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Abstract

In urban environments the most interesting and effective

factors for localization and navigation are landmark build-

ings. This paper proposes a novel method to detect such

buildings that stand out, i.e. would be given the status of

‘landmark’. The method works in a fully unsupervised way,

i.e. it can be applied to different cities without requiring an-

notation. First, salient points are detected, based on the

analysis of their features as well as those found in their

spatial neighborhood. Second, learning refines the points

by finding connected landmark components and training a

classifier to distinguish these from common building com-

ponents. Third, landmark components are aggregated into

complete landmark buildings. Experiments on city-scale

point clouds show the viability and efficiency of our ap-

proach on various tasks.

1. Introduction

Across-the-board visualization of urban data is not nec-

essarily the best way to aid people navigating, be it as 2D

maps or 3D models [34]. Indeed, in order to maximally as-

sist people, alternative visualizations may be preferable. A

good example are tourist maps, which may not be metrically

correct, but include the visually salient parts, like landmark

buildings that stand out. One could consider them a mix of

2D and 3D visualizations.

Buildings are the single most interesting and representa-

tive objects in a city. They are often linked to pivotal mo-

ments in history or are just stunning to look at. What makes

a building a landmark is not so well-defined though in gen-

eral. [22] define landmark buildings as ‘uniquely memo-

rable in the context of the surrounding environment’. On

top of visual aspects such as unique structural design, level

of decoration, or monumentality (visual), a landmark can

also derive from historical or societal connotations (cogni-

tive), or simply from an exquisite location (structural) [40].

Only a few papers have appeared that ease the produc-

tion of such maps. Grabler et al. [22] produce tourist maps

Figure 1. Chart for landmark buildings – what makes a building

a landmark? Using our our landmarkness measure, we can find a

distinction between buildings. The majority of (ordinary) build-

ings are grouped together (high density circles on left), and the

landmarks stand apart.

automatically, based on a wide gamut of criteria. Land-

mark buildings are suggested by tourist websites, and are

then graded on the basis of multiple characteristics, includ-

ing color, location, but also shape. The shape features are

rather straightforward though, including not filling a rect-

angular box well or exhibiting irregular triangular meshes.

We contribute a method that looks for 3D shapes that stand

out, based on the local context. Indeed, however special a

building may be, if there are many similar buildings around,

it may lack all those features and become the salient one.

A second strand of related work consists of methods to

detect interest points and features in 3D models to be able to

identify important 3D parts. The work of Shtrom et al. [38]

in this area defines a local saliency to identify areas in 3D

point clouds which may be useful. This approach deter-

mines unique parts however not at the scale of buildings

and results in local responses.

We propose a method to analyze the 3D models of build-

ings and to rank them in terms of how special their structure

is. First, our method takes such contextual influences into

account evaluating across an entire city. Second, our ap-

proach aims at automatically discovering such salient build-
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ings, instead of depending on websites listing them. Hence,

our method also works for smaller towns for which the web-

sites needed by [22] cannot be found.

Admittedly, this will not capture all buildings regarded

as landmarks, but nonetheless captures most of those land-

marks that an average tourist would like to see due to their

special structure.

In the context of this paper, ‘special’ is defined in terms

of high similarity yet global rarity. We give a high score for

similar points that only occur within a local neighborhood

(low scatter) and a low score to those that occur at a large

distance (high scatter). For this we propose a novel saliency

measure for localized component extraction, a discrimina-

tive learning designed to localize additional components in

a city, and finally a scheme for building-wise aggregation.

In Fig. 1 we give a preview of our chart which separates

buildings extracted from a city point cloud into landmarks

and ordinary buildings.

To the best of our knowledge we are the first to look at

3D structural patterns of 3D buildings and at the scale of an

entire city. Our results show a clear benefit of our proposed

method over more directly related work in the field of point

cloud analysis. This paves the way for navigating around

the interesting landmarks [34, 41] as well as fully automatic

visual tourist map generation [22].

2. Related Work

Since this work touches various fields, we highlight the

closest topics, i.e. finding discriminative unique elements in

a given dataset. The literature here is related to methods for

detecting outliers and mining discriminative patches. In the

following we highlight the cornerstones of each field.

2.1. Outlier Detection

Outlier detection methods try to find statistically those

elements which stand apart. Datta and Wand [11] propose a

familiarity feature as the average distance of a test image to

the k-closest training images. The higher this distance, the

less familiar (more novel) is an image.

Zhong et al. [43] train a model from frequent observa-

tions and simply label resultant outliers as special. In this

vein, the Local Outlier Factor method proposed by Bre-

unig et al. [8] uses a neighborhood and computes the degree

of an outlier.

Saliency detection is a mature field itself and elaborate

surveys such as [5, 16, 24] cover more than 250 different

methods. The definition of saliency however is not so clear

and varies across papers. In general, the saliency of a data

point within a large set of other data points is defined as

to what makes that point unique and discriminant w.r.t. its

surrounding context.

Among the top 2D approaches is Hou et al. [23] who

analyze 2D images in a residual spectral domain, which is

difficult to adopt for 3D point clouds.

Other methods use the rarity of a feature [17] which uses

the unpredictablility of local attributes like color and ori-

entation to compute the entropy of local patches. Pop-out

features [19, 20] try to maximize the response of a given

salient patch w.r.t. the background – and in [12] also via

neural nets.

Recently, deep learning is employed to more effectively

learn the mapping of visual features to a saliency score [27].

However this requires massive amounts of training data for

per-eye fixation data, whereas we work in a completely un-

supervised manner.

Other recent methods also include depth information into

the saliency extraction (RGB+D). Desingh et al. [13, 25]

show that depth is a useful key for saliency detection by

computing a local saliency descriptor based on the distribu-

tion of normals in a segmented depth image.

3D keypoint detectors evaluate saliency over the entire

spatial context and then select salient locations for later de-

scription. Salti et al. [37] provide an overview to evalu-

ate the compatibility of these detectors and descriptions.

For example, [29] detect salient features on point clouds

by comparing the differences of a point’s normal within

its neighborhood on different scale levels (with the goal of

point cloud alignment). The main limitation is the purely

local detection, without taking account of the wider context.

In the domain of methods that work on 3D data, most

similar to ours are the works of Akman and Jonker [1] on

small scenes and Shtrom et al. [38] on a medium-scale city

block. The latter defines a low-level and high-level dis-

tinctiveness that operates on two fixed scales and are fi-

nally linearly aggregated. By common definition a point is

considered to be salient if has a different appearance from

the points close by. We, however, suggest defining a point

salient if it looks similar to its local neighborhood, and the

appearance of this local neighborhood is not found in other

parts of the point cloud. This approach leads to identifying

larger salient components and is significantly more robust

to outliers, compared to [38].

2.2. Discriminative Mining

Another approach for finding unique parts is viewing this

task as an unsupervised discriminative mining or a cluster-

ing (i.e. reduction of the data points) problem.

Generally, standard clustering algorithms like K-means,

affinity propagation [18], etc. can be used, however they

suffer from the frequency curse. That is, very frequent data

points dominate over less frequent ones, hence important

rare discriminative points may be missed.

Discriminative clustering approaches like [10, 9] start

by sampling random data points and training discriminative

prototypes. These prototypes are used in ensemble classi-

fications to determine the feature proximity between data
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points and hence cluster them more effectively. In a sim-

ilar fashion, [21] partition entire images, resulting in suit-

able discriminative classifiers. A suitable classifier has the

properties of class separation, class balance and appropriate

classifier complexity. Related is also [28], who use cur-

riculum learning [3] for unsupervised object discovery by

starting with the easiest clusters and gradually increasing

the complexity of clusters.

As a different approach, discriminative mining starts by

a few data samples and iteratively refines these. Typi-

cally initial clustering of data [42] is followed by learn-

ing a discriminative classifier for each cluster. Based on

the discriminatively-learned similarity, new cluster mem-

berships can be computed by reassigning data points to each

cluster. This idea inspired our work and we formulate the

memberships as actual physical parts of landmark compo-

nents and buildings. However, it will not work for our prob-

lem as landmark points occur very infrequently compared to

non-discriminative components, and second it is infeasible

to cluster a city-scale dataset.

In [15, 39], one can see examples for such discriminative

mining to identify patches which are repeating enough to be

useful but not too frequent to still be discriminative. They

use a compact linear classifier and careful cross-validation

to filter out non-discriminative patches and to avoid overfit-

ting. In [14] the idea was further refined as a discriminative

mode seeking. They discover visually coherent clusters that

are maximally discriminative given weak labels.

In our problem scenario we start completely unsuper-

vised and determine distinctive clusters by their initial

saliency which we refine by learning. In summary, our

method has the following contributions and benefits:

• first work on landmark building identification;

• saliency in city-scale 3D point cloud data;

• novel saliency-seeking discriminative neighbors;

• iterative refinement of the feature/spatial neighbors;

• completely unsupervised; without manual labeled

data;

• scale and context independent, unsupervised, hence

general for cities;

• experiments on noisy image-based 3D reconstruction

and LIDAR data.

3. Our Approach for Landmark Identification

The goal of our method is to find an unsupervised city-

independent landmarkness score. For this we first define a

score for each 3D point – based on its uniqueness. Second,

we refine this landmark score by discriminative learning

Figure 2. Context-dependency of the notion of landmark, illus-

trated with our distinctiveness measure for landmarks (red points).

Left: almost all unique points belong to the tree since houses are

common. Right: the majority of unique features belong to the

house as trees are common.

across neighborhoods. Finally, we aggregate the individual

3D points into complete and coherent buildings. Only for

this we exploit OpenStreetMap and extract building foot-

prints to collect scores from all 3D points within a building.

Overall, the notion of landmark is dependent on the con-

text. For architecture, it is the particular city that determines

whether an object is a landmark or not. For example, a

building having a facade-wide balcony with wrought iron

railing cannot be considered a landmark in Paris, since it

occurs frequently grace to the Haussmannian renovations.

On the other hand, such a balcony would make the building

distinctive in Manhattan. A toy example is shown in Fig. 2.

In a village with many houses and only a single tree, the tree

is special. Whereas a single house in a forest lets the house,

not the trees, stand out.

Moreover, most landmark buildings can be identified as

landmark due to their unique local features such as special

iron railing, ornamentation, windows, ledges, or tower-tops.

Exploiting this, we detect unique local features, then ag-

gregate them to find landmark components (such as roofs,

walls, towers) and, ultimately, to landmark buildings.

Hence, we define our terminology as follows. A land-

mark building consists of landmark components. A land-

mark component comprises distinctive landmark points

(salient points, more generally), each characterized by a de-

scriptor of its local neighborhood.

Our method consists of four major steps, as shown in

Fig. 3. First, we use a novel measure for distinctiveness

(i.e. how likely is a point to be a landmark point; we also call

it ‘Kobyshev score’). Second, we update the spatial neigh-

borhoods to find landmark components. Third, we refine

the measure discriminatively to highlight landmark points

by updating the feature neighborhoods. Finally, we propose

various ways of aggregation of the Kobyshev point scores

into a consistent building score.

3.1. Distinctiveness Measure for Landmarks

In this section, we introduce a simple yet powerful mea-

sure of distinctiveness. Later in Section 4 we will demon-

strate its benefits over existing saliency measures in the task

of landmark identification.

Our intuition is that landmark points are rare unique

points, which are locally similar, yet do not occur every-
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Figure 3. Our pipeline (shown on one object extracted from the city-scale point cloud). Left to right: Input, landmark score L, components

C, refined landmark score L
∗, building aggregation. The color changes from black (low) to white (high score).

where across the context. For example, descriptors of points

on a landmark tower are locally similar, yet are different

from descriptors of other points in the 3D city model.

Let P = {pi}
N
i=1 denote a set of 3D points pi = (pi, fi),

each characterized by a position pi in 3D space E = R
3

and a feature vector (a.k.a. descriptor) fi in feature space

F = R
m describing the local geometry around location pi.

We use FPFH [36] for a descriptor, but the method is generic

enough to accommodate other 3D point feature descriptors.

For every point pi we define:

• feature neighborhood N F(fi), or N F

i in shorthand: the

set of indices j1, j2, . . . , jK of K points with the clos-

est feature descriptors fj1 , fj2 , . . . , fjK (by Euclidean

distance) to the descriptor fi of the i-th point;

• spatially close points: out of points from feature neigh-

borhood N F(fi), the set pj1 , pj2 , . . . , pjK of points

that are spatially close to the query point pi. The

spatial proximity is defined by the proximity measure

w(pi, pj), as discussed later (see Eq. 1);

• average feature distance: for the points within the fea-

ture neighborhood N F(fi), mean of the Euclidean dis-

tances from the descriptor fi to each of the descriptors

in its feature neighborhood {fj2 , . . . , fjK};

• average spatial distance: for the points within the

feature neighborhood N F(fi), mean of the Euclidean

distances from pi to each of the points in the set

{pj1 ,pj2 , . . . ,pjK} and those of the query point.

To introduce the Kobyshev score, we consider an exam-

ple of a building shown in Fig. 4. We have computed the

above-mentioned neighborhoods and distances on a larger

dataset, and have cropped out one building to demonstrate

the distribution of point properties.

In the figure, for every point of the considered building

we compute the average feature and spatial distances and

plot them against each other. The distribution is star-shaped

and has three characteristic areas:

Landmark points (red in the figure): these points have

sufficiently similar feature descriptors in their feature neigh-

borhood. Additionally, the points from their feature neigh-

borhood are also spatially close (can be inferred from the

Figure 4. Distinctiveness within feature and spatial neighborhood.

Left: a distribution of the average spatial distance vs. the average

feature distance of the K nearest neighbors. The color maps red

to landmark points (similar and local), green to ubiquitous points

like walls (similar but everywhere) and blue to noise (different and

wide spread). Middle: our measure L reweighs the distribution

where the landmark points are all clearly separated on the right

side. Right: a landmark, where the red towers and roof structures

stand out against the green walls and blue outlier edges.

low average spatial distance). We consider these points to

be landmark points as they form a set of similarly looking

points that don’t occur in the other parts of the point cloud

(otherwise, the feature neighborhood will contain points

from other parts of the cloud resulting in the increase of

the average feature distance).

Ubiquitous points (green in the figure): for each point

of this category, in the K-neighborhood of the feature de-

scriptors, points are very close to the query point (resulting

in a low average feature distance score). However, the aver-

age spatial distance is high because the points are spread all

around the point cloud. This is a common case for repeat-

ing patterns, such as walls or roofs that are wide-spread all

around the data.

Noise (blue in the figure): these are points who within

their k-nn feature neighborhood have many points whose

feature descriptors are dissimilar (which leads to larger av-

erage feature distance). Although the fact that the point has

a distinctive neighborhood can make it special (as it is as-

sumed, for example, in [38]), in case of considerably noisy

datasets this is a characteristic of a single noise point.

Having identified the properties of the landmark points

on the 2D chart, we aim to find a scalar measure that de-

scribes how likely is a point to be on a landmark component.

To do so, we use the concept of spatially close points de-

fined above. We introduce the proximity measure between

any two points pi and pj using Gaussian weights vanishing
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with distance:

w(pi, pj) = exp

{

−
||pi − pj ||

2

σ2

}

(1)

where the parameter σ encodes our concept of locality. It

reflects the expected size of a landmark component. This

weighting gives scores close to 1 for points that are spa-

tially close to the query point, dropping to 0 if the point is

significantly far away. Such a transformation is more robust

to the points that are far away from the query point: if the

point is not within the expected landmark component size

defined by σ, it gets a score close to 0.

We now can define the Kobyshev score of point pi by av-

eraging the point’s proximity measures to its feature neigh-

borhood. More formally,

L(pi,N
F

i ) =
∑

j∈N F

i

w(pi, pj)

|N F

i |
∈ [0, 1], (2)

where the cardinality of N F

i is |N F

i | = K (nearest

neighbors), ∀i. Since Eq. (2) averages the spatial distance

weights of points with feature vectors similar to that of point

pi, the more such points lie close to pi the higher the score.

The value of L(pi,N
F

i ) depends only on points from the

feature neighborhood that are spatially close to the query

point (other points will contribute with a result close to 0).

That makes the scores of noisy or ubiquitous points equally

low, while keeping the score for landmark points high. This

can be seen in Fig. 4. We color-code the distribution on

the left-most plot, and then change the x-axis to L(pi,N
F

i ),
as demonstrated in the middle plot. One can infer that the

points can be separated just by looking at the L(pi,N
F

i ).
From now, L(pi,N

F

i ) is a landmarkness score per point.

Our measure in Eq. (2) has the following interesting

properties. First, it gives a high score for similar points (in

F) that only occur within a local neighborhood (low scatter)

and a low score to those that occur at a large distance (high

scatter). Second, unlike with ball search in F, it allows us

to choose a large enough neighborhood K to achieve a uni-

form statistical significance for the averaging.

The closest work [38] measures low-level distinctness by

averaging a ratio of the distance in feature space F and the

distance in 3D space E over all pairs of points in a small

ball-neighborhood retrieved in F. Our distinctiveness mea-

sure differs in many ways, since a) we count the similar

points leading to more robustness w.r.t. minor differences

in similar descriptors and b) the introduction of the notion

of scale σ defines a local spatial neighborhood for similar

points. Further, we additionally introduce c) a specific no-

tion of spatial context, d) our final saliency is result of a

discriminative learning procedure, e) works on city-scale

datasets. As it will be shown in Sec. 4, our approach im-

proves significantly over the measures of [38] in the task of

landmark building identification.

3.2. Unsupervised Discriminative Refinement

In this section we show how to refine the initial distinc-

tiveness measure by unsupervised discriminative learning,

which does not require manual annotations.

First, we identify landmark components, i.e. parts of a

landmark building which have a high distinctiveness score.

Second, these landmark components are then discrimina-

tively learned to refine their distinctiveness. Both stages are

completely unsupervised. No ground truth training data is

needed – making our method generic for other types of data.

3.2.1 Landmark Component Identification

In this section, we aim to identify coherent, local compo-

nents of groups of points covering a distinctive architectural

component, such as a special tower or roof, i.e. a distinctive

part of a landmark building. These groups of points are used

as training examples to learn how the landmark components

look like.

First, we evaluate the distinctiveness of every point in

the dataset via Eq. (2). Next, we propose an optimization

to identify points that belong to landmark components. We

formulate it as a binary segmentation which assigns binary

labels xi ∈ {0, 1} to points pi ∈ Pi, where xi = 1 indi-

cates a landmark point. We denote by G = (V, E) the K-

NN graph over spatial locations pi of the point set, where

V is the set of vertices and E the set of edges in G. Our

segmentation is driven by the energy

E(x,P) =
N
∑

i=1

Θ(pi, xi) + β
∑

(xi,xj)E

Ψ(pi, pj , xi, xj),

(3)

where x = (x1, . . . , xN ) is a complete labeling over the

point cloud P , β is a balance between the unary Θ(pi, xi)
and the pairwise term Ψ(pi, pj , xi, xj), the latter being de-

fined for any pair of points (pi, pj) ∈ E .

The unary cost Θ(xi) encodes the likelihood of point pi
to be a landmark point, irrespective of the labels xj in its

neighborhood in 3D space E. The initial unary is composed

as

Θ(pi, xi) =

{

Γ(pi), xi = 1

1− Γ(pi), xi = 0
, (4)

where

Γ(pi) = 1/(1 + exp{−γ(L(pi) + t)}), (5)

where t is a soft threshold for our measure L in Eq. (2).

The pairwise cost is the weighted Potts-penalty

Ψ(pi, pj , xi, xj) =

{

0, xi = xj

e−||pi−pj ||
2/(2σ2

s), xi �= xj

, (6)
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which enforces spatial smoothness of the labeling solution

x. The penalty vanishes with distance between the two

points, and the parameter σs controls its rate.

We can solve for the global optimum efficiently via

graph cuts [6]. As a result, we obtain spatially coherent

groups of points marked as landmark points.

Next, we consider the subgraph Gl ⊂ G that only con-

tains nodes pi labeled as landmark and edges between these,

and perform a connected component search to identify land-

mark components, denoted by Ck (k = 1, 2 . . . C). These

components are used for refining our feature neighborhood,

hence, our distinctiveness measure for landmarks.

3.2.2 Refinement of Feature Neighborhood

Since the original distance measure is distinctive yet not

necessarily discriminative, we learn a component-specific

distance measure by leveraging the segmented components

as training data for a discriminative classifier. Our goal is

to reinforce and extend the detected landmark components

by updating the neighborhoods N F(fi) in feature space F

and further boosting the distinctiveness parts. For this pur-

pose, we make use of discriminative learning to optimize

the weighting in function of distance between descriptor

pairs. We employ a random forest classifier [2, 7] to learn

how each landmark component Ck looks like.

For each component Ck (k = 1, 2 . . . C), we consider the

feature descriptors of all points assigned to Ck as positive

samples, and the descriptors of all other points in the dataset

as negative examples to train our classifiers.

Then, we run a binary classification which results in a

C ×N matrix P, where C is the number of landmark com-

ponents, and N the number of points. Matrix P contains

the prediction for any of the points pi belonging to any com-

ponent Ck. Note that one could train a multi-classification

classifier, however, this would increase the memory foot-

print significantly.

After these predictions are obtained, we update the ini-

tial sets of points having similar descriptors N F(fi) orig-

inally obtained by K-NN search in feature space F. For

every point, we consider the classifier that has given it the

highest prediction score, and take the indices of its best K
predictions as the indices of the nearest neighbors. This

way we form the new set of most similar points N ∗F
i for

each point pi. These new sets yield a new distinctiveness

measure based on Eq. (2). Namely, our updated measure is

L∗(pi,N
∗F
i ) =

∑

j∈N∗F

i

w(pi, pj)

|N ∗F
i |

∈ [0, 1], (7)

Finally, all points in the dataset are evaluated against this

updated distinctiveness measure.

Figure 5. Point-wise scores (left to right, top to bottom): Dlow,

Dhigh, Daggr from [38], curvature, L, refined L
∗. Each method de-

livers a different result: [38] detects local edges, curvature redun-

dantly finds shape changes, whereas our method identifies only

unique landmark components.

4. Experiments

We demonstrate the effectiveness of our method in find-

ing landmark components and entire buildings which are

groups of points consistently identified as interesting, dis-

tinctive, and discriminative. We show results for compar-

ison with baselines and over novel building-wise results

which enabled example applications like tourist navigation,

landmark comparison and level-of-detail rendering.

As the method is designed for large-scale point clouds,

we run it on city-scale point cloud datasets, however, it is

generic to work on any 3D point cloud. To the best of our

knowledge, we are the first to provide such city-wide results

on 3D point clouds.

The types of datasets for these experiments are (1) an

image-based multi-view stereo (MVS) reconstruction on

aerial images which effectively results in a 3D point cloud

(Zurich-MVS, 1.2 km2, 81M points), (2) two image-based

aerial 3D reconstructions which effectively are a 2.5 DSM

(Digital Surface Model) image converted into a 3D point

cloud (Toronto-DSM and Vaihingen-DSM, the latter has

uneven point density), and (3) an airborne LIDAR scan,

which also is a 3D point cloud (Amsterdam-LIDAR). Please

see supplemental material for detailed images. For the pur-
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Figure 6. Landmark-visiting tour on the Zurich-MVS dataset (left to right): relative building-wise scores by our method; route planned for

scores aggregated from scores of [38], curvature scores, our method’s scores; a professional city tour plan.

Figure 7. Interactive 3D tourist maps (left to right): buildings

thresholded by 90-, 75-, 50-percentile of landmarkness value on

a 3D map - giving a view of the most important landmarks.

pose of context processing, the 3D models are split into

50x50m tiles.

We discuss the major parameters of our method (and pro-

vide additional experiments on the parameters, scale and

context in supplemental material), and show comparisons

to closest related work and for landmark building identifi-

cation, as well as the novel 2D building chart.

4.1. Implementation details and runtime

Each point’s local geometry is described as a histogram

of normals by Fast Point Feature Histogram (FPFH) [36].

We have experimented with various support radii for the de-

scriptor and the radius of 3 meters performed best.

We have evaluated the runtime of the method on an 8-

core machine with a 3.50 GHz CPU. Calculating the FPFH

descriptors takes around 17 minutes for an area of 400m2

(64 tiles of 50m2) with 8.3M points. The current bottleneck

is the search for nearest neighbors on FPFH. For 50 nearest

neighbors it takes about 45 minutes. Training a classifier on

a single core for one component takes around 1 minute, but

the process can be parallelized on multiple machines. The

rest of the pipeline takes 7 seconds to compute. That results

in a processing time of less than one second per cubic meter.

Landmark components are segmented to identify salient

building parts and to provide training data for the refinement

learning. The initial segmentation is based on using Eq. (3),

which uses the initial landmarkness score L. In a study, we

found that t=0.3 and γ=0.1 provide the best overall perfor-

mance (see supplemental materials for more details). Once

the landmark components are segmented, we can refine L to

obtain L∗ by training a discriminative classifier. The values

of L∗ are shown in Fig. 5 (bottom right) and 8 (right pic-

tures in image pairs). It can be seen that our discriminative

L∗ has much lower values on non-landmark points, while

strengthening the high values on the points that belong to

landmark components.

4.2. Point-wise landmark identification

Since our point-wise scoring resembles the notion of

saliency, we compare to the closest measures [38] which

provide a way to score individual points. We further com-

pare to standard curvature estimation, which is not saliency

but a local notion of local change of shape. However, please

note that our landmark score is aimed at quite a different

purpose than point-wise saliency, i. e. finding unique and

interesting landmark component and buildings.

We show the results of our method and the baselines in

Fig. 5. The Dlow score from [38] indicates the points that are

unique in a very local spatial neighborhood, resulting in ev-

ery edge being highlighted. Dhigh from [38] considers how

different the point is from the spatially far points. That re-

sults in the highest scores given to outliers and lower scores

spread around the entire point cloud.

In contrast, our L scoring gives the highest values to the

parts of the point clouds that are globally distinctive com-

ponents, such as the tower top or unusual roofs. The results

of L on a whole city tile are shown in Fig. 8 (top left).

Our measure best identifies landmark components and

buildings. The related methods either focus on very small

elements like corners and cannot identify landmark compo-

nents, or (e.g the curvature) can identify landmark compo-

nents yet has no notion of distinctiveness and redundantly

produces the same components across the entire city. See

suppl. material in Fig. 8, 9, and 10 for further comparisons.

4.3. Building-wise landmark identification

Here the goal is to identify how likely a buildings is to be

a landmark building, which is interesting due to its unusual

geometry and rare appearance elsewhere in the city-scale

3D point cloud.

Each city is unique in its landmarkness patterns and

also what type of buildings are considered distinctive. In

Fig. 8 we show an overview of the results for the 4 differ-

ent datasets. For instance, in Zurich-MVS mainly different

shapes of churches, in Toronto-DMS the remarkable town
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Figure 8. This shows the initial L (top) and refined L
∗ (bottom) for the four datasets (Z-MVS, T-DMS, V-DMS, A-LIDAR). The context

is calculated over 400m giving a good overview of strong landmark buildings.

hall and buildings with special roof structures, in Vaihingen-

DMS the vineyard structures (that are cleaned up after iter-

ative updates) and the house on the hill, and in Amsterdam-

LIDAR the train station and the Oude church are identified.

Given a point to building assignment, one can aggre-

gate the individual point or component scores into building

scores. For the aggregation we took the 95-th percentile of

landmarkness scores in every building as a robust score.

As an example for navigation we show an automatic

tourist path and a 3D rendering of the most interesting build-

ings for the Zurich-MVS dataset. In Fig. 6 (left) the ag-

gregated scores for buildings in Zurich-MVS using Open-

StreetMaps castrate outlines. Further, we generate tourist

tours along the most interesting buildings, as shown in

Fig. 6 (middle). We formulate the tour optimization prob-

lem as gaining as much landmarkness score during the walk

that is limited by its distance (1.8km). If the building is al-

ready visited, its landmarkness is set to zero. We tackle it

as a branch-and-bound search problem and can generate the

route in less than 30 seconds. Fig. 6 also contains the tourist

tour based on various baselines, e.g. Daggr [38], curvature

and our tourist tour. Fig. 6 (right) shows an example of

a professional tourist city tour. The two baselines identify

mostly local structures and hence collect more redundant

local areas, which leads to shorter tourist tours in the same

already. Our method due to its global context search is able

to identify special landmarks more effectively. Our tourist

path is the most similar to the professional city tour.

Finally, in Fig. 7 we also render a 3D map with buildings

with the highest landmarkness score at various thresholds.

We further show how the landmark scoring for iden-

tifying buildings can be used to create a novel 2D chart

for buildings, tourist navigation around the most interest-

ing landmarks, and a benefit for point cloud registration. In

Fig. 1 we show our novel 2D chart for buildings which sep-

arates the landmark buildings from common buildings. To

aggregate the buildings into the chart, we compute pairwise

building-to-building distance by comparing the histograms

of L∗ values per building, binned into 10 intervals. Then,

we use multidimensional scaling to represent the buildings

in two dimensions. It shows a good distinction between

standard and landmark buildings.

5. Conclusions

In this work we proposed a new method for finding of

landmark buildings in large, city-scale 3D point sets. Our

method identifies components of landmarks (e.g. towers)

that locally stand out and help to identify landmark build-

ings. To that end we introduced a novel saliency distance

that outperforms measures with similar goals from related

work significantly. This is confirmed by our results in terms

of qualitative point clouds, building-wise aggregation, 2D

building comparison charts as well as applied to tourist

city tours and interactive 3D city maps based on context

of landmarkness. This is the first work to automatically

generate a selection of landmark buildings in a city-scale.

In future work we plan to incorporate more visual and se-

mantic cues from street-side images [35, 32], reason about

other types and decomposition of landmarks [26, 4, 31], and

compare further manual tourist guides and guidance sys-

tems [30, 33].
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