolution was that of the original volumes. The registration
procedures take less than two minutes on Intel Pentium M at
2 GHz.

As with most derivative-based operators, the MLvv oper-
ator uses Gaussian kernel to compute the image derivatives.
In [18], the authors showed that the convolution of the
image with a derivative Gaussian kernel provides a well-
posed approach of the differentiation problem. The standard
deviation σ of the Gaussian kernel is called the image scale.
This parameter has been shown as very stable for MR image
sulci segmentation on numerous works [20–22], and thus,
no tuning has been done for this parameter throughout
our study. In our experiments, an image scale of 2 voxels
has been used to compute the MLvv values. This value is
consistent with other works [20–22] conducted on brain
cortical segmentation where the scale parameter was always
kept in this range.

2.9. Evaluation Framework. In order to evaluate our method,
a validation framework with different approaches is pro-
posed.

(i) First, a visual assessment is proposed.

(ii) Second, a manual validation by experts is presented.
This validation is divided in two parts: a point-based
estimation of the rigid registration by 3 experts for
the 3 patients and an evaluation of the residual error
by all experts for 1 patient (postregistration error).

(iii) Third, a study on convergence robustness was carried
out.

The expert manual validation was difficult due to the time
required. For each expert, 4 hours were required to perform
the a priori estimation of the transformation for 3 patients.

2.9.1. Visual Assessment. The visual assessment remains a
valuable indicator of the registration accuracy. In [41],
the observer discernibility of registration errors has been
estimated around 0.2 mm. A study on visual inspection for
image registration assessment can be found in [42]. In our
paper, we propose an overlay of US and MR images before
and after registration to assess the registration accuracy.

2.9.2. Validation by Experts. First, the experts manually
evaluate the rigid transformation between the intraoperative
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Figure 5: Patient 1. Left: registration given by the neuronavigation system. Right: the result after correction with our registration approach.
The low intensities of US images are in green and the high in red. For this case, even if the lesion was not entirely included in the US volume,
the proposed registration procedure converged. The location of the lesion is indicated by ellipses on the fused image after registration.

US and the MR image resliced with the rigid transformation
given by the neuronavigation system. This estimation is
denoted as a priori estimation of the registration. From
this a priori estimation, the initial error (i.e., after the
registration performed by the neuronavigation system) and
the Target Registration Error (TRE) can be computed. The
a priori estimation of the registration is used to show that
there are no statistical differences between the expert-based
transformations and the transformation estimated with our
method in terms of the TRE.

The experts estimate the residual error after rigid
registration based on a given transformation (either by
our method or the point-based expert registrations). This
estimation is called a posteriori evaluation of the residual
error and is designed to show that experts do not detect
significant differences when they inspect the registered
volumes with our method or with their own manually
defined transformations.

A Priori Estimation of the Registration

Point Picking. The a priori estimation of the registration
is based on the location of ten points in the US image
and the ten corresponding points in the MR image: each
expert defines a set of point in the 3D reconstruction of the
intraoperative ultrasound and its corresponding landmark in
the resliced MR image. The resliced MR image is obtained

with the rigid registration given by the neuronavigation
system and has the same resolutions, dimensions, and
field of view as the reconstructed US image. During the
experiments, the experts used three orthogonal 2D views
to define homologous points in the 3D volumes. For each
volume, the visualization software was run independently,
with the cursors in the two volumes unlinked. Each expert
was allowed to choose their set of homologous points.

Initial Error. The initial error is computed by using the mean
Euclidean distance between the homologous points defined
by the experts in both modalities. The three samples (one
per expert) containing the ten error values (one per point)
are compared by using a Kruskal-Wallis test.

Target Registration Error. A leave-one-out procedure is used
to compute the TRE of each point (i.e., Euclidean distance
between homologous point after rigid transformation). First,
one of the ten homologous points is removed from the set of
points. The nine remaining homologous points are then used
to compute a rigid transformation in the least squares sense.
Finally, this rigid transformation is used to compute the TRE
of the initially removed point. This procedure is repeated for
all the ten points. The final TRE is the mean TRE over all
the points. For each patient, the expert-based TRE and the
TRE obtained with our method are compared by using a
nonparametric Kruskal-Wallis test.
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x-y plane

x-z plane

y-z plane

Figure 6: Patient 2. Left: registration given by the neuronavigation system. Right: results after correction with our registration approach.
The low intensities of US images are in green and the high in red. In this case, the acoustic shadow artifact was present on the US image. The
signal below the lesion was totally dark as shown in Figure 3. The proposed approach allowed to overcome these artifacts without specific
detection of the shadows.

A Posteriori Evaluation of the Residual Error

Point Picking. First, the patient images are registered using
several transformations. These transformations are (i) the
three expert-based transformations (T̃1, T̃2, T̃3), (ii) the

rigid transformation obtained with our method (T̂), and
(iii) the transformation computed using all the thirty points

defined by the three experts T̃all. The experts then define
ten homologous points on the registered volumes. This
procedure is performed for the five studied registrations on
the patient 2 dataset. The positions of the points are fixed for
all the experts.

Residual Error. As for initial error, the final error or residual
error is simply obtained by computing the mean Euclidean
distance between the homologous points defined by the
experts in both modalities. The statistical comparison of the
residual errors is performed on the five samples (one per
transformation) containing ten errors values (one per point)
with a Kruskal-Wallis test.

2.9.3. Robustness Study. First, the US and resliced MR images

of patient 2 are registered with the transformation T̃all.
Then, 100 rigid transformations are randomly generated
with a translation along each axis uniformly distributed
between 0 and 5 mm and with a rotation around each
axis uniformly distributed between 0 and 5 degrees. Finally,

each transformation is applied to the resliced MR image
before performing registrations with the proposed method.
The warping index ω [43] is used to compute the distance
between the estimated transformation by the registration

process T̂ and the true transformation T :

ω =
1

|Ω|

∑

X∈Ω

∥∥∥T−1(X)− T̂(X)
∥∥∥

2
, (7)

where ‖ · ‖2 is the L2-norm. The success rate is estimated
by considering a success as a registration with a warping
index inferior to 3.5 mm. This threshold has been chosen
close to the upper bound of the TRE estimated by the
experts (see distribution for patient 2 in Figure 9). Contrary
to TRE estimated over selected points, the warping index is
computed as the average error between the volumes over all
the voxels.

3. Results

3.1. Visual Assessment. The registration results are first dis-
played for visual assessment. The results obtained with our
method are presented in Figures 5, 6, and 7. For patient 1 (see
Figure 5), even if the lesion was not entirely included in the
US volume, the proposed registration procedure converged
efficiently. For patient 2 (see Figure 6), acoustic shadows are
present on the US image. The signal below the lesion tends
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Figure 7: Patient 3. Left: registration given by the neuronavigation system. Right: the result after correction with our registration approach.
The low intensities of US images are in green and the high in red.

to zero. The proposed approach overcomes these artifacts
without specific detection of the shadows. For patient 3 (see
Figure 7), despite the large size of the low-grade glioma and
the limited field of view, our approach performed well.

3.2. Validation by Experts

3.2.1. A Priori Estimation of the Registration. Table 1 presents
the estimated initial error for the three patients by the three
experts. The P value of the Kruskal-Wallis test showed that
there was no significant difference between the expert esti-
mations. Table 1 also shows the interindividual variability for
the same measure between the experts. Figure 8 summarizes
the distribution of the error.

The estimated initial errors are significantly higher than
values given in [6, 11] (<3 mm) or by the manufacturer
(<1.5 mm). It is important to note that the ultrasound
images used in our experiments were acquired in clinical
context during a neurosurgical operation. The real neuro-
surgery context is likely more difficult than phantom and
animal studies.

Table 2 shows the TRE estimated by each expert, for each
patient dataset. In all the cases, there were no statistically

significant differences between the TRE obtained with
expert-based estimations and the TRE obtained with our
method. Figure 9 shows the result of the Kruskal-Wallis
test. In all the cases, the experts and our method provided
consistent results.

3.2.2. A Posteriori Evaluation of the Residual Error. Table 3
shows the expert-based estimation of the a posteriori residual

error of the different registrations (manual-based T̃ and

automatic T̂) proposed for patient 2. The Kruskal-Wallis
test shows that the errors associated with the transforma-
tions (T̃1, T̃2, T̃3, T̃all) and T̂ are not significantly different.
Figure 10 shows the statistical distribution of the residual
error for each transformation compared. Finally, the experts
failed to detect significant differences between the manual-
based registrations and our automatic registration. The
residual error estimated by experts is around 1–1.5 mm for
all the transformations.

3.3. Robustness Study. Table 4 shows the robustness and the
warping index results obtained during the experiment. The
proposed method obtained 92% of success rate with a mean
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Figure 8: Initial errors (in mm) estimated by all experts for the each patient.
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Figure 9: Target Registration Error (in mm) estimated by all experts for the each patient dataset.
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Table 2: Target registration error in mm. The P values correspond to Kruskal-Wallis test performed between the TRE obtained by experts
and the TRE obtained with our method.

A priori estimation of the registration: target registration error in mm

Mean (std) Expert 1 Method P value Expert 2 Method P value Expert 3 Method P value

Patient 1 2.26 (1.54) 2.25 (0.48) 0.28 2.16 (0.58) 2.03 (0.53) 0.50 1.75 (0.54) 1.63 (0.58) 0.50

Patient 2 1.90 (1.14) 2.11 (0.86) 0.68 2.39 (0.92) 2.39 (0.50) 0.76 2.02 (0.72) 1.89 (0.84) 0.71

Patient 3 1.47 (1.28) 1.64 (0.59) 0.20 1.82 (0.73) 1.84 (0.42) 0.97 1.78 (0.76) 1.79 (0.64) 0.88

Table 3: A posteriori evaluation of the residual error in mm in patient 2 by all experts. Our automatic registration T̂ obtains no statistically
different result compared to transformations extracted from experts estimation.

A posteriori evaluation of the residual error in mm

Mean (std) T̃1 T̃2 T̃3 T̃all T̂ P value

Expert 1 0.90 (0.47) 0.90 (0.31) 1.14 (0.74) 0.82 (0.45) 0.90 (0.43) 0.88

Expert 2 1.36 (0.79) 1.54 (1.07) 1.48 (1.00) 1.61 (0.98) 1.24 (0.60) 0.95

Expert 3 1.21 (1.27) 1.43 (0.65) 1.13 (0.44) 1.04 (0.56) 1.08 (0.57) 0.58

Table 4: Robustness study. Results of the proposed method for
patient 2.

Success rate in % ω in mm (Mean (std))

92 2.38 (0.71)

warping index of 2.38 mm. This value is relative to the TRE
of the used gold standard. Thus, it gives information about
the distance between the transformation from all the experts

(T̃all) and the final transformation provided by our method.
This value is close to the TRE estimated for patient 2 in
Table 2. Figure 11 shows the distribution of the warping
index.

4. Discussion and Conclusion

This paper presents a new framework for the 3D rigid
registration of US and T1-w MR brain images. In order to
address this challenging problem, we propose an innovative
probabilistic objective function that maximizes the joint
probability of the (i) a priori most probable locations of
hyperechogenic structure in the preoperative MR image
and (ii) the highest intensities of the intraoperative US
images. We show that the proposed method enables a robust
registration of MR and US images in a computational
time compatible with clinical use. All our experiments were
carried out on real intraoperative data. The expert-based
quantitative study shows that our method produces no
statistically different registration compared to the a priori
estimation of the registration by the experts. Moreover, the a
posteriori estimation of the residual registration error shows
that the experts failed to detect differences between manual
registration and our automatic registration.

During our experiments, manual segmentation has been
used to build the probability map. This segmentation is
always available, since the neurosurgeon performed it before
the surgery. In this paper, the used segmentations were the
segmentations dedicated to the neurosurgery. However, the

segmentation of the lesion could be automated [44, 45], and
the different parts of pathologies (lesion, coagulated blood,
cyst, necrotic tissue, etc.) could be defined. Through this,
the simple model of homogeneous hyperechogenic lesion
used in our experiment could be improved by using different
hyperechogenic levels to the different pathological tissues.
To evaluate the robustness of our method to heterogeneous
lesion, more datasets are needed although this situation was
present in case of patient 1.

The proposed method is related to the segmentation
accuracy of the tumor in preoperative MR images. Although
the segmentation of the MR image is not considered as dif-
ficult, this step may introduce some errors. Our experiments
showed that the proposed method produced consistent
results with manual segmentation used in clinical routine.

The presented clinical datasets showed that our method is
robust to some discrepancies between the features present in
both US and MRI probability maps. Based on the correlation
of maps where only regions considered as relevant are used
to drive the registration procedure, our method is able to
deal with partially missing information resulting from a
limited field of view or acoustic shadows. In case of patient
1 (see Figures 2 and 5), only a subpart of the lesion was
visible in the reconstructed US image. In case of patient 2
(see Figures 3 and 6) the acoustic shadow below the lesion
reduced information around ventricle in US. Moreover, the
information derived from sulci was much more present in
MR maps than in US map. Finally, in case of patient 3 (see
Figures 4 and 7) the limited field of view and the large size
of glioma reduced the importance of sulcal information.
However, experiments using only the segmentation of the
lesion or only sulcal information derived from Mlvv operator
failed to provide satisfactory registration. This seems to
indicate that a certain amount of homologous features has
to be present in both probability maps to enable the method
working.

Finally, in our opinion, the proposed approach relies on a
similar and complementary idea to the vessel-based method
proposed by Reinertsen et al. [13, 14]. Indeed, in both cases,
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Figure 10: A posteriori residual error (in mm) estimated for all transformations by each expert.
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Figure 11: Distribution of the warping index in mm obtained with
our method.

an implicit segmentation of salient features in US images
(hyperechogenic structures in B-mode or vessels in Doppler)
is matched with corresponding structures detected in MR
images. Only the selected salient features differ between the
methods. In [13, 14], the method utilizes vessels extracted
from Doppler US images and their segmentation from MR
images. Therefore, both methods have the advantage of not
requiring segmentation of the US image and also being
robust to US artefacts. However, the extraction of the vessel
centerlines from MR images is a challenging problem and
requires extensive processing.

Our method is dedicated to brain US imaging since
MLvv operator is relevant for sulci and cerebral falx detec-
tion. As such, the application of the proposed framework to
another body part requires adaptation of the hyperechogenic
structure detection. Moreover, if T2-w MR image or another
sequence is used as preoperative MR image, the selected

values of the MLvv need to be adapted. Since the final aim
of this US/MR registration method is to compensate for the
brainshift, further works will investigate extension of our
probabilistic objective function to non-rigid deformations.
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