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Abstract

In this paper, we develop an adaptive RBF fitting pro-

cedure for a high quality approximation of a set of points

scattered over a piecewise smooth surface. We use com-

pactly supported RBFs whose centers are randomly chosen

from the points. The randomness is controlled by the point

density and surface geometry. For each RBF, its support

size is chosen adaptively according to surface geometry at

a vicinity of the RBF center. All these lead to a noise-robust

high quality approximation of the set. We also adapt our ba-

sic technique for shape reconstruction from registered range

scans by taking into account measurement confidences. Fi-

nally, an interesting link between our RBF fitting procedure

and partition of unity approximations is established and dis-

cussed.

Keywords: Adaptive RBF, surface reconstruction from

scattered data

1 Introduction and Algorithm Overview

The Radial Basis Functions (RBF) approach has proven

to be very useful in shape reconstruction from scattered,

noisy, incomplete data, see, for example, [5, 6, 13, 19, 23,

31, 33, 34] and references therein. Recent studies on RBF-

based shape reconstruction [11, 17, 7, 27] are focused on

efficient shape reconstruction from large and/or noisy scat-

tered point datasets produced by modern range finder de-

vices. In this paper, we extend our adaptive RBF fitting

technique [26] for processing noisy scattered point data. For

the sake of completeness and since [26] is not a refereed pa-

per, we include in this paper a description of a randomized

procedure developed in [26] for selecting RBF centers.

Consider a set of points P = fp1; � � � ;pNg sam-

pled from a surface and equipped with unit normals N =fn1; � � � ;nNg that indicate the surface orientation. In prac-

tice, points P are generated from range scans and normals

N are usually estimated from range data during the shape

acquisition phase or by local least-square fitting. Some

points of a range scan are usually measured more accurately

than others. This advocates assigning a certain confidence

measure to each point of the scan [32, 10]. Thus we assume

that each point pi 2 P is attributed with a real numberi 2 [0; 1℄ indicating the confidence of pi.
Our aim is to construct a function y = f(x) such that its

zero level-set f(x) = 0 approximates P .

Implicit surface f(x) = 0 separates the space into two

parts: f(x) > 0 and f(x) < 0. Let us assume that the

normalsN are pointing into the part of space where f(x) >0. Thus we can say that f(x) has negative values outside the

surface and positive values inside the surface.

Given a set of approximation centers C = f1; � � � ; Mg,M < N , we construct f(x) approximatingP in the follow-

ing form suggested in [27]Xi2C [gi(x) + �i℄��i (kx� ik); (1)

where ��(r) = �(r=�), �(r) is an RBF function, and gi(x)
and �i are unknown functions and coefficients to be deter-

mined. We assume that C contains much less points than P .

Thus (1) delivers an economical approximation of P . For

each approximation center i, we construct gi(x) as a local

quadratic approximation of P in fkx� ik < �ig, the re-

gion of influence of i. Then we determine f�ig from M
interpolation conditionsf(i) = 0; i = 1; : : : ;M: (2)

Notice that (2) is a system of linear equations and f��i (r)g
form a set of generalized radial basis functions [20, 28, 16].

We choose �(r) as a Gaussian-like function with compact

support. Namely we set �(r) = (1� r)4+ (4r + 1), Wend-

land’s compactly supported RBF [36].

1



Initial noisy point dataset PU approximation PU + RBF approximationFig. 1. Reonstrution of the Stanford Armadillo dataset onsisting of 2; 366K points 41K with approximation en-ters. L2 approximation error equals 7:22 � 10�4 for PU approximation (middle) and 5:99 � 10�4 for PU + RBFapproximation (right).
We can rewrite (1) in the formXi2C gi(x)��i (kx� ik)| {z }base approximation +Xi2C �i��i (kx� ik)| {z }loal details (3)

The first term of the right-hand side of (3) can be consid-

ered as a base approximation of f(x) while the second term

represents local details.

One can notice that the base approximation term in (3)

has the same zero level-set as a partition of unity approxi-

mation (PU) Xi2C gi(x)��i (kx� ik); (4)

where functions��i(kx� ik) = ��i(kx� ik)Pj ��j (kx� jk)

form a partition of unity (PU). PU approximations are now

very popular in computational mechanics [2, 3] and can de-

liver fast-constructed high quality approximations of scat-

tered data [37, 1, 25]. Functions f��i(�)g belong to the

class of the so-called normalized RBFs [22, 14] which of-

ten show a better performance than RBFs do in fitting non-

uniform data [15, x 6.7].

So we will approximate points P attributed with nor-

mals N and confidences fig using normalized RBFsf��i (kx� ik)g:Xi2C gi(x)��i (kx� ik)| {z }adaptive PU +Xi2C �i��i(kx� ik)| {z }normalized RBF = 0 (5)

Fig. 1 demonstrates the adaptive PU and PU+RBF ap-

proximations of the Stanford Armadillo dataset. Notice that

the PU approximation alone delivers a high quality recon-
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struction. Another interesting feature of our approach is

building quite economical approximations: the dataset con-

sisting of 2,366K points is accurately reconstructed using

only 41K approximation centers.

In the following sections, we explain how to choose ap-

proximation centers fig and determine their influences �i,
construct local approximations gi(x) and use them to a

build the PU approximation given by the first sum in (5),

and finally refine the PU approximation by the RBF terms.

2 Constructing Adaptive PU Approximation

Typically P is generated from several overlapped range

scans and the density of points is higher at the overlapped

regions. In order to take into account density irregularities

and the confidence measures attributed to the points, each

point pi 2 P is assigned a weight di given bydi = i KXj=1 kpi � pjk2; (6)

where fpjgKj=1 are the K-nearest neighbors of pi. From

our numerical experiments, we found that K = 20 is a good

choice.

Constructing local approximations. For each approxi-

mation center i we construct a local quadratic approx-

imation gi(x) of P in the �-neighborhood of i, fx :kx � ik < �g. Let us define local orthogonal coordinate

system (u; v; w) at i such that the positive direction of w
coincides with the direction defined by weighted averaging

of normals Xj dj ��(kpj � ik)nj : (7)

Here nj is the unit normal assigned to pj and sum is taken

over all points pj 2 P from the �-neighborhood of i. The

results of our numerical experiments show that weighted av-

eraging (7) is sufficiently resistant to noise. The coefficients

of the local fitting functionw = h(u; v) � Au2 + 2Buv + Cv2 +Du+Ev + F
are determined by the following minimization procedureXj dj ��(kpj � ik) gi(pj)2 ! min : (8)

Given �, the solution to this least-squares problem is ob-

tained by using the normal equation approach [29]. The

corresponding 6 � 6 linear system is solved by the matrix

inverting via the singular value decomposition approach.

Now gi(x) is defined bygi(x) = w � h(u; v);
where (u; v; w) are local coordinates of x. Note that local

approximation gi(x) depends on �.

Local errors and influence parameters. To determine

an optimal value for influence parameter �i associated

with approximation center i we define an error functionEloal(�) at i byEloal(�) = 1LvuuuutPj dj��(kpj � ik)� gi(pj)krgi(pj)k �2Pj dj��(kpj � ik) ;
(9)

where L is the main diagonal of the bounding box of P .

The factor 1=L is used to make (9) scale-independent.

We can assume that Eloal(�) is monotonically decreas-

ing to zero as � ! 0.

Now to determine an optimal support size �i we use a

variant of Rissanen’s minimum description length (MDL)

principle [30] which is rooted in Occam’s razor

“Entities should not be multiplied beyond necessity”

The MDL principle states that

“From several alternative models, the best one gives the

minimum length of combined description of the model and

the residuals”

The principle is closely connected with Sparse Approx-

imation (SA) techniques [12, Section 8.1] which proved to

be an excellent tool for an accurate reconstruction of nat-

ural signals from noisy data (see, for example, [8, 18] and

references therein). Given a large collection of basis ap-

proximants (such a collection is usually called a dictionary),

SA techniques seek an approximation of a noisy signal as a

linear combination of the smallest number of approximants

from the collection.

Let us assume that near approximation center i points

of Pi � P are generated by a stochastic process such that

their mean positions are on local approximation gi(x) = 0
and their distances to gi(x) = 0 are normally distributed.

Since the distance from p to gi(x) = 0 is accurately ap-

proximated by g(p)=krg(p)k, Eloal(�)2 is proportional

to the negative logarithm of the probability of observing

points Pi. Thus Eloal(�)2 is proportional to the number

of bits required to describe the points of Pi near i.
We choose �i as the argmin forESA(�) = Eloal(�)2 + C�2 ; (10)

where C is a positive constant. Note that the second term

in (10) is proportional to the number of approximation cen-

ters used. Thus minimizing (10) estimates optimal influence

parameter �i for approximation center i according to the

MDL principle and leads to a sparse approximation of P .

Parameter C in (10) controls the trade off between sparsity
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and approximation. As we will see later, C also controls

reconstruction smoothness.

Let us describe the graph of ESA(�) qualitatively. If � is

large then the total number of approximation centers fig is

small and local approximation error Eloal(�) is large. We

can conclude that ESA(�) grows drastically as � ! 1. If� is small enough then local approximation error Eloal(�i)
is also small and the behavior of (10) determined by the

second term equal to the number of approximation centers.

The number of approximation centers grows sharply as � !0 since for a sufficiently small � the zero level-set of (1)

must reproduce noisy behavior of P .

In practice, we set C in (10) proportional to L2, namely

we use C = (TSAL)2: (11)

We analyze a dependence between TSA and the reconstruc-

tion quality in Section 4.

Fig. 2 presents typical graphs for Eloal(�) and ESA(�)
measure at two different points of the Stanford bunny

model.
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Fig. 2. Graphs of Eloal(�) and ESA(�) for two dif-ferent points of the Stanford bunny model.
Fig. 3 visualize the spherical regions of influence (shown

at 50% of their real size) centered at approximation cen-

ters i. Notice that the value of �i reflects surface geo-

metric complexity at i: the bigger complexity, the smaller�i. Here the local geometric complexity depends on local

quadratic approximation gi(x) at i.
Minimizing ESA(�) is an one-dimensional problem. We

use Brent’s method [29] to minimize (10). In the most cases

less than ten iterations are required to reach the minimum

with L=105 accuracy.

It is interesting to compare two different strategies for

selecting �i for the adaptive PU approximation given by the

first sum in (5):

Fig. 3. Optimal �i for a part of the Stanford Dragonmodel are visualized as spheres of radius �i=2 en-tered at i.� minimizing SA energy (10) penalizing the number of

local approximations;� the selection of � by solving the equation Eloal(�) =�0, where �0 is a user-specified accuracy [26].

Too small �0 leads reconstruction of noise and choosing too

large �0 produces oversmoothing. As one can judge from

the left images of Fig. 4, the optimal value of �0 may not

exist: some regions of the Stanford bunny model are over-

smoothed and noise is reconstructed at some other regions.

In contrast, the MDL-based selection procedure leads to

a very good reconstruction, as seen in the right images of

Fig. 4.

Thus one can see that the sparse and adaptive PU approx-

imation constructed via minimizing regularized energy (10)

does a substantially better job than our previous technique

[26] even for “clean” point datasets.

Selection of approximation centers. It is clear that a

“good” cover is important for constructing a high qual-

ity partition of unity approximation. In our case, the

cover consists of balls supp��i (i) of radius �i centered

at i. We choose approximation centers fig such thatfsupp��i (kx� ik)g covers all the points of P . Further

our aim is to generate a minimal cover with an amount of

overlap greater than a certain threshold.

It is natural to measure the amount of overlap at pj 2 P
by vj = MXi=1 ��i(kpj � ik):
We control overlapping by a user-specified parameterToverlap and determine approximation centers fig accord-

ing to the following procedure proposed in [26].

Step 1. Assign vj = 0 to each point pj 2 P .

Step 2. Choose randomly m points (in our current imple-

mentation, we use m = 15) with v < Toverlap.

Step 3. Select a point with minimum v among the points

chosen at the previous step.
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Eloal(�) = �0 ESA(�)! min
Fig. 4. Reonstrution of the sanned bunny data on-sisting of 362K points using adaptive PU. Left: reon-strution using the measure in [26℄. Some noisy partsare observed. Right: reonstrution using our newmeasure. No noise is observed while �ne surfae fea-tures (see, for example, the nose part of the bunny)are aurately reonstruted.

Step 4. Choose the point selected at Step 3 as an approxi-

mation center k 2 C. Set vk = Toverlap for k .

Step 5. Find optimal support size �k and local polynomial

approximation gk(x) at center k determined at the

previous step.

Step 6. Update overlapping numbers vj for all pj 2 P n C
by adding ��k (kpj � kk).

Step 7. If there are points pj 2 P with vj < Toverlap, go

to Step 2.

Steps 2 and 3 implement a multiple choice technique, a

powerful tool for randomized optimization [21] introduced

recently in geometric modeling [38, 39].

According to our numerical experiments, the above pro-

cedure with Toverlap = 1:5 produces a good cover. Select-

ing bigger values of overlapping parameter Toverlap does

not improve the approximation quality and wastes compu-

tational time.

Fig. 5 demonstrates several intermediate steps in con-

struction the approximation centers fig and their corre-

sponding influence radii f�ig for the Stanford bunny model.

Fig. 5. Four intermediate stages of the approximationenter seletion proedure. The number of approxi-mation enters inreases from left to right and is equalto 100, 500, 1000, and 2000, respetively.
Reconstruction from noisy data. Small extra zero level-

sets may appear when we apply our PU approximation pro-

cedure to datasets with a high level of noise. One possible

remedy to avoid such unwanted artifacts consists of prevent-

ing influence parameter � from being too small. So we in-

troduce one more parameter �min and redefine Eloal(�) in

interval [0; �min℄ by settingEloal(�) = L if � < �min: (12)

Then optimal � is found from minimizing (10), (11) with

redefined Eloal(�).
Fig. 6 compares reconstruction of the noisy Armadillo

dataset without (the left image) and with (the right image)

condition (12). Notice that the reconstruction with (12)

leads to oversmoothing and small features are lost. How-

ever the RBF term in (5) allows us to reconstruct the lost

details.

�min = 0;M = 134K �min = L=100; M = 42KFig. 6. Adaptive PU reonstrution of a part of theStanford Armadillo dataset without (left) and with(right) ondition (12).
3 Least-Squares RBF Approximation

After the PU approximation is constructed we use a

least square fitting procedure to determine unknown RBF

weights f�ig in (5). Let us define a global L2-error metric

by Eglobal (�) = 1LvuutPNj=1 dj f(pj)2PNj=1 dj ;
5



where � = (�1; :::; �M ) and the weights fdjg are defined

in (6). Now the RBF weight can be found by minimizingEglobal (�). However such least-squares fitting noisy data

with RBFs often produces undesirable results, as demon-

strated in Fig. 7.
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Least-squares fit (Treg = 0) Ridge regression (Treg = 10�4)Fig. 7. Top-left: the graph of a smooth funtion.Top-right: noisy sampling data f(xi; yi)g, yi =f(xi) + �i, is reated by adding uniformly randomvertial displaements �i. Bottom-left: Reonstru-tion from noisy data via least-squares RBF �tting;L2-error between reonstruted graph and noisy datais 1:12�10�1; L2-error between reonstruted graphand f(x) is 3:36 � 10�2. Bottom-right: Reon-strution from noisy data via ridge regression: L2-error between reonstruted graph and noisy data is1:16 � 10�1; L2-error between reonstruted graphand f(x) is 1:54 � 10�2. Thus least squares givea better �t to the noisy data while ridge regressiondelivers a better approximation of the original data.
The overfitting problem exposed by the bottom-left im-

age can be eliminated using the so-called regularization ap-

proach. In order to suppress oscillations let us determine �
from the following minimization problemEreg(�) = Eglobal(�)2 + Treg k�k2 ! min; (13)

where k�k is weighted norm given byk�k =vuut 1M MXi=1 � �i�i �2:
Minimization problem (13) is similar to ridge regression,

a popular statistical robust estimation technique [15]. We

have found that Treg = 10�5 works well for all our models.

For example, the bottom-right image of Fig. 7 demonstrates

how (13) suppresses overfitting.

Problem (13) is a quadratic minimization problem:�Ereg(�)�� = 0 () (A+ TregD)� = b: (14)

HereA andD are M�M matrices and b is a column vector

defined by8>>>>>>>><>>>>>>>>: Aij = PNk=1 dk ��i(kpk � ik) ��j (kpk � jk)L2 PNk=1 dk ;Dii = 1M � 1�i �2 ;bi = PNk=1 dk ��i(kpk � ik) ��f(pk)j�=0�L2 PNk=1 dk
Notice that D is a diagonal matrix and Aij is equal to

zero if there is no point pk 2 P in the intersection ofsupp��i (kx� ik) and supp��j (kx� jk). Thus A is

a sparse matrix in which the number of the non-zero el-

ements in each row grows as Toverlap increases. WhenToverlap = 1:5, the average number of non-zero elements

in each row of A is about 100.

To solve (14), a sparse system of linear equations, we

use the preconditioned biconjugate gradient method [29].

According to our numerical experiments, a few hundred it-

erations are required to reach a sufficient accuracy for M in

the range of 103–106.

Fig. 8 presents adaptive PU + RBF reconstruction of the

Armadillo part shown in Fig. 6 where only adaptive PU re-

construction used. Notice how well Armadillo’s fine fea-

tures are reconstructed.

4 Results and Discussion

Parameter selection. The smoothness of a reconstructed

model depends mainly on parameter TSA in (11) and (10).

Three dragons of Fig. 9 are reconstructed via our adaptive

PU+RBF approximation defined by (5). One can see how

effectivelyTSA controls the smoothness of the reconstructed

models. If no smoothing or hole filling is required, we setTSA = 2� 10�6.

Moreover we found out that the L2-error depends lin-

early on TSA as demonstrated in the left image of Fig 10.

We have no theoretical explanation of such an almost per-

fect linear dependence.

Another interesting observation concerns a dependence

between reconstruction accuracy Eglobal and number of ap-

proximation centers M . A typical dependence graph is

shown in the right image of Fig. 10. The number of approx-

imation centers is reduced drastically if the reconstruction

accuracy decreases.

Parameters Toverlap and Treg are fixed in all our exper-

iments. We set �min = 0 for low-noise models and use�min = L=100 for noisy datasets like the Stanford Ar-

madillo model.
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TSA = 5� 10�5 TSA = 1� 10�5 TSA = 2� 10�6Fig. 9. Parameter TSA in (11) and (10) ontrols reonstrution smoothness.
Filling holes. Our adaptive PU and PU + RBF reconstruc-

tion schemes have reasonable abilities in reconstructing

missed data and filling holes. Fig. 11 demonstrates recon-

struction of a squirrel model from an incomplete set of

range scans.

Performance. To evaluate function f(x) defined by the

right hand-side of (5) at point x we need to find all the ap-

proximation centers i such that x belongs the intersection

of their regions of influence. In order to do it quickly we

use a range searching octree-based data structure proposed

in [35] for illuminance storage.

For visualization of f(x) = 0 we use Bloomenthal’s

polygonizer [4]. We found out that only one linear inter-

polation pass is required to find roots of f(x) = 0 with

a sufficient accuracy because near its zero level-set f(x)
mimics the distance function to the zero level-set. During

the polygonization, f(x) can be evaluated about 10; 000 -20; 000 times per second. It means that only a few minutes

are requited to generate a mesh with more than a million

triangles.

Table 1 presents performance of our adaptive PU and

PU + RBF reconstruction schemes. Computations were per-

formed on a 1.6 GHz Mobile Pentium 4 PC with 1GB RAM,

and timings are listed as minutes:seconds. Note that for a

given point dataset the computational time and number of

approximation centers depend not only on the size of the

dataset but also on the geometric complexity. For the in-

complete squirrel dataset choose a slightly lower value ofTSA than for the other models. Since M , the number of the

approximation centers, is much smaller than N , the total

number of points, the RBF reconstruction step is also fast.

Model N PU RBF TSA M
Squirrel 46K 00 : 06 00 : 04 5:0� 10�5 1:6K

Bunny 362K 01 : 00 00 : 42 2:0� 10�6 23K

Dragon 2:11M 12 : 58 06 : 20 2:0� 10�6 36K

Armadillo 2:37M 14 : 21 09 : 50 2:0� 10�6 41KTable 1. Performane of our adaptive PU andPU+RBF reonstrution shemes.
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Fig. 8. Adaptive PU+RBF reonstrution of the Ar-madillo part used also in Fig. 6.
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Statistical tools. An interesting feature of our approach

consists of using statistical tools for an accurate fitting and

automatic estimation of parameters. In this paper, we have

employed a simple variant of the minimal description length

principle, the ridge regression technique, and a multiple-

choice procedure. We feel that statistical approaches have

a huge potential in geometric modeling. It is also worth to

note here that so far the main field of applications for RBF-

based techniques is statistical learning [16, 15].

Directions for future research. In this study, we have se-

lected the approximation centers C as a subset of the scat-

tered points P . In future we hope to drop this restriction

and develop an method for optimal selecting C. We think

Fig. 11. PU+RBF reonstrution of a squirrel modelfrom an inomplete set of range sans. Small holesare very well �lled.
that a point clustering approach similar to that proposed in

[9] may be useful. In particular, we hope that it will help

us to treat uniformly datasets with small and large levels of

noise.

The method developed in this paper is more sensitive to

density variations in scattered point datasets than, for exam-

ple, a multi-scale approach proposed in [27] (see Fig. 12 for

an extreme example). In future we plan to combine both the

approaches.

Fig. 12. Left: a sattered point dataset with sharplyvarying density. Middle: the points are interpolatedby the method proposed in [27℄. Right: the pointsare approximated via the tehnique developed in thispaper.
Finally we are intrigued with deep relations between

sparse approximations, MDL and similar statistical princi-

ples, and the general regularization theory [24].

Acknowledgments

We are grateful to the anonymous reviewers of this paper

for their constructive comments and useful suggestions.

The Armadillo, Bunny and Dragon datasets are cour-

tesy of the Stanford 3D scanning repository. The Dinosaur

dataset is due to Cyberware.

8



References

[1] M. Alexa. Hierarchical partition of unity approximation. Technical

report, TU Darmstadt, August 2002.

[2] I. Babu�ska and J. M. Melenk. The partition of unity method. Inter-

national Journal of Numerical Methods in Engineering, 40:727–758,

1997.

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl.

Meshless methods: An overview and recent developments. Com-

puter Methods in Applied Mechanics and Engineering, 139:3–47,

1996.

[4] J. Bloomenthal. An implicit surface polygonizer. Graphics Gems IV,

pages 324–349, 1994.

[5] D. Buhmann, M. Radial Basis Functions: Theory and Implementa-

tions. Cambridge University Press, 2003.

[6] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,

B. C. McCallum, and T. R. Evans. Reconstruction and representation

of 3D objects with radial basis functions. In Proceedings of ACM

SIGGRAPH 2001, pages 67–76, August 2001.

[7] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLen-

nan, and T. J. Mitchell. Reconstruction and representation of 3D ob-

jects with radial basis functions. In Proceedings of ACM GRAPHITE

2003, pages 119–126, Melbourne, Australia, February 2003.

[8] D. L. Chen, S. S.and Donoho and Saunders M. A. Atomic decom-

position by basis pursuit. SIAM Journal on Scientific Computing,

20(1):33–61, 1998.

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Trans. Pattern Analysis Machine Intell.,

24(5):603–619, 2002.

[10] B. Curless and M. Levoy. A volumetric method for building com-

plex models from range images. In Proceedings of ACM SIGGRAPH

1996, pages 303–312, 1996.

[11] H. Q. Dinh, G. Slabaugh, and G. Turk. Reconstructing surfaces us-

ing anisotropic basis functions. In International Conference on Com-

puter Vision (ICCV) 2001, pages 606–613, Vancouver, Canada, July

2001.

[12] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and

support vector machines. Advances in Computational Mathematics,

13(1):1–50, 2002.

[13] M. S. Floater and A. A. Iske. Multistep scattered data interpolation

using compactly supported radial basis functions. Journal of Comp.

Appl. Math., 73:65–78, 1996.

[14] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural

networks architectures. Neural Computation, 7:219–269, 1995.

[15] H. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statis-

tical Learning. Springer, 2001.

[16] S. Haykin. Neural Networks: A Comprehensive Foundation.

Macmillan College Publishing Company, Inc., 1994.

[17] A. Iske and J. Levesley. Multilevel scattered data approximation

by adaptive domain decomposition. Technical Report TUM-M0208,

Technische Universität München, Juli 2002.

[18] E. LePennec and S. Mallat. Sparse geometric image representation

with bandelets. IEEE Trans. on Image Processing.

[19] S. K. Lodha and R. Franke. Scattered data techniques for surfaces. In

H. Hagen, G. Nielson, and F. Post, editors, Proceedings of Dagstuhl

Conference on Scientific Visualization, pages 182–222. IEEE Com-

puter Society Press, 1999.

[20] D. Lowe. Adaptive radial basis function nonlinearities, and the prob-

lem of generalization. In 1st IEE International Conference on Artifi-

cial Neural Networks, pages 29–33, Bournemouth, UK, 1999.

[21] M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two

random choices: A survey of techniques and results. In Handbook of

Randomized Computing, Chapter 9. Kluwer, 2001.

[22] J. Moody and C. Darken. Fast learning in networks of locally-tuned

processing units. Neural Computation, 1(2):281–294, 1989.

[23] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Sub-

ramanian. Interpolating implicit surfaces from scattered surface data

using compactly supported radial basis functions. In Shape Modeling

International 2001, pages 89–98, Genova, Italy, May 2001.

[24] Tikhonov A. N. and V. Y. Arsenin. Solution of Ill-Posed Problems.

Winston, Washington D. C., 1977.

[25] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-

level partition of unity implicits. ACM Transactions on Graphics,

22(3):463–470, July 2003. Proceedings of SIGGRAPH 2003.

[26] Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. Multi-scale and adaptive

CS-RBFs for shape reconstruction from cloud of points. In MINGLE

workshop on Multiresolution in Geometric Modelling, pages 337–

348, Cambridge, UK, September 2003.

[27] Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. A multi-scale approach

to 3D scattered data interpolation with compactly supported basis

functions. In Shape Modeling International 2003, pages 153–161,

Seoul, Korea, May 2003.

[28] T. Poggio and F. Girosi. Networks for approximation and learning.

Proceedings of the IEEE, 78:1481–1497, 1990.

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, 1993.

[30] J. Rissanen. A universal prior for integers and estimation by Minimal

Description Length. The Annals of Statistics, 11:131–138, 1983.

[31] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii.

Function representation of solids reconstructed from scattered sur-

face points and contours. Computer Graphics Forum, 14(4):181–

188, 1995.

[32] G. Turk and M. Levoy. Zippered polygon meshes from range im-

ages. In Proceedings of ACM SIGGRAPH 1994, pages 311–318,

July 1994.

[33] G. Turk and J. O’Brien. Shape transformation using variational im-

plicit surfaces. In Proceedings of SIGGRAPH 1999, pages 335–342,

August 1999.

[34] G. Turk and J. O’Brien. Modelling with implicit surfaces that in-

terpolate. ACM Transactions on Graphics, 21(4):855–873, October

2002.

[35] G. J. Ward, F. M. Rubinstein, and R. D. Clear. A ray tracing solution

for diffuse interreflection. In Proceedings of ACM SIGGRAPH 1988,

pages 85 – 92, 1988.

[36] H. Wendland. Piecewise polynomial, positive definite and compactly

supported radial basis functions of minimal degree. Advances in

Computational Mathematics, 4:389–396, 1995.

[37] H. Wendland. Fast evaluation of radial basis functions: Methods

based on partition of unity. In L. Schumaker and J. Stöckler, editors,
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