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Abstract

A distance volume is a volume dataset where the value
stored at each voxel is the shortest distance to the sur-
face of the object being represented by the volume.
Distance volumes are a useful representation in a num-
ber of computer graphics applications. In this paper we
present a technique for generating a distance volume
with sub-voxel accuracy from one type of geometric
model, a Constructive Solid Geometry (CSG) model
consisting of superellipsoid primitives. The distance
volume is generated in a two step process. The first
step calculates the shortest distance to the CSG model
at a set of points within a narrow band around the eval-
uated surface. Additionally, a second set of points,
labeled the zero set, which lies on the CSG model’s
surface are computed. A point in the zero set is as-
sociated with each point in the narrow band. Once
the narrow band and zero set are calculated, a Fast
Marching Method is employed to propagate the short-
est distance and closest point information out to the
remaining voxels in the volume. Our technique has
been used to scan convert a number of CSG models,
producing distance volumes which have been utilized
in a variety of computer graphics applications, e.g.
CSG surface evaluation, offset surface generation, and
3-D model morphing.

1 Introduction

Volume graphics is a growing field which generally involves repre-
senting three dimensional objects as a rectilinear 3-D grid of scalar
values, a volume dataset. Given this kind of representation nu-
merous algorithms have been developed to process, manipulate and
render volumes. Volume datasets may be generated in a variety
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of ways. Certain scanning devices, e.g. MRI and CT, generate a
rectilinear grid of scalar values directly from their scanning process.
The scalar values can represent the concentration of water or the
density of matter at each grid point (voxel). Additionally, volume
datasets can be generated from conventional geometric models, us-
ing a process called 3-D scan conversion.

When 3-D scan converting a geometric model to a volumetric
representation it is not always clear what value should be stored
at each voxel of the volume, and what that value should represent.
Here, we propose the use of distance volumes. A distance volume
is a volume dataset where the value stored at each voxel is the
shortest distance to the surface of the object being represented by
the volume. If the object is closed, a signed distance may be stored
to provide additional inside-outside information. We store negative
values inside the object and positive distances outside. In this paper
we will show how to generate a distance volume with sub-voxel
accuracy from one type of geometric model, a Constructive Solid
Geometry (CSG) model, and we will also show that this type of
volume representation is useful in a number of computer graphics
applications, namely CSG surface evaluation, offset surface gener-
ation, and 3-D model morphing.

Constructive Solid Geometry (CSG) modeling is a well-devel-
oped technique that combines simple solid primitives using spatial
boolean operations to produce complex three dimensional objects
[15]. Some of the most commonly used primitives in CSG model-
ing are quadrics, superquadrics [1], and closed polygonal objects.
These primitives can be added, subtracted, or intersected with each
other to create a variety of solid geometric models. The structure
that is used to represent a CSG model is ordinarily a binary tree.
The leaf nodes of the tree contain solid primitives, superellipsoids
in our case. A boolean operation is associated with each non-leaf
node and a transformation matrix is associated with each arc of the
tree. The CSG binary tree may also be derived from a directed
acyclic graph.

While Constructive Solid Geometry is a powerful modeling
paradigm, unfortunately its modeling representation cannot be di-
rectly displayed on today’s graphics workstations. Additionally, it
is a representation not suitable for many other types of modeling
operations. Frequently the CSG tree or graph must first be evaluated
and converted into a polygonal surface before it can be interactively
displayed, processed or manipulated. We have found that first scan
converting the CSG model into a distance volume allows us to per-
form several types of graphics operations on the model. Applying
the Marching Cubes algorithm [12] to the distance volume and ex-
tracting the iso-surface at value zero produces a polygonal surface
which approximates the evaluated CSG model. Extracting an iso-
surface at a value other than zero produces offset surfaces to the
CSG model. The distance volume may also be used to perform 3-D



model morphing. A deformable implicit model can utilize the dis-
tance� information to change from one shape into another [21]. The
derivative of the distance volume describes a field which effectively
points in the direction of the embedded object’s surface. Given an
initial object and the distance volume representing a second object,
forces are applied on each point of the initial model which push it
towards the second object.

A distance volume is generated in a two step process. The first
step calculates the shortest distance to the CSG model at a set of
points within a narrow band around the evaluated surface. Addi-
tionally, a second set of points lying on the CSG model’s surface,
labeled the zero set, are computed. A point in the zero set is associ-
ated with each point in the narrow band. The narrow band and zero
set are calculated with a modified version of the Constructive Cubes
algorithm [3]. Once the narrow band and zero set are calculated,
a Fast Marching Method similar to Sethian’s [17], is employed to
propagate the shortest distance and closest point information out
to the remaining voxels in the volume. Sethian’s approach has
been used in the past to numerically solve partial differential equa-
tions, but we have modified it to use a heuristic rule for propagating
closest point information instead of calculating distance with a fi-
nite difference scheme. The accuracy of our method depends on
a discretization of the surface (resolution of the zero set) and is
independent of the volume grid spacing. We therefore are able to
calculate shortest distance at resolutions greater than the resolution
of the final distance volume.

The original Constructive Cubes algorithm was developed to
produce a polygonal approximation to a CSG model’s surface. This
is accomplished by first converting the CSG model into a volumetric
representation, where the value stored at each voxel is a combination
of the value of the inside-outside function for each of the model’s
primitives (superellipsoids) evaluated at the �����	�
����
 location of the
voxel. The inside-outside function of a superellipsoid is a non-
linear function of �������
����
 , and is defined to be one on the surface
of the primitive, less than one and greater than zero inside, and
greater than one outside. The modifications made to the Construc-
tive Cubes algorithm were designed to produce the initial closest
point information near the CSG model’s surface needed for the Fast
Marching Method, which then calculates the shortest distance at the
voxels away from the CSG model.

The first modification involves calculating the closest point to
a single superellipsoid primitive. In general this is accomplished
with an iterative minimization scheme. Given the closest points to
separate geometric primitives (and therefore the shortest distances),
a new set of combinations rules are applied to merge the distance
values of the individual primitives to produce the closest point and
shortest distance to the entire CSG model. Unfortunately, there
are small regions near the CSG model where the combination rules
generate invalid results, calculating a closest point which does not
lie on the evaluated surface. These cases, which occur less than
1 percent of the time, can be easily detected and discarded by
evaluating the closest points with the original Constructive Cubes
algorithm.

The remainder of the paper first presents related work in 3-
D scan conversion. The paper then details the steps required to
produce a distance volume: generating the narrow band of points
near the CSG model surface and zero set on the surface, followed by
the propagation of the closest point information into the remaining
voxels of the volume with the Fast Marching Method. The final
section presents the results of our 3-D scan conversion method
within three applications: CSG surface evaluation, offset surface
generation, and 3-D model morphing.

2 Previous Work

3-D scan conversion takes a 3-D geometric model, a surface in
3-D or a solid model, and converts it into a 3-D volume data set
[4, 9, 10, 11, 18], where voxels that contain the original surface or
solid have a value of one. The remaining voxels have a value of zero.
Using the volume-sampling methods of Wang and Kaufman [20]
aliasing artifacts may be significantly reduced. These methods pro-
duce voxels with values between zero and one, where non-integer
values represent voxels partially occupied by the original object.
Scan converted primitives may then be rendered, or combined us-
ing CSG operations [7] with other scan converted primitives or
acquired volume datasets. Payne and Toga [13] present a method
for calculating distance volumes from a polygonal model. They use
the distance volumes to perform a variety of surface manipulation
tasks. Extensions to discrete distance transforms [2, 5], e.g. Cham-
fer methods, were considered for our work. They were deemed
insufficient for our needs, because they do not provide sub-voxel
accuracy.

Our algorithm differs from previous efforts to 3-D scan convert
CSG models because we evaluate the parametric primitives directly
and combine the results in object space, before scan conversion.
This avoids the sampling errors produced when performing CSG
operations on scan converted primitives, that are seen in other meth-
ods. If the primitives are first scan converted, then combined with
CSG operations, errors may occur at the boundaries of the prim-
itives, where exact surface information has been lost [20]. It is
also possible to evaluate the CSG model to produce a polygonal
approximation to the final object [14]. Payne and Toga’s method
may be used to then calculate a distance to the polygonal model. We
preferred to make our calculations directly on the original model,
and avoid the extra step of approximating the CSG model with
polygons and the errors associated with calculating distance to a
faceted model. Our approach also generates the additional clos-
est point information, which may be used in a variety of graphics
applications.

3 Generating the Distance Volume

This sections describes the two major components of our approach.
The first step generates a set of closest points on the surface of the
evaluated model. Additionally, it calculates the shortest distance to
another set of points in a narrow band near the surface. The second
step uses a Fast Marching Method to propagate this information to
the remaining voxels of the distance volume.

3.1 Calculating Closest Points for the Narrow
Band and Zero Set

The narrow band and zero set needed for the Fast Marching Method
are generated with a modified version of the Constructive Cubes
algorithm [3]. For each voxel, the algorithm involves travers-
ing the CSG model’s acyclic graph, evaluating each primitive’s
inside-outside function at the voxel location, and combining sub-
component values at each non-leaf node of the graph to produce a
value which represents the inside-outside function for the complete
model at a particular point. The original combination rules of Con-
structive Cubes are defined to produce a value of 1 for points on
the surface of the evaluated CSG model. The Constructive Cubes
algorithm was developed to calculate the final evaluated surface of
a CSG model, which is produced by applying the Marching Cubes
algorithm to the derived volume dataset with an iso-value of one.
It was not developed to produce reasonable values away from the
CSG model’s surface.



The Constructive Cubes algorithm has been modified in two
ways to generate the data needed for the fast marching algorithm.
First, the step which evaluates the inside-outside function for each
superellipsoid at a particular point has been replaced by a technique
for calculating the closest point to the superellipsoid from an ar-
bitrary point. Given the original evaluation point and the closest
point on the superellipsoid, the shortest distance from the point to
the superellipsoid can be calculated. The second modification in-
volves formulating new shortest distance combination rules which
are applied at each non-leaf node of the CSG graph. These are for-
mulated in a way to produce the closest point and shortest distance
to the entire CSG model from a point near the model surface.

3.1.1 Calculating the Closest Point to a
Superellipsoid

The parametric equation for a superellipsoid is� ���
����
�� ���
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where � and � are the longitudinal and latitudinal parameters of
the surface,

�
1,

�
2,

�
3 are the scaling factors in the � , � , and �

directions, and 0 1 and 0 2 define the shape in the longitudinal and
latitudinal directions [1].

The distance to the point on the surface of a superellipsoid
defined at 1 �
���32 from an arbitrary point 4 is5
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Squaring and expanding Equation 2 gives5
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The closest point to the superellipsoid from an arbitrary point 4
can then be calculated by determining the values of 1 �
���32 which
minimize Equation 3. In general Equation 3 is minimized with
a gradient descent technique utilizing variable step-sizes. These
values of 1 �
�D�32 may then be plugged into Equation 1 to give the
closest point on the surface of the superellipsoid, which in turn may
be used to calculate the shortest distance.

Several issues must be addressed when minimizing Equation 3.
First, the special degenerate cases of the superellipsoid must be dealt
with separately, because their surface normals are discontinuous.
The most common cases are the cuboid ( 0 1 �E0 2 � 0), the cylinder
( 0 1 � 0 �	0 2 � 1), the double cone ( 0 1 � 2 �F0 2 � 1), and the double
pyramid ( 0 1 �80 2 � 2). The shortest distance to these primitives
may be determined with non-iterative, closed form solutions.

Finding the values of � and � at the closest point with a gradient
descent technique involves calculating the gradient of Equation 3,G:5
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Unfortunately, superellipsoids have a tangent vector singularity near
values of � or � which are multiples of ($* 2. To overcome this
problem, we reparameterize

�
by arc length [6]. That is,� ���
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Given this we can sayQQQQ I � ��N6��PB
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If we assume that the arc-length parameterization is in the same
direction as the original parameterization, we haveIU�
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Now we re-express our steepest descent (on d2) so that it is
steepest with respect to the normalized parametersI 5
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We now can use the gradient of the reparameterized

5
2,G:5
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to find the closest point with greater stability.

The general formulation of Equation 12 significantly simplifies
for values of � and � near multiples of ($* 2. Instead of deriving
and implementing these simplifications for all regions of the su-
perellipsoid we chose to only perform the calculation in the first
octant (0 +X�Y+ (�* 2 � 0 +8�Z+ ($* 2). Since a superellipsoid is
8-way symmetric, point P may be reflected into the first octant, the
minimization performed, and the solution point reflected back into
P’s original octant.

3.1.2 Combining Shortest Distance Calculations

The CSG graph is processed in a depth-first manner. The clos-
est point on and shortest distance to individual superellipsoids are
calculated at the leaf nodes. The results from the non-leaf nodes’
subcomponents (A and B) are then combined. Since the subcompo-
nents may be combined with a variety of boolean operations (union,
intersection and difference) just choosing the closest point to the
subcomponents does not produce the correct result. Similar to CSG
classification methods [19], a set of combination rules are utilized at
each non-leaf node to evaluate the complete model, and are defined
in Tables 1, 2, and 3. The rules are formulated for combining signed
distance values which have no predefined limits. The values of A
and B are negative inside an object and positive outside. Combi-
nation decisions are based on the signed distances computed from
the non-leaf node’s subcomponents. Additionally the closest point
to the tested point is appropriately updated at each non-leaf node,
until the complete model has been evaluated.

The entries in the tables have the following meanings. The IN
conditions are used when the point being tested against subcompo-
nent A or B is inside the subcomponent, and the shortest distance to
that subcomponent is negative. The OUT conditions are used when
the point being tested against subcomponent A or B is outside the
subcomponent, and the shortest distance to that subcomponent is
positive. The ON conditions are used when the point being tested
against subcomponent A or B is on the subcomponent, and the
shortest distance to that subcomponent is zero. MAX states that the
two values may be combined by taking the maximum of the values



B
A [ B IN OUT ON

IN MIN A A
A OUT B MIN B

ON B A A

Table 1: Union combination rules.

B
A \ B IN OUT ON

IN MAX B B
A OUT A MAX A

ON A B A

Table 2: Intersection combination rules.

B
A - B IN OUT ON

IN -B MAX(A,-B) B
A OUT MAX(A,-B) A A

ON -B A A

Table 3: Signed distance difference combination rules.

B
A - B IN OUT ON

IN 2-B MAX(A,1/B) B
A OUT MIN(A,2-B) A A

ON 2-B A A

Table 4: Inside-outside difference combination rules.

returned by evaluating A and B. MIN states that the two values may
be combined by taking the minimum of the two. ’A’ states that the
values of A and B are combined by taking the shortest distance to
A. ’B’ states that the values of A and B are combined by taking
the shortest distance to B. ’-B’ states that the values of A and B are
combined by taking the negative of B. MAX(A,-B) states that the
combination is produced by taking the maximum of the value of A
and the negative of B.

The combination rules for union and intersection are the same
as the ones described in the original Constructive Cubes paper. A
detailed explanation of these rules may be found in [3].

The combination rules for difference (A-B) have been changed
to work with signed distances, and may be explained with Figure
1. Point P6 is the IN-IN condition. The shortest distance to the
evaluated surface is the shortest distance to B. Since P6 is inside of
B the shortest distance to B is negative. P6 is outside the evaluated
model, and therefore must be negated to produce the correct signed
distance. In the IN-OUT case, A is negative and B is positive.
Therefore MAX(A,-B) compares two negative numbers, producing
the number with the smallest absolute value. The correct answer
for P1 is A, while the correct answer for P4 is -B. P5 is in A and on
B. B or zero is the correct result for this combination. The OUT-IN
combination rule is also MAX(A,-B). In this case A is positive and
B is negative, and it compares two positive numbers, producing the
distance with the largest absolute value. The correct answer at P7
is -B, recalling that B is negative, and must be negated to produce
the correct signed result. The correct answer at P3 is A. P10 is
the OUT-OUT condition, with A providing the closest point to the
evaluated model. P12 is the OUT-ON condition, with A also being
the correct answer. P8 represents the ON-IN condition. A is zero
in this case, and B is negative. B is negated to produce the correct
signed distance. P2 is the ON-OUT condition, which returns A,
which is zero. The ON-ON case occurs at the intersection point of

A B
P1

P2

P3

P4
P5

P6 P7

P8

P9

P10

P11

P12

P13

Figure 1: Evaluation points for a CSG model.

the two objects (P9), and returns A, which is zero.
It is not always possible to determine the closest point to a CSG

model given the closest points to the primitives which comprise
it. (From our experience this occurs in significantly less than one
percent of the narrow band calculations.) As seen in Figure 1,
no valid result can be calculated for P13, when evaluating A - B.
Both of the closest points to A and B are not on the final evaluated
model. Similarly, no valid solution can be generated at P6 when
evaluating A [ B. The closest points to both A and B are on interior
curves, which will not be a part of the final evaluated model. These
invalid points which do not lie on the final evaluated CSG model
can be easily removed from the zero set by evaluating them with
the original Constructive Cubes algorithm. If the evaluation returns
a value within a small 0 of 1 (i.e., the point lies on the surface
of the evaluated model), the point is retained. Otherwise it is
discarded. Since the sampling of the zero set is quite dense, no
adverse effects have been noted from discarding the occasional
incorrect closest point. The first step of the algorithm produces a
satisfactory distribution of closest points on the evaluated surface
of the CSG model.

Even though the range of the superellipsoid’s inside-outside1 0 �F]^2 is different than the signed distance 1 & ].�	]_2 , the inside-
outside function combination rules for union and intersection used
in the original Constructive Cubes algorithm are the same as the
rules for combining signed distances, and are given in Tables 1 and
2. The inside-outside difference combination rules are different
than the signed distance combination rules, and are given in Table
4.

3.2 Fast Marching MethodFor Computing Closest
Points

We present a Fast Marching Method for computing the approximate
closest point to a surface from the points in a regular grid. It is an
approach based on the work of Sethian [16, 17]. His approach has
been used in the past to numerically solve partial differential equa-
tions, but we have modified it to use a heuristic rule for propagating
closest point information instead of calculating distance with a fi-
nite difference scheme. The accuracy of the method depends on a
discretization of the surface and is independent of the volume grid
spacing, allowing us to calculate distance to sub-voxel accuracy.



3.2.1 TheEikonal Equationand the Fast Marching
Level Set Method

Let `������	�
����
 denote the signed distance from the closed surfacea
. ` satisfies the Eikonal equation,7 G `37�b c dfe�ge ?�h 2 @ dfe�ge AUh 2 @ d�e�ge C h 2 � 1 �

subject to `6ii9j � 0 ; (13)

The characteristics of Equation 13 are straight lines that are normal
to

a
and point in the direction of increasing distance. For each

point �����	�
�	��
 in space, there is a line segment from the surface to
the point that is a characteristic of the entropy-satisfying solution
of the Eikonal equation. The point �����F�
����
 and the closest point
on the surface

a
are the endpoints of this line segment.

Sethian [16, 17] has developed a Fast Marching Level Set
Method to solve the Eikonal equation,7 G `37 kT���$���
�	��
B� 1 � subject to `�iilj �nmL�����	�
����
D�
in the case that k is either always positive or negative. The method
uses an upwind, viscosity solution, finite difference scheme to nu-
merically solve this equation. For kT���$�	�
�	��
�� 1 and mL�����	�
����
��
0, the solution gives the signed distance from the surface

a
. The

initial condition ` ii j � 0 is specified by giving the value of ` on a
narrow band of points around the surface

a
. The distance values in

the remainder of the volume are computed by pushing this narrow
band outward.

3.2.2 Closest Point Calculation Overview
To calculate the closest points to a surface on a regular grid, we
utilize Sethian’s Fast Marching Method, but instead of using a finite
difference scheme to compute distance, we use a heuristic algorithm
to propagate closest points information. Instead of specifying the
distance for the points in the narrow band as an initial condition, we
specify the closest points to the surface. In one step of the closest
points method:

1. The point m�o with the smallest distance is removed from the
narrow band and it’s value is frozen.

2. Points are added to the narrow band to maintain unit thick-
ness.

3. The closest points of the neighbors with larger distances thanm�o are recomputed using the closest point information fromm�o .

The closest points method is based on the following idea. The
closest point on the surface to a point in the grid is usually close
to one of the closest points of its neighbors in the grid. Thus if
one knows the closest points of the neighbors of a grid point m�o ,
one can compute an approximate closest point for m�o by assuming
that it is near one of the closest points of its neighbors. This is
only a heuristic, and in Figure 2 we see cases in two dimensions
for which the heuristic succeeds and fails. In the cases where the
heuristic fails to determine the correct closest point, it still gives a
reasonable approximation of the distance. The heuristic may fail if
the characteristics from several different portions of the surface

a
intersect near m�o . Fortunately, if the heuristic fails at a point, this
mistake is usually not propagated outward to increasing distances.
This is because “information” in the Eikonal equation and the closest
points method is propagated along characteristics of Equation 13.
Where characteristics collide, information goes into the shock and
is lost.

gpS
gp

S

Figure 2: The Closest Point Heuristic.

3.2.3 Terminology

Let the distance volume be the prq^psq^p grid that spans the
space around the scan converted object. We will refer to points in
the distance volume with � " ��t!�	uL
 coordinates. Let the zero set grid
be an vwqYvxqyv uniform grid that spans the same Cartesian
domain. We refer to the ratio v * p as the super-sampling factor
of the zero set grid. In most cases the zero set grid is finer than
the distance volume grid, providing distance calculations with sub-
voxel accuracy. We will refer to points in the zero set grid with� zU��{!�	|y
 coordinates. For any grid point, the closest point is defined
as the Cartesian coordinates of the point on the CSG model surface
that is closest to that grid point.

3.2.4 Initial Data

The fast marching algorithm takes as input: a set of points in the
distance volume that forms a narrow band around the CSG model
surface and a point sampling of the surface. The narrow band
contains all the points in the distance volume having the property
that a neighbor of the point has opposite inside/outside status.1 We
generate the narrow band by evaluating the inside/outside status
[19] of all the grid points of the distance volume, and note where
inside/outside transitions occur. For the points in the narrow band
we must supply the � " �Mt��	u

 coordinates of the points and their
inside/outside status. The narrow band is used as a starting point
for propagating the closest point information outward and inward
to the rest of the points in the distance volume. Note that specifying
the inside/outside status of the points in the narrow band determines
the inside/outside status of the other points in the grid.

During this stage of our calculations the CSG model surface
is represented with a set of points that lie on the surface. This
set of points will be called the zero set, as they are points lying
on the isosurface of zero distance. The zero set is made by first
constructing a thin band of points in the zero set grid that surrounds
the CSG model surface. This set of grid points will be called the zero
band. The zero set is the set of closest points on the model surface
to the grid points in the zero band. The method used to calculate
the zero set has been described in the previous section. Given a
point o in the zero set that is closest to the grid point � " ��t���uL
 in the
zero band, one can determine all the points in the zero set that lie in

1In three dimensions neighbor means one of the 26 locations surroundingeach grid
point.
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Figure 3: Initial Data for the Fast Marching Algorithm.

a neighborhood of o by determining all the points in the zero band
in a neighborhood of � " ��t!�	uL
 . As input to the algorithm, we must
supply the � zU��{!��|y
 coordinates of the grid points in the zero band
and the corresponding �����	�
�	��
 coordinates of the points in the zero
set. In Figure 3 the initial data is shown pictorially in 2 dimensions.

3.2.5 Propagating the Closest Point Data

Initially, we have the closest points data in the zero band that sur-
rounds the surface. We use the closest points data in the zero band
to determine the closest points in the narrow band of the distance
volume and then march the narrow band outward and inward to
calculate the closest points in the rest of the distance volume. Con-
sider a point m�o that neighbors the band and whose closest point is
unknown. The closest point of m�o is probably close to one of the
closest points of its neighbors in the band. Thus for each neighbor
of m�o in the band, we recompute the distance of m�o by considering
points that are near the closest points of that neighbor. First we will
present the marching algorithm that moves the band outward and
then inward. Next, we will show the algorithm for recomputing the
distance at a point m�o , given the closest point of one of its neighbors.

Let in out } ~�� denote the inside/outside status for a point in the
distance volume;

@
1 for outside, & 1 for inside. Let grid } ~	� denote

the computed distance at a distance volume grid point. A value
of ] indicates that the distance has not yet been computed. Let
source } ~	� denote the point in the zero set � from which this distance
was computed.

Initially: The closest point to each � zU��{!��|y
 in the zero band is
known. For each � " �Mt��	u

 in the narrow band grid } ~�� � in out } ~	� .
For each point not in the narrow band grid } ~�� and in out } ~	� are set
to be undefined. The closest points of the zero band are used to
generate approximate closest points for the narrow band. Below is
the fast marching, closest points algorithm.

begin
// March forward to find positive distances.
put each point with a non-negative, finite

grid } ~�� in the set � ;
while ����E�

remove the grid point m�o with the smallest
distance from � ;

for each of the 26 neighbors of m�o
if the source of the neighbor is unknown

add that neighbor to � ;
if the distance of the neighbor is
larger than the distance of m�o
recompute the neighbor’s distance
using m�o ’s source � ;

end

Next the narrow band is marched backward to compute the
closest points with negative distance. Below is the algorithm to
recompute the distance grid } ~	� to the distance grid point m�o , using a
zero set source � . Let � zU��{!��|y
 be the coordinates in the zero band
for which � is the closest point. The user chooses the search radius
parameter � . This is the radius of a cube around the point � zU��{!��|_

in the zero band that defines a neighborhood on the surface around
the point � . The parameter, �y� 2 �)� @

1 is the diameter of the
cube. When recomputing the distance, all the points in the zero
set in a neighborhood around � are considered as possible closest
points.

begin
for each grid point �����	��� # 
 in a �_q��_q�� cube
surrounding � zU��{!��|y
�6� � is the closest point to �����	��� # 
 ;
calculate the distance from m�o to

�
;

grid } ~	� � minimum of the � 3 computed distances;
source } ~�� � the source of this minimum distance,
(an element of � );

end

From experience we have found that for most surfaces, a search
radius � of half the super-sampling factor of the zero set grid will
provide satisfactory closest points information to the set � . Finally,
note that since the zero band is of small constant thickness, the
number of points in the zero band in the ��q���q�� cube is ����� 2 
 .
3.3 Computational Complexity

There are p 3 grid points in the distance volume. Each distance grid
point is removed from the narrow band once, giving us a factor ofp 3. At any point in the algorithm, there are ����p 2 
 points in the
narrow band. There are 2 > nodes in the binary tree representing
the CSG model, where > is the number of superellipsoids in the
model. Each node of the model must be evaluated (in constant time)
to determine if a particular grid point is inside or outside the model.
Determining which grid points are in the initialnarrow band requires�:��p 3 > 
 operations. Determining the closest point on the CSG
model from a particular grid point is also an �:� > 
 operation. This is
only computed on the points of the zero band. Calculating the zero
set requires �:��v 2 > 
 operations. Unfortunately it is difficult to
characterize the amount of time needed to calculate the closest point
to each superellipsoid, since each one is evaluated with an iterative
technique. This calculation typically requires approximately 30
iterations in our variable step-size gradient descent routine.

The cost of adding and deleting elements from the narrow band
is proportional to the logarithm of the number of points in the narrow
band. This gives us a factor of �:� log p�
 . The computational cost
of recomputing the distance for a given grid point is proportional to
the number of zero band points in a ��q���q�� cube neighborhood of
a point � in the zero band. This gives us a factor of �:��� 2 
 . Thus the
overall computational complexity of the fast marching algorithm is�:��p 3 � 2 log p�
 .
4 Results

A number of moderately complex CSG models have been scan
converted into distance volumes with our approach. Each of the
CSG models consist of superellipsoids which have been unioned,
intersected, and/or differenced to produce the final shapes. The
resulting distance volumes have been used to generate an evaluated
surface of the model, as well as offset surfaces. Additionally, the
volumes have been utilized to morph one model into another [21].
Figure 7 presents an improved evaluated surface of a CSG model



Figure 4: Offset surface from the X-29 distance volume.

Figure 5: A 3-D morphing between an X-29 and a dart.

Figure 5: A 3-D morphing between an X-29 and a dart. (cont.)

similar to the one included in the first Constructive Cubes paper.
The polygonal model is generated by applying the Marching Cubes
algorithm [12] to a distance volume of dimension 195 q 90 q 120,
producing an iso-surface of value zero. The result presented here
is superior to the one presented in the original paper. See Figure
6. Since the Marching Cubes algorithm linearly interpolates the
iso-surface value between volume grid points (voxels), utilizing
shortest Euclidean distance instead of the non-linear superellipsoid
inside-outside functions values provides the linear relationship nec-
essary for correctly calculating the iso-surface intersection point
between each voxel in the Marching Cubes algorithm, and for prop-
erly combining subcomponent values in the Constructive Cubes
algorithm.

Figure 8 presents the zero iso-surface of a model of an X-29
jet fighter, consisting of 38 primitives and also generated from
a 96 q 192 q 240 distance volume. Figure 9 presents the iso-
surface of value zero of a dart model, consisting of 21 primitives,
generated from a 96 q 192 q 240 distance volume. These volume
resolutions were chosen because they produced satisfactory results
given the cost in time (several hours) and memory ( � 17 MBtyes) to
produce them. The excessive time needed to produce our results is
significantly affected by the message-passing overhead imposed by
the object-oriented environment used to prototype our algorithms
[8]. We believe that the processing times can be improved by
at least an order magnitude if the algorithm is custom coded in
a conventional programming environment. Figure 4 presents an
offset surface to the X-29 model. This is the iso-surface at value 0.5



running through the X-29’s distance volume. The colors in Figures
7, 8 and� 9 were generated with the closest point information that
is maintained with the shortest distance information. Discussion of
this aspect of our work is beyond the scope of this paper. Figure
5 presents four intermediate shapes produced while morphing the
X-29 model in Figure 8 into the dart model in Figure 9. The X-29
model follows the dart’s shortest distance information to the surface
of the dart [21].

5 Conclusion

We have described a technique for generating a distance volume
with sub-voxel accuracy from one type of geometric model, a CSG
model consisting of superellipsoid primitives. The distance volume
is generated in a two step process. The first step calculates the
shortest distance to the CSG model at a set of points within a
narrow band around the evaluated surface. Additionally, a second
set of points, labeled the zero set, which lies on the CSG model’s
surface are computed. A point in the zero set is associated with each
point in the narrow band. Once the narrow band and zero set are
calculated, a Fast Marching Method is employed to propagate the
shortest distance and closest point information out to the remaining
voxels in the volume. Our technique has been used to scan convert
a number of CSG models, producing distance volumes which have
been utilized in a variety of computer graphics applications, e.g.
CSG surface evaluation, offset surface generation, and 3-D model
morphing.
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Figure 6: CSG model from the original Constructive Cubes paper.

Figure 7: Improved surface evaluation utilizing distance volumes
on a similar model.

Figure 8: X-29 CSG model surface evaluation utilizing distance
volumes.

Figure 9: Dart CSG model surface evaluation utilizing distance
volumes.


