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Abstract 3D scene flow estimation aims to jointly recover

dense geometry and 3D motion from stereoscopic image

sequences, thus generalizes classical disparity and 2D optical

flow estimation. To realize its conceptual benefits and over-

come limitations of many existing methods, we propose to

represent the dynamic scene as a collection of rigidly moving

planes, into which the input images are segmented. Geom-

etry and 3D motion are then jointly recovered alongside an

over-segmentation of the scene. This piecewise rigid scene

model is significantly more parsimonious than conventional

pixel-based representations, yet retains the ability to repre-

sent real-world scenes with independent object motion. It,

furthermore, enables us to define suitable scene priors, per-

form occlusion reasoning, and leverage discrete optimization

schemes toward stable and accurate results. Assuming the

rigid motion to persist approximately over time additionally

enables us to incorporate multiple frames into the inference.

To that end, each view holds its own representation, which is

encouraged to be consistent across all other viewpoints and

frames in a temporal window. We show that such a view-

consistent multi-frame scheme significantly improves accu-

racy, especially in the presence of occlusions, and increases

robustness against adverse imaging conditions. Our method
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1 Introduction

The scene flow of a dynamic scene is defined as a dense

representation of the 3D shape and its 3D motion field. Scene

flow estimation aims to extract this information from images

captured by two (or more) cameras at two (or more) different

time instants. Applications that benefit from knowing the

scene flow include 3D video generation for 3D-TV (Hung

et al. 2013), motion capture (Courchay et al. 2009; Park et al.

2012; Vedula et al. 1999), and driver assistance (e.g., Müller

et al. 2011; Rabe et al. 2010; Wedel et al. 2008). The 3D

scene flow can be seen as a combination of two classical

computer vision problems—it generalizes optical flow to 3D,

or alternatively, dense stereo to dynamic scenes.

While progress in dense binocular stereo (Bleyer et al.

2011b; Hirschmüller 2008; Yamaguchi et al. 2012, etc.) and

optical flow (Brox et al. 2004; Sun et al. 2010; Unger et al.

2012, among others) has been both steady and significant

over the years, the performance of 3D scene flow algorithms

(e.g., Basha et al. 2010; Huguet and Devernay 2007; Wedel

et al. 2008) had been lacking in comparison. Only recently,

methods emerged (Vogel et al. 2013b, 2014; Yamaguchi et al.

2014) that could leverage the additional information present

in stereo video streams and outperform their dedicated two-

dimensional counterparts at their respective tasks.

This may seem surprising, because 3D scene flow has

a lot of commonalities with stereo and optical flow. This

includes some of the principal difficulties, for example
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Fig. 1 Example scene from Vaudrey et al. (2008): jointly estimated

3D geometry, 3D motion vectors, and superpixel boundaries, rendered

from a different viewpoint

matching ambiguities due to insufficient evidence from the

local appearance, or the aperture problem (more precisely a

3D version of it). Therefore, 3D scene flow estimation simi-

larly requires prior assumptions about geometry and motion.

A recent trend in both stereo and optical flow is to move

away from simple pixelwise smoothness priors, as they have

been found limiting. More expressive priors have been intro-

duced, for example, by virtue of an over-parameterization

(Nir et al. 2008), layered (Sun et al. 2010) or piecewise pla-

nar scene models (Bleyer et al. 2011b). In contrast, there has

been relatively little work on using advanced priors in scene

flow estimation. One exception is a regularizer that promotes

local rigidity (Vogel et al. 2011), a common property of real-

istic scenes, by penalizing deviations from it.

1.1 Piecewise Rigid Scene Model

Our first contribution is to go one step further and repre-

sent dynamic scenes as a collection of planar regions, each

undergoing a rigid motion. Following previous work in stereo

(Bleyer et al. 2011b), we argue that most scenes of interest

consist of regions with a consistent motion pattern, into which

they can be segmented. Consequently, we aim to jointly

recover an implicit (over-)segmentation of the scene into pla-

nar, rigidly moving regions, as well as the shape and motion

parameters of those regions (see Fig. 1). As we will show,

such a parsimonious model is well-suited for many scenes of

interest: The approximation holds well enough to capture the

shape and motion of many real-world scenarios accurately,

including scenes with independent object motion, while the

stronger regularization affords stability. At the same time,

reasoning in terms of rigid planar regions rather than pixels

drastically reduces the number of unknowns to be recovered.

Thereby, we additionally address the challenge of optimiza-

tion or inference, one of the other principal difficulties that

3D scene flow shares with stereo and optical flow.

We (implicitly) represent 3D scene flow by assigning each

pixel to a rigidly moving 3D plane, which has 9 continuous

degrees of freedom (3 plane parameters, 6 motion parame-

ters). To bootstrap their estimation, we start not from indi-

vidual pixels, but from an initial superpixel segmentation of

the scene. Based on the superpixels we compute a large, but

finite set of candidate (moving) planes, and cast scene flow

estimation as a labeling problem. The inference thus assigns

each pixel to one of the segments (superpixels), and each

segment to one of the candidate moving planes. We split the

optimization into two steps. First, we find the best moving

plane for each segment; reasoning on this coarser level cap-

tures long-range interactions and significantly simplifies and

stabilizes the inference. Second, we go back to the pixel level

and reassign pixels to segments; this step cleans up inaccu-

racies of the segmentation, whose initial boundaries were

generated without taking the previously unknown surface or

motion discontinuities into account.

1.2 View-Consistent Multi-frame Scene Flow

Our second contribution is to exploit this piecewise rigid

scene model to overcome two limitations of existing scene

flow techniques. We begin by observing that (i) there is no

conceptual reason for a privileged reference view (e.g., Basha

et al. 2010; Rabe et al. 2010; Valgaerts et al. 2010; Wedel

et al. 2008), as systematic challenges in imaging (specular

reflections, occlusions, noise, lack of contrast, etc.) affect all

frames, but not necessarily equally. Thus parameterizing the

model w.r.t. a single viewpoint may in fact ignore important

evidence present in other views (c.f. Fig. 2); (ii) data usually

comes in the form of a stereo video sequence, and it appears

Fig. 2 Consistency over multiple frames makes scene flow estimation robust against severe disturbances like the windscreen wiper. (left) Input

frames. (center left) The left view at time t = 0. (right) Our scene flow estimate for that viewpoint (shown, from left to right, as disparity and

reprojected 2D flow field)
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wasteful not to exploit longer time intervals, especially in

light of the first observation.

We go on to show that our piecewise planar and rigid scene

model can be extended to simultaneously estimate geometry

and 3D motion over longer time intervals, and to ensure that

the estimate is consistent across all views within the con-

sidered time window. To that end we simultaneously para-

meterize the scene flow w.r.t. all views. While it may not

be surprising that considering longer sequences may help

motion estimation, at least in classical 2D optical flow estima-

tion multi-frame extensions have largely not had the desired

effect; two-frame methods are still the state of the art (see

Baker et al. 2011; Geiger et al. 2012). We argue that long-

term constraints may be more helpful in scene flow, since

the representation resides in 3D space, rather than in a 2D

projection. Constraints caused by physical properties, such

as inertia, remain valid in the long term, and can be exploited

more directly.

To make the estimate consistent across all views from a

longer sequence, we constrain the segmentation to remain

stable over time, enforce coherence of the representation

between different viewpoints, and integrate a dynamic model

that favors constant velocity of the individual planes. We

empirically found this assumption to be valid as long as seg-

ments and temporal windows do not get too large.

1.3 Contributions

The main features of our proposed approach are: (i) A novel

scene flow model that represents the scene with piecewise

planar, rigidly moving regions in 3D space, featuring regu-

larization between these regions and explicit occlusion rea-

soning; (ii) a view-consistent model extension that leads to

improved results in challenging scenarios, by simultaneously

representing 3D shape and motion w.r.t. every image in a

time interval, while demanding consistency of the represen-

tations; (iii) a multi-frame extension that yields a temporally

consistent piecewise-planar segmentation of the scene and

favors constant 3D velocity over time; and (iv) a clean energy-

based formulation capturing all these aspects, as well as a

suitable discrete inference scheme. The formulation can—at

least conceptually—handle any number of viewpoints and

time steps.

We demonstrate the advantages of our model using a range

of qualitative and quantitative experiments. On particularly

hard qualitative examples, our model turns out to be remark-

ably resistant to missing evidence, outliers, and occlusions.

As a quantitative testbed we evaluate our method on the chal-

lenging KITTI dataset of real street scenes, using both stereo

and flow benchmarks. In both benchmarks we achieve lead-

ing performance, even beating methods that are designed for

the specific situation in the benchmark. At the time of writing

(August 2014) our full (view-consistent multi-frame) model

is the top performing method for both optical flow and stereo,

when evaluated on full images including occlusion areas.

The present paper is based on two conference publications

(Vogel et al. 2013b, 2014). We here describe the approach

in greater detail, including the model itself, the inference

scheme, proposal generation, and technical issues of occlu-

sion reasoning. Moreover, we present a deeper analysis and

more detailed comparison between the conventional para-

meterization and the view-consistent model, an experimental

investigation of different optimization strategies, and study

the influence of parameters on the quantitative results.

2 Related Work

Vedula et al. (1999) first defined scene flow as the collective

estimation of dense 3D geometry and 3D motion from image

data. Their approach operates in two steps. After computing

independent 2D optical flow fields for all views of the scene,

the final 3D flow field is fit to the 2D flows, thus neglecting

the image data in this step. Similarly, Wedel et al. (2008) and

Rabe et al. (2010) proceed sequentially on the data of a cal-

ibrated stereo camera system. Starting from a precomputed

disparity map, optical flow for a reference frame and disparity

difference for the other view are estimated. Possibly the first

to calculate geometry and flow jointly in a two-view setup

were Huguet and Devernay (2007), addressing the problem

in a variational formulation. The problem was generalized

by Valgaerts et al. (2010) to work with an unknown relative

pose between the cameras, solely assuming knowledge of

the camera intrinsics. They alternate scene flow calculation

with estimating the relative camera pose. Operating entirely

with 2D entities, these approaches partially neglect the 3D

origin of the data. In particular, the proposed 2D regularizer

encourages smooth projections, but not necessarily smooth

3D scene flow.

In contrast, Basha et al. (2010) choose a 3D parameter-

ization by depth and a 3D motion vector w.r.t. a reference

view and estimate all parameters jointly, extending the pop-

ular optical flow method of Brox et al. (2004) to scene flow.

Arguing that a total variation prior on the 3D motion field is

biased for realistic baselines, Vogel et al. (2011) propose a

regularizer that encourages locally rigid motion. Our model

also employs a local rigidity assumption, but here we explic-

itly identify regions with a consistent motion pattern, into

which the image is segmented.

The history of local rigidity priors dates back at least

to Adiv (1985), who employed this assumption for sparse

motion estimation. The idea was later extended to sparse

scene flow by Carceroni and Kutulakos (2002). In a simi-

lar manner, Devernay et al. (2006) extend the Lucas-Kanade

technique (1981) to multi-camera scene flow and track pla-

nar, rigidly moving regions in 3D over several frames. While
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the scene representation of Carceroni and Kutulakos (2002),

Devernay et al. (2006) is similar to ours, there the regions

move independently without interaction imposed by a global

objective. Furukawa and Ponce (2008) go one step further

and use the locally tracked rigid patch motion as input for a

global optimization step, where the connectivity is defined by

an explicit surface model, thus limiting admissible scenes to

a fixed topology. 3D rigid body motions are further exploited

in the context of scene flow estimation from RGB-D data by

Hornacek et al. (2014). They do not need to assume local

surface planarity, but exploit the additional information from

the depth sensor and use a local rigidity prior to overcome

large displacements. For computing optical flow, Nir et al.

(2008) over-parameterize the 2D flow field and explicitly

search for rigid motion parameters, while encouraging their

smoothness.

Most previous dense 3D scene flow methods have in com-

mon that they penalize deviations from spatial smoothness

in a robust manner. Explicit modeling of discontinuities by

means of segmentation or layer-based formulations has a

long history in the context of stereo (Tao and Sawhney 2000)

and optical flow (Wang and Adelson 1994). These ideas

recently gained renewed attention, however modern methods

do not hold the segmentation fixed, but rather infer or refine

it together with the scene parameters. Bleyer et al. (2010,

2011b) segment the scene into planar superpixels and esti-

mate disparity by parameterizing their geometry. Addition-

ally penalizing deviations from an initial solution, segment-

based stereo is also promoted by Yamaguchi et al. (2012).

More recently, this method was extended to epipolar flow

(Yamaguchi et al. 2013) and epipolar scene flow (Yamaguchi

et al. 2014), both assuming that the flow fulfills epipolar

geometry constraints, i.e. is the result of pure camera ego-

motion. General 2D optical flow is computed by Unger et al.

(2012), who parameterize the motion of each segment with

2D affine transformations, and also allow for occlusion han-

dling. Aside from estimating 2D and not 3D motion, the

method differs in the sense that no inter-patch regularization

is performed, such that motion fields of adjacent segments

are estimated completely independently of one another.

Murray and Buxton (1987) were among the first to per-

form motion estimation over multiple frames. The admissi-

ble 2D optical flow fields are, however, limited to only small

displacements. Black and Anandan (1991) instead encour-

age the similarity between the current and the past flow

estimates, extrapolating motion fields from previous frames.

While allowing for larger displacements, information is only

processed in a feed-forward fashion, in particular the present

cannot influence the past. Much later, assuming a constant

2D motion field, Werlberger et al. (2009) jointly reason over

three consecutive frames. By considering constant 3D scene

flow over time, we are able to address more general scenes.

This constant velocity constraint is relaxed by Volz et al.

(2011), who encourage first and second order smoothness of

the motion field as soft constraints. The motion is parame-

terized w.r.t. a single reference frame, thus reasoning about

occlusion regions or outliers appears hard to achieve. Irani

(2002) operates on much longer time intervals and enforces

the estimated 2D motion trajectories to lie in a (rigid) sub-

space. Similarly, Garg et al (2013) require the 2D motions

to lie in a low-rank trajectory space, but instead can use the

prior as a soft constraint. Sun et al. (2010, 2013) argue that

the scene structure is more likely to persist over time than

any motion pattern, hence avoid temporal smoothing at all,

and instead jointly estimate the flow together with a seg-

mentation into a small number of layers while requiring the

pixel-to-layer membership to be constant. With the primary

goal of high-level motion segmentation, Schoenemann and

Cremers (2008) operate in a similar way: A video is seg-

mented into several motion layers with long-term temporal

consistency. Optionally, a 2D parametric motion for each

layer is estimated as well. Our view-consistent formulation

makes a related assumption, since we group pixels into planar

and rigidly moving segments, while enforcing consistency of

the segmentation over multiple frames. In contrast to motion

layers, this much more fine-grained representation with hun-

dreds of small segments enables us to address a wider range

of scenes.

An explicit representation of 3D motion and shape allows

scene flow methods to exploit temporal consistency over

longer time intervals in a more straightforward manner, since

smoothness constraints are better supported in the 3D scene

than in its 2D projection. Rabe et al. (2010) take advantage

of this fact and propagate geometry and 3D motion across

frames with the help of a Kalman filter. At each pixel the

measurement vector for the filter is composed of scene flow

vectors from the current and the previous frame, which are

estimated with the method of Wedel et al. (2008). Com-

pared to its input, the filtered output contains significantly

fewer outliers. Hung et al. (2013) concatenate frame-to-frame

stereo and flow to longer motion trajectories, which are,

after passing several plausibility tests, included into the final

optimization as soft constraints, similar to including feature

matches in two-frame optical flow (Brox and Malik 2011).

The method advocates to propagate information through the

whole sequence and, therefore, cannot output the scene flow

without significant temporal delay, as is needed for several

application scenarios. In their multi-camera setup Park et al.

(2012) also operate sequentially. Scene flow is first estimated

frame-by-frame and then smoothed over time by tensor vot-

ing. Courchay et al. (2009) go further and represent the scene

with an explicit deformable 3D mesh template, which is

fitted to the video data from multiple cameras over 10–60

frames. The method is theoretically elegant, but computa-

tionally expensive. Both approaches target motion capture in

controlled settings.
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Fig. 3 Schematic sketch of our scene representation: the scene is mod-

eled as a collection of rigidly moving planar segments, here three dif-

ferent segments cover the side of a car

Techniques that avoid an arbitrary reference frame and

instead treat all views equally are predominantly used

in stereo. The simplest form is the widespread left-right

consistency check (e.g., Hirschmüller 2008) during post-

processing. More recently, consistency tests were directly

incorporated in the objective (Bleyer et al. 2011b). In our

view-consistent formulation, we extend the latter strategy to

scene flow, considering consistency across all images within

a temporal window.

Introduced by Lempitsky et al. (2008) for the case of 2D

optical flow, fusion of different proposal sets has become

a standard optimization technique. Here we employ such a

scheme for the estimation of 3D scene flow.

3 Piecewise Rigid Model for 3D Scene Flow

To estimate 3D scene flow, we describe the dynamic scene

as a collection of piecewise planar regions moving rigidly

over time (Fig. 3). The motion and geometry of each region

is governed by nine degrees of freedom, which we determine

by minimizing a single objective function. During optimiza-

tion, pixels are grouped into superpixels, and a suitable 3D

plane and rigid motion is selected for each of these segments.

Note that the implicitly obtained spatial segmentation does

not aim to decompose the scene into semantic objects. Rather,

an over-segmentation is desired to capture geometry and

motion discontinuities, and to allow for the accurate recovery

of non-planar and articulated objects. We begin our detailed

description with the basic parameterization of the scene w.r.t.

a single reference view and consider two time steps (Sect. 4).

Later, we show how to achieve view-consistent scene flow

over multiple frames (Sect. 5).

3.1 Preliminaries and Notation

We formalize our model for the classical case of images

obtained by a calibrated stereo rig at two subsequent time

steps. However, we note that an extension to a larger num-

ber of simultaneous views is straightforward. To distin-

guish between the different views, we use subscripts l,r

to identify the left and right camera1, and superscripts

1 “Left” and “right” are only used for intuition and do not necessarily

correspond to the geometric configuration of the rig.

t ∈ T = {−1, 0, 1, . . .} to indicate the acquisition time. We

let the left camera at time t = 0 define a common coor-

dinate system and refer to it as the canonical view; this

simplifies the notation. This canonical view, on one hand,

serves as an evaluation basis, and on the other hand, coin-

cides with the sole reference view, in case view consistency

is not employed. These choices lead to the projection matri-

ces (K|0) for the left and (M|m) for the right camera. For

simplicity, we assume w.o.l.g. the calibration matrix K to be

identical for both cameras.

In our model a 3D moving plane π ≡ π(R, t, n) is gov-

erned by nine parameters, composed of a rotation matrix R,

a translation vector t, and a scaled normal n, each with three

degrees of freedom. Note that we do not explicitly distinguish

between camera ego-motion and independent object motion,

but describe the full motion in one forward time step. Later,

when we extend our model to reason over multiple frames,

we show how to cope with high frequent ego-motion of the

camera (Sect. 5.3). In case of a single reference view, we

assume all planes to be visible in the canonical view. Thus,

as the canonical camera center and coordinate origin coin-

cide, no visible plane can pass the origin. We can then define

the scaled normal n ≡ n0
l via the plane equation xTn = 1,

which holds for all 3D points x on the plane. Throughout

the paper it is convenient to transfer the moving plane also

into other views and their respective camera coordinate sys-

tems. The plane equation still has to be valid after any rigid

transformation, hence the scaled normal transforms in cor-

respondence with 3D points x on the plane n0
l . For example,

for the left camera at time step t = 1 the normal n1
l in the

respective coordinate system is found as:

xTn0
l = 1 ⇔ (Rx + t)Tn1

l = 1 ⇔ n1
l = Rn0

l

1 + tTRn0
l

.

(1)

We can, furthermore, determine the depth d observed at a

pixel p of the image I t
v , acquired at time t w.r.t. the center of

camera v through the inverse scalar product:

d(p, nt
v(π)) = 〈K−1p, nt

v(π)〉−1. (2)

This information is later needed to test for occlusions

(Sect. 4.7), as well as to check the geometric consistency

(Sect. 5.2) of the representation.

Utilizing a planar scene representation allows to map pixel

locations conveniently to their corresponding positions from

one view to another. In particular, a moving plane π induces

homographies from the canonical view I 0
l to the other views

given by:

0
l H0

r (π) = (M − mnT)K−1 (3a)
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Fig. 4 (left) Single reference-view model. Data terms (black arrows)

and homographies (green). (center top) Pixels without correspondences

when using a reference view (blue). Areas that are hard to match may be

without correspondence in other views; view-consistency avoids this.

(center bottom) Enlarged areas containing pixels without correspon-

dence in the right camera. (right) Data terms in the three-frame view-

consistent model: Consistency is encouraged for spatial and direct tem-

poral neighbors (black arrows). All pixels of all views are considered

in the energy (Color figure online)

0
l H1

l (π) = K(R − tnT)K−1 (3b)

0
l H1

r (π) = (MR −
(

Mt + m)nT
)

K−1. (3c)

Concatenating the transformations above, mappings

between arbitrary view pairs can be obtained. This is achieved

by first transforming back to the canonical view and then into

the desired frame, e.g. 1
l H1

r (π) = 0
l H1

r (π) · 0
l H1

l (π)−1. For

notational convenience we define 0
l H0

l (π) to be the identity,

which maps the canonical frame onto itself.

4 Single Reference View

For now our aim is to determine depth and 3D motion for

every pixel of the designated reference view I 0
l . To that end,

we formally define an energy function E(P,S ) over two

mappings: a mapping S : I 0
l → S that assigns each pixel of

the reference view p ∈ I 0
l to a segment s ∈ S; and a mapping

P : S → Π to select a 3D moving plane π ∈ Π from a

predefined set of proposals Π for each of the segments s ∈ S.

To find these mappings, we aim to minimize a single energy

consisting of four terms:

E(P,S ) = ED(P,S ) + λER(P,S )

+μES(S ) + EV (P,S ). (4)

The data term ED measures photo-consistency across the

four views of our basic model. The regularization term ER

encourages (piecewise) smoothness of geometry and motion

at segment boundaries. The boundary term ES evaluates

the quality of the spatial segmentation, encouraging a com-

pact and edge-preserving over-segmentation of the reference

image. The visibility term EV deals with missing correspon-

dences from areas that move out of the viewing frustum (out

of bounds). The energy is then minimized in two steps: Start-

ing with a fixed initial over-segmentation S , we establish the

link between segments and 3D moving planes, labeling each

segment s ∈ S to belong to one of the moving planes π ∈ Π .

Subsequently, we operate with a fixed mapping P and re-

assign each pixel p ∈ I 0
l to one of the segments and, thereby,

associated 3D moving planes. Note that the basic form of the

energy remains, even when considering view consistency in

Sect. 5.

4.1 Data Term

In its traditional role, the data term embodies the assump-

tion that corresponding points in different views have similar

appearance. Here, we achieve this through four constraints

per pixel, two for the stereo pairs at time steps 0 and 1,

and two optical flow constraints, one for each camera (see

Fig. 4, left). Denoting the 3D moving plane at a pixel p as

πp = P(S (p)) and utilizing the homographies defined in

Eq. (3), we can define stereo data terms between the cameras

as

Ds
t =

∑

p∈I 0
l

ρ
(

0
l Ht

l (πp)p, 0
l Ht

r (πp)p
)

, t ∈ {0, 1}, (5)

and optical flow data terms across time as

Df
i =

∑

p∈I 0
l

ρ
(

0
l H0

i (πp)p, 0
l H1

i (πp)p
)

, i ∈ {l, r}. (6)

The corresponding pixel location in a different view is usually

a sub-pixel coordinate, hence image intensities are obtained

via bilinear interpolation. For increased robustness in general

conditions (e.g., outdoors), we utilize the census transform

ρ = ρC (Zabih and Woodfill 1994) over a 7×7 neighborhood

to assess photo-consistency. We scale the Hamming distances

by 1/30. Although we are not limited to this specific choice,

all examples and results are generated with the census data

cost, unless explicitly stated otherwise. The complete data

term is given as the sum of the four terms in Eqs. (5) and (6):

ED(P,S ) = Ds
0 + Ds

1 + Df
l + Df

r . (7)
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Fig. 5 Illustration of the regularization scheme: the bilinear distance

function fγ considers geometric distance and curvature. Integrating the

squared distances along the shared edge as well as along an extrusion

of the normals leads to a closed form expression

4.2 Spatial Regularization of Geometry and Motion

In our scene representation, geometry and motion parame-

ters are shared among all pixels within a segment, hence

explicit regularization within a segment is not needed. We

can thus focus on the segment boundaries. One important

benefit over pixelwise regularizers (Basha et al. 2010; Vogel

et al. 2011) is that our boundary regularizer does not have to

be overly strong to significantly stabilize scene flow estima-

tion. Moreover, it rather naturally deals with discontinuities,

a key problem area of previous scene flow techniques (e.g.,

Vogel et al. 2011). Since boundaries regularly occur within a

single object due to the over-segmentation, our regularization

term assumes piecewise smooth 3D geometry and motion.

We model shape and motion priors independently (given a

segmentation), and define our regularizer ER(P,S ) as the

sum of a geometric term EG
R (P,S ) and a term E M

R (P,S )

to measure the regularity of the motion field.

For now assume that two adjacent pixels p and q are

assigned to the moving planes πp = P(S (p)) and πq =
P(S (q)). We treat pixels as square patches, residing in the

image plane in which they share a boundary. To measure the

contribution to the regularization term along their common

edge, we consider the (2D) endpoints of the edge between

the pixels, c1 and c2. We begin with the geometry term. By

projecting the endpoints onto each of the two 3D planes, we

obtain the 3D endpoints c1
p, c1

q, c2
p and c2

q (see Fig. 5). In

case p and q lie on different planes, the pixel boundaries

will, in general, not coincide in 3D space. We thus compute

distance vectors between the 3D endpoints: d1 =c1
p−c1

q and

d2 = c2
p−c2

q. Our goal is to penalize the distances along the

shared edge. One could compute 3D distances for any point

on the boundary in a similar fashion. However, since we are

using planes as primitives, the 3D distance along the shared

boundary in the image plane is simply a convex combination

of the endpoint distances ||αd1 + (1 − α)d2||.
To consider surface curvature we exploit this observation

further and shift the 3D endpoints along their respective plane

normals np and nq before measuring distances. We denote

the difference of the normals as dn = np − nq, and define a

distance function (see Fig. 5)

fγ (α, β) = ||α(d1 + γβdn) + (1 − α)(d2 + γβdn)||. (8)

The weight γ balances boundary distance vs. curvature. The

geometry regularizer is then found by integration. Adding

a factor 3/2 for mathematical convenience, we integrate the

squared distance function ( fγ )2 along the boundary (w.r.t. α)

and along the normal direction (w.r.t. β) in closed form:

EG
R (P,S ) =

∑

(p,q)∈N

wp,qψ

(

3

2

∫ 1

0

∫ 1

−1

fγ (α, β)2 dβdα

)

=
∑

(p,q)∈N

wp,qψ

(

||d1||2+||d2||2+〈d1, d2〉

+γ 2||dn||2
)

. (9)

The summation considers pixels to be adjacent in an (8-)

neighborhood N , where the length of the common edge

is taken into account through the weight wp,q, which can

optionally also incorporate edge information (Eq. 13) of the

image data. ψ(·) denotes a (robust) penalty function. The

intuition behind this form of regularization is shown in Fig.

6. Setting γ := 1 our energy favors planar configurations

over bending. By integrating squared distances of 3D vec-

tors, the induced penalty increases smoothly as the situation

degenerates. This soft transition helps in the realistic case of

a limited proposal set of 3D moving planes Π .

The motion regularizer is obtained by first applying the

rigid transformation to the moving planes. We then similarly

integrate the endpoint distances dM
i = Rpci

p + tp − ci
p −

(Rqci
q + tq − ci

q), as well as the differences between the

(rotated) normals dM
n = (Rpnp−np)−(Rqnq −nq), leading

to

Fig. 6 Schematic sketch of the geometric part of our regularizer: smoothly connected regions (left) are favored over bending (center left). The

more the situation degenerates, the higher the energy becomes (center right and right)
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E M
R (P,S ) =

∑

(p,q)∈N

wp,qψ

(

||dM
1 ||2+||dM

2 ||2 (10)

+〈dM
1 , dM

2 〉+γ 2||dM
n ||2

)

.

In both cases, robustness to discontinuities is achieved by

employing truncated penalties ψ(y) = min(
√

y, η) (with

thresholds ηG, ηM ).

The proposed regularization scheme is not limited to 3D.

For instance, the endpoint distances can be replaced by

2D entities such as the disparity difference, the difference

between optical flow vectors, and the change of disparity

over time. This is a popular choice for scene flow (Huguet

and Devernay 2007; Valgaerts et al. 2010) and (optionally)

used here. Note, however, that falling back to 2D regulariza-

tion can only yield a (close) approximation of the true 3D

penalties, as projective foreshortening is not considered.

When reasoning at the segment level, we can approxi-

mate the regularizers by computing the penalties directly

from the endpoints of the segments. By precomputing the

length of the boundary (summing the edge weights along

the shared border), the evaluation of the regularizer becomes

much more efficient. Because superpixels in our framework

are near-convex, the overall accuracy of the algorithm is

barely affected (Fig. 12, bottom).

4.3 Spatial Regularization of the Segmentation

Data term and spatial regularization operate not only on the

segment-to-plane mapping P , but also depend on the assign-

ment of pixels to segments S , which in our experience can

lead to rather fragmented over-segmentations. To counter-

act this behavior and to incorporate prior knowledge that

segments should be spatially coherent (but not necessarily

connected) and preserve image edges, we add an additional

regularization term, assessing the quality of the underlying

segmentation:

ES(S ) =
∑

(p,q)∈N (I 0
l ),

S (p) 	=S (q)

up,q

+
∑

p∈I 0
l

{

0, ∃ e ∈ E (si ) : ||e − p||∞ < NS

∞, else.
(11)

The first term resembles a contrast sensitive pairwise Potts

model, again evaluated over the (8-)neighborhood N of a

pixel. Here, the weight up,q allows to take into account the

image structure and the length of the edge between the pixels.

To define these weights we follow Werlberger et al. (2009)

and apply the anisotropic diffusion tensor:

D
1
2 = exp(−α|∇ I |)ggT + g⊥(g⊥)T. (12)

The image gradient direction g = ∇ I/|∇ I | is determined via

bicubic interpolation in the middle between p and q. Assum-

ing I ∈ [0, 1], we set α = 5 and define the weight

up,q := |D 1
2
−→
pq|. (13)

The second term links a segment to its seed point e ∈ E (si )

in order to limit its maximum extent to a size smaller than

(2NS−1) × (2NS−1)pixels. This strategy prevents the scene

flow from becoming overly simplified, but more importantly

also restricts the number of candidate segments for a pixel,

thus reducing the time needed for optimizing the energy w.r.t.

S . We found that a good strategy to define the seed points

is to reuse the center of the original superpixels. Here we set

NS = 25, but values between 10 and 30 pixels perform alike

(see Sect. 6.1). Note that a similar strategy was proposed by

Veksler et al. (2010) to compute an over-segmentation of a

single image.

4.4 Visibility Term

So far we have not considered the problem of visibility, thus

areas that fall out of bounds, i.e. are not visible in some of the

images. Especially when dealing with large motions, these

regions can cover a significant portion of the image. Con-

figurations with no valid correspondence are not considered

by the data term Eq. (7) and contribute 0 cost to the energy.

Allowing for arbitrary moving planes in our model could,

therefore, easily lead to a solution, where a significant por-

tion of pixels is erroneously assigned a motion that moves

them out of bounds. On the other hand, penalizing these kinds

of configurations strongly could harm the results. Consider,

for instance, a saturated region that actually moves out of

bounds. A solution in which this region is mapped to a simi-

larly saturated, but unrelated area in the other images lowers

the data cost and would therefore be preferred. Since this reg-

ularly happens in challenging scenes, we address the problem

as follows: Let us assume that we have access to an “oracle”

V , which can predict whether a pixel will stay in the image or

move out of bounds. Further, let V 1
l , V 0

r and V 1
r be the pre-

dicted binary visibility masks for all but the reference image

(out-of-bounds: 0, pixel visible: 1), and let Γ
j

i [·] be a binary

function that determines whether its argument lies within the

boundaries of image I
j

i . We encourage the scene flow esti-

mate to stay near that prediction, by defining a visibility term

that forms part of the energy in Eq. (4):

EV(P,S ) = θoob

∑

p∈I 0
l

∣

∣

∣
V 0

r (p) − Γ 0
r

[

0
l H0

r (πp)p
]∣

∣

∣
(14)

+
∣

∣

∣
V 1

l (p) − Γ 1
l

[

0
l H1

l (πp)p
]∣

∣

∣

+
∣

∣

∣
V 1

r (p) − Γ 1
r

[

0
l H1

r (πp)p
]∣

∣

∣
,
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with θoob := 0.5 max(ρC ) set to half the maximal data cost.

In practice, we found that common stereo and variational

flow methods can predict pixels moving out-of-bounds suffi-

ciently reliably, and consequently reuse the output of the 2D

stereo and optical flow algorithms from the proposal genera-

tion step (Sect. 4.6). An alternative visibility predictor could

be the ego-motion of the stereo camera system.

4.5 Approximate Inference

Inference in our piecewise rigid model entails estimating the

continuous 9-dimensional variables describing geometry and

motion of each rigidly moving plane, and the discrete assign-

ments of pixels to segments. By restricting the optimization

to a finite set of proposal moving planes, the whole prob-

lem is transferred into a labeling problem in a discrete CRF.

The benefit is two-fold: First, we can leverage robust discrete

optimization techniques that cope well with complex ener-

gies, particularly here the fusion move framework of Lem-

pitsky et al. (2008, 2010). Second, occlusions are discrete

events and can thus naturally be integrated in the objective

(Sect. 4.7).

To bootstrap the process, we start with a fixed segmenta-

tion S and optimize the energy w.r.t. P , selecting a suitable

moving plane for each segment from the proposal set. To

obtain the initial superpixel segmentation, we simply min-

imize the segmentation energy ES alone, and subsequently

split strongly non-convex segments. We alternatively tested

a segmentation into regular grid cells. Interestingly, this sim-

plistic initialization works almost as well (see Sec. 6.1). In

either case, the seed points E are selected as the central pixels

of the initial segments. When solving for P we need to con-

sider the data, visibility, and regularization terms only. After

we found a solution for P , the mapping is kept fixed and

the energy is optimized w.r.t. S , reassigning the pixels to

segments and, thereby, implicitly to moving planes (c.f. Fig.

7). Because the segment size is restricted to a maximal side

length of NS through Eq. (11), the pseudo-Boolean function

(Lempitsky et al. 2008) representing the local energy has at

most (2NS − 1)2 variables, which makes the optimization

efficient. Distant segments can even be expanded in parallel.

We use a similar strategy when optimizing for P: We locally

restrict the validity of each moving plane proposal to cover

only a certain expansion region in the scene. In practice, we

found that a proposal should at least cover 100 of its closest

neighboring segments and set the region size accordingly.

This allows to test several proposals in parallel. Note that we

can iterate the alternating optimization further, but observe

no practical benefit.

General pseudo-Boolean energies are usually optimized

with QPBO (Rother et al. 2007), which can also handle

non-submodular energies, but does not guarantee a complete

labeling when supermodular edges are present. One disad-

Fig. 7 Demonstration of the per-pixel refinement: (top) Initial super-

pixel segmentation. (bottom) Superpixel segmentation after optimiza-

tion w.r.t. S

vantage compared to standard graph cuts, however, is that

the instantiated graph has twice the number of nodes than

the (pseudo-Boolean) energy has variables. For our (non-

submodular) energy we can alternatively use the local sub-

modular approximation proposed by Gorelick et al. (2014).

This has the advantage that conventional graph cuts can be

used, which is usually faster than QPBO. We particularly use

LSA-AUX, which for each α-expansion replaces pairwise

supermodular potentials by a local plane approximation that

bounds the true energy from above. This idea is very simple

to implement and delivers a significantly better approxima-

tion than a simple truncation of non-submodular terms. We

experimentally compare both approaches in Sect. 6.

4.6 Proposal Generation

To perform inference over the 3D geometry and motion of

the segments, we require an (initial) set of proposal planes

together with their rigid motion. We can create these from

either the output of other scene flow algorithms, or from a

combination of stereo and optical flow methods. To convert

the pixelwise correspondence information to our representa-

tion, we separately fit the parameters of a 3D plane and its

rigid motion to each superpixel of the initial segmentation.

Fitting is complicated by inaccuracies or noise in the stereo

and flow estimates, and by superpixels that are not well-

aligned with depth and motion discontinuities. We thus opt

for a robust procedure and minimize the transfer error inte-

grated into a robust cost function, particularly the Lorentzian

φ(x) = log(1 + x
2σ 2 ):
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∑

p∈s

φ(||P(0
l H0

r (n)p) − p′||2) → min
n

(15a)

∑

p∈s

φ(||P(0
l H1

l (R, t)p) − p′||2) → min
R,t

, (15b)

where the dependence of the homographies on the parame-

ters (the normal n and rigid motion (R, t)) is made explicit,

and P denotes the conventional projection operator. Each

pixel p of segment s ∈ S is matched to its 2D correspon-

dence p′, determined by the proposal algorithm. We para-

meterize the rotation in Eq. (15b) by its exponential map

to define the derivatives, and use the previously determined

scaled normal to derive the homography (c.f. Eq. 3). After

bootstrapping this non-convex optimization problem with the

solution of an efficient algebraic minimization, two iterations

of the limited-memory Broyden-Fletcher-Goldfarb-Shanno

algorithm (LM-BFGS) suffice for our purposes. The qual-

ity of the fit is analyzed in Sect. 6.1. Note that since we

are treating the estimation of 3D planes and rigid motions

independently, the problem of fitting a rigid motion is simi-

lar to the computation of the ego-motion of a stereo camera

system, such that algorithms for this problem could also be

applied (e.g., Badino and Kanade 2011). Here, however, we

only consider the motion of an individual segment and not

of the complete stereo rig.

4.6.1 Additional Proposals

The strategy of selecting parts of the solution from a set

of proposals allows to include additional information in an

unbiased way, without the need for altering the energy for-

mulation. We exploit this property by including the estimated

ego-motion of the stereo system as an additional proposal.

The ego-motion is found by reusing our fitting procedure

from above (Eq.15b) on the segment centers and their corre-

spondences, given by the output of our per-segment solution

(obtained after optimizing w.r.t. the mapping P). We then

can fuse the current solution with the estimated ego-motion.

Additionally, we use a local replacement strategy, moti-

vated by proposal instances for which depth and motion

errors are not correlated. We posit that these largely result

from the 2D proposal algorithms, which estimate motion and

depth independently. We address this with additional pro-

posals: We randomly select proposals and propagate a part

of their state to other segments in a 2-neighborhood. This

can either be the geometry or the rigid motion, which sim-

ply replaces the corresponding state of the neighbors. This

procedure is iterated several (≈ 4000) times, leading to a

combination of geometry and motion of neighboring seg-

ments. The strategy has similarities to the PatchMatch idea

(Barnes et al. 2009; Bleyer et al. 2011a), as information is

shared and distributed among neighboring segments.

4.7 Occlusion Handling

The data term as defined in Eq. (7) assumes that every pixel

is visible; no occlusion reasoning takes place. Given our 3D

scene representation, we can explicitly reason about occlu-

sion, however. Compared to stereo, the handling of occlu-

sions for scene flow has the advantage of having two (or

more, c.f. Sect. 5.3) additional views of the scene. Accord-

ingly, pixels that are occluded in a subset of views may still

be visible in one of the view pairs.

To leverage this, occlusion handling is applied to all pairs

of views for which a data term is formulated. We formalize

this only for a single view pair, because the mathematical for-

mulation is equivalent for each summand of the data term. We

make use of the well-known principle (dating back at least to

Kolmogorov and Zabih 2001) of applying a constant penalty

θocc, if a pixel is occluded in at least one of the two views

of the pair. The penalty is chosen as θocc := θoob (Eq. 14).

Although occlusions and out-of-bound areas have different

causes, the impact on the correspondence is the same: The

pixel correspondence cannot be judged by the appearance,

and hence the data costs of Eqs. (5) or (6) are invalid. Note

that pixels that are assigned to the same moving plane in our

scene representation naturally cannot occlude each other.

To simplify the exposition, we will not present our occlu-

sion model in its most general form, but rather one instanti-

ation within a single fusion/expansion move of the approxi-

mate inference procedure from Sect. 4.5. Hence, we are deal-

ing with a binary optimization problem. Assuming a fixed

segment-to-plane mapping P , we will first investigate the

update of the per-pixel segmentation S . Differences in the

update procedure when solving for P will be discussed later.

W.l.o.g. let the binary state xp = 0 denote that the pixel

p retains its current segment assignment and, accordingly,

xp = 1 indicate a switch to the trial segment α. We begin

by expressing the data term from Sect. 4.1 in the form of a

pseudo-Boolean function:

D(x) =
∑

p∈I 0
l

(

u0
p(1 − xp) + u1

pxp

)

, (16)

where the vector x denotes all binary pixel assignments. The

data penalty equals u0
p if p remains in its current segment,

and u1
p if p is assigned to segment α.

Whether a pixel p is occluded or not depends both on its

binary segment assignment xp, and on whether there is any

other pixel q (or possibly multiple pixels) that occludes p.

Determining whether q triggers an occlusion in turn depends

on its segment assignment xq. With O i
p we identify the set of

all pixel-assignment pairs (q, j), for which pixel q occludes

pixel p if xp = i and xq = j . Now we can replace Eq. (16)

with our occlusion-aware data term
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DO(x) =
∑

p∈I 0
l

⎛

⎜

⎝
θocc +

1
∑

i=0

ûi
p[xp = i]

∏

(q, j)∈O i
p

[xq 	= j]

⎞

⎟

⎠
.

(17)

Here, we denote the difference of the (unoccluded) data

penalty and the occlusion cost θocc by ûi
p = ui

p − θocc, and

with [·] the Iverson bracket. To facilitate a better understand-

ing of the equation above, let us focus on a single pixel p.

The respective summand becomes û0
p, if both xp = 0 and the

product equals to 1. The latter happens if no occlusion occurs,

that is either all possibly occluding pixels q are assigned to

a segment xq in which they do not lead to an occlusion, or

the set O0
p is empty, meaning that no pixel exists that could

possibly occlude p. The data cost overall thus equals θocc in

case of an occlusion, and the standard data penalty u0
p or u1

p,

otherwise.

Recall that we establish the segment-to-plane mapping P

by reasoning over entire segments (see Sect. 4.5). Therefore,

we directly extend the occlusion model to the segment level.

The potentials of the respective pseudo-Boolean energies in

Eqs. (16) and (17) look the same, but with variables repre-

senting segments instead of pixels. We consider a segment

to be (significantly) occluded if its central pixel is occluded.

Because our segments are nearly convex and similarly sized,

at least one quarter of a segment has to be occluded by a dif-

ferent region to render the central pixel occluded. To check

for occlusions we employ conventional z-buffering, utilizing

Eq. (2) to compute the depth at each pixel.

Depending on the number of possibly occluding pixels, the

(per-pixel) penalty may be a higher-order pseudo-Boolean

function (|O i
p| > 1). Optimization techniques based on graph

cuts, including QPBO, can only be applied to quadratic poly-

nomials, which is why all higher-order terms have to be

reduced to pairwise ones. Over the years several reduction

techniques have been proposed (e.g., Ali et al. 2008; Ishikawa

2009; Rother et al. 2009). Each applies a certain transforma-

tion that approaches the reduction independently for each

higher order summand of the energy. We refrain from pre-

senting these exhaustive details at this point and instead refer

to the Appendix.

5 View-Consistent Model

Equipped with our basic representation and model from

Sect. 4, we now generalize it to estimate scene flow for all

views and time instants simultaneously. A major benefit com-

pared to using a single reference view is that the entire image

evidence of all views has to be explained. This results in a

more robust estimate, which is less prone to common imag-

ing artifacts. Occlusion handling can be improved as well.

Another benefit is that significantly fewer non-submodular

edges occur in the pseudo-Boolean function constructed dur-

ing the optimization process. We defer details to the exper-

imental evaluation. To enable a view-consistent model, we

first need to extend the notion of the segmentation to all views,

with the challenge of generating a consistent segmentation

of the scene across views and time. An obvious downside of

a view-consistent approach is a significantly enlarged set of

unknowns, since the assignments from segments to moving

planes and pixels to segments have to be computed for each

involved view.

After establishing the concept of view-consistency, we

aim to estimate scene flow for more than two time steps. We

thus extend the idea of rigidity by assuming constant transla-

tional and rotational velocity of the 3D moving planes. Note

that due to the short time intervals considered, this assump-

tion is valid for many application scenarios. In the following,

we start our description for only two time steps, and later

explain how to extend our model to multiple frames in time.

5.1 Model Overview

As before we strive to determine depth and a 3D motion

vector for every pixel, but this time for all the views exam-

ined. We thus keep track of a superpixel segmentation in

every view, denoted as St
v , the set of segments in the image

I t
v in view v at time step t . The energy definition (Eq. 4) is

extended to be a function of two sets of mappings. The first

set of mappings S = {S t
v : t, v} with S t

v : I t
v → St

v assigns

each pixel of frame I t
v to a segment of St

v . With the second

set P = {P t
v : t, v}, a rigidly moving plane is selected for

each segment in each view: P t
v : St

v → Π . Recall that Π

denotes a candidate set of possible 3D moving planes. The

formal definition of the energy takes the same basic form as

Eq. (4):

EVC(P,S ) = EVC
D (P,S )+λEVC

R (P,S )+μEVC
S (S ).

(18)

However, in our view-consistent setting the definition of the

data term EVC
D is significantly different, as not only photo-

consistency w.r.t. a reference view is considered, but also the

consistency of the underlying geometric configuration and

segmentation of the scene. The regularization term EVC
R and

the segmentation term EVC
S are straightforward extensions

of their single view counterpart from Sect. 4. In our experi-

ence, by explaining the available evidence from all images,

this view-consistent formulation does not require an explicit

visibility term (Sect. 4.4).

The spatial smoothness assumption is extended to all

views, simply summing the contributions of motion (Eq. 9)

and geometry (Eq. 10) terms per frame:
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(a) Implausible case (b) Occlusion (c) Normal case

Fig. 8 Illustration of the per-pixel view-consistent data term (see text for more details)

EVC
R (P,S ) =

∑

t∈T

∑

v∈{l,r}
EG

R (P t
v,S

t
v ) + E M

R (P t
v,S

t
v ).

(19)

In a similar fashion we extend the regularization of the seg-

mentation (Eq. 11) to all considered views:

EVC
S (S ) =

⎛

⎜

⎜

⎜

⎝

∑

t∈T,
v∈{l,r}

∑

(p,q)∈N (I t
v),

S (p) 	=S (q)

up,q

⎞

⎟

⎟

⎟

⎠

+
∑

p∈I 0
l

{

0, ∃ e ∈ E (si ) : ||e − p||∞ < NS

∞, else,

(20)

where N is again defined as the 8-neighborhood. Note that

the second term is only applied to the canonical view, such

that the maximal size of a segment is only restricted in the

canonical frame. Also note that we treat the segmentations of

the different frames independently. However we encourage

the segmentation to be consistent across views (c.f. Fig. 11)

such that the restriction on the maximal segment size is also

propagated to all other images, which is further exploited in

the inference procedure. Consistency between the superpixel

segmentations is encouraged in the data term, described in

the following.

5.2 View-Consistent Data Term

In our view-consistent model we explicitly store a description

of the scene in terms of moving planes as observed in each of

the views. To exploit the redundancy in this representation,

we check the consistency of the scene flow estimate in each

view with its direct neighbors in time, as well as with the

other views at the same time instant (Fig. 4, right). We here

slightly abuse the term consistency: In its classical sense we

check for photo-consistency of the images at corresponding

pixel locations, determined through their assigned moving

planes π ≡ π(R, t, n). However, in our novel scene repre-

sentation we can also check the geometric configuration for

plausibility, test for occlusions, and verify the consistency of

the segmentation. This is done by comparing depth values

induced by the respective moving plane (Eq. 2), based on the

underlying image segmentation (see Fig. 8).

Now let us assume we want to check the consistency

between a pixel location p ≡ pt
v in view v at time t and its

corresponding pixel location p̂t̂
v̂

in view v̂ at time t̂ . We denote

the 3D moving plane of the pixel p by πp = P t
v

(

S t
v (p)

)

.

The related homography allows to determine the correspond-

ing pixel location in the other view, p̂t̂
v̂

= t
vHt̂

v̂
(πp)p, and the

depth function d(p, nt
v(π)) from Eq. (2) enables evaluating

the geometric configuration at that pixel. The data term for a

single pixel p in view v at time-step t assigned to the moving

plane πp with the adjacent view v̂ at time-step t̂ is then given

by

ρ(p, p̂t̂
v̂
) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

θimp if
d(p̂t̂

v̂
,nt̂

v̂
(π

p̂t̂
v̂

))

d(p̂t̂
v̂
,nt̂

v̂
(πp))

> 1+ ǫ

θocc if
d(p̂t̂

v̂
,nt̂

v̂
(πp))

d(p̂t̂
v̂
,nt̂

v̂
(π

p̂t̂
v̂

))
> 1+ ǫ

θoob otherwise if p̂t̂
v̂

/∈ I t̂
v̂

ρC (p, p̂t̂
v̂
)+θmvp otherwise if πp 	= π

p̂t̂
v̂

ρC (p, p̂t̂
v̂
) otherwise.

(21)

The first two cases are depicted in Fig. 8a and b. Here the

relative difference in depth is used to distinguish between

implausible and occlusion cases. This distinction is simi-

lar to comparing disparity values for the stereo case (Bleyer

et al. 2011b). The first case (Fig. 8a) describes a geometri-

cally implausible situation, in which the depth of the mov-

ing plane πp, observed from the 2nd camera in pixel p̂t̂
v̂
,

is smaller than the depth assigned to the pixel in that 2nd

view. In this situation the 3D point on the plane π
p̂t̂

v̂

would

be occluded by the moving plane πp and not be visible by

the 2nd camera. We apply a fixed penalty θimp in this case. In

the second case (see Fig. 8b), the depth of the moving plane

πp is greater than that of the corresponding plane π
p̂t̂

v̂

and,

therefore, the pixel p is occluded in the second view. Again,

a fixed penalty θocc is applied. This concept of occlusion rea-

soning via cross checking the current solution among views

is only possible by simultaneously estimating a solution for

all views and rather different from the occlusion detection

technique presented in Sect. 4.7 for a single reference view.
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An additional benefit is that the resulting energy function

induces only pairwise edges. In Eq.(17), in contrast, multi-

ple possible labels for the corresponding location in the other

view may exist, which in turn leads to higher-order terms

in the respective pseudo-Boolean energy. In our experience

the view-consistent formulation leads to fewer supermodu-

lar edges in the optimization (see Sect. 6.2), resulting in a

simpler optimization problem.

Since the set of proposal planes is limited due to practi-

cal considerations, we cannot assume that our representation

always assigns a fully accurate depth for every pixel. Instead

of strictly comparing relative depth values we, therefore, opt

for a relaxed test by including the ǫ parameter, empirically set

to ǫ := 0.015. This additionally alleviates aliasing artifacts

introduced by the finite resolution of the pixel grid.

The third case penalizes pixels moving out of the view-

ing frustum (out of bounds) with a fixed penalty θoob. By

employing view consistency, the solution has to respect the

information from all views of the scene. Hence the treat-

ment of this event can be a lot simpler than in the case of

a single reference frame, where an additional visibility term

(Sect. 4.4) was included.

When pixels are in geometric correspondence we apply

the usual census data penalty ρ = ρC to measure photo-

consistency (c.f. Sect. 4.1). In (Vogel et al. 2014) we orig-

inally proposed to additionally truncate the data term at

half the maximal possible cost at a pixel (0.5 max(ρC )). An

investigation of this particular choice shows that the num-

ber of resulting non-submodular terms in the optimization is

reduced (Sect. 5.4), however some of the information is lost,

which can lead to a decreased accuracy. Consequently, we

avoid the truncation here.

If the pixels are in geometric correspondence, but belong

to different moving planes, we assert a moving plane viola-

tion and impose an additional penalty θmvp. This leads to the

desired view-consistent segmentation, as pixels are encour-

aged to pick the same 3D moving plane in neighboring views.

In practice, it appears prudent to penalize pixels without

correspondence equally, thus we set both penalties for occlu-

sions and pixels moving out of bounds to θoob = θocc =
0.5 max(ρC ). Aliasing again prevents us from penalizing

implausible configurations with an infinite penalty; instead

we set θimp := max(ρC ), which also prevents deadlocks in

the optimization. While this can lead to a few implausible

assignments in the final estimate, the overall error is reduced.

For the same reasons we allow for deviations from our con-

sistency assumption for the segmentation and empirically set

θmvp := 5/16 θoob.

All views are treated equally in our model, thus the per-

pixel contribution from Eq. (21) is summed over all pixels of

all frames. Our data term consists of the summed data costs

for all stereo pairs and frames that are direct neighbors in

time (Fig. 4, right):

Fig. 9 Example from the KITTI training set (#191): active data term ρ

(Eqs. 21 and 22). Colors denote normal photo-consistency (yellow), out

of bounds (red), occluded (green), moving plane violation (dark blue)

and implausible (light blue) cases (Color figure online)

EVC
D (P,S ) =

∑

t∈T

∑

v∈{l,r}

∑

p∈I t
v

(

∑

v̂ 	=v

ρ(p, p̂t
v̂
)

+
∑

t̂∈T
|t̂−t |=1

ρ(p, p̂t̂
v)

)

. (22)

In contrast to the reference-view formulation (c.f. Fig. 4, left),

each view pair is considered twice by the data term, because

every view holds its own scene flow representation. Figure 9

illustrates the view-consistent data term. The internal states

assigned by the data term (cases of Eq. 21) to each view pair

are shown for each individual pixel.

5.3 View-Consistent Multi-frame Extension

We now discuss the details of extending our view-

consistent model to more than just two frames. As men-

tioned, geometry, motion and segmentation regularizers can

be extended to a larger number of frames in a rather straight-

forward fashion (Eqs. 19 and 20). The data term however

needs special consideration, as we need to define homogra-

phies between the additional views and also transform the

normals into the specific view coordinate system. Recall that

we restrict ourselves to reason only over shorter time inter-

vals and thus can assume the motion of a moving plane to

be of constant velocity in both its rotational and translational

component. Under this condition suitable homographies can

be found by a concatenation of the homographies defined in

Eq. (3). Similarly, view-normals for the different time steps

are generated by a repeated application of Eq. (1), thus again

assuming constant velocity. Note here, that the normals in the

proposal set Π are always stored in the canonical coordinate

system.
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Fig. 10 Variation in camera pitch limits the validity of the constant velocity model: (left) a scene observed by a moving camera with varying pitch.

(right) Camera images with induced 2D flow (black arrows). We compensate camera pitch by removing the ego-motion of the camera

Such a model can tolerate small deviations from this con-

stant 3D velocity assumption in the scene, but this is put to a

test if the camera system itself is violating this assumption.

Especially abrupt rotational changes in the viewing direction

affect the whole image of the scene. The automotive applica-

tion in our experiments is a good example for this. Scene flow

estimation is challenged by a common high-frequent pitch-

ing motion of the stereo rig, often caused by an unsteady

road surface and amplified by the suspension of the vehicle.

In our model the motion is encoded relative to the respective

camera coordinate system, such that even slight changes in

the relative camera position can induce significant changes

in the relative geometry and motion (Fig. 10). To address this

problem, we introduce the following extension, in which we

include ego-motion estimates for the different time steps.

First, we compute the relative ego-motion Et = [Qt |st ]
between all consecutive time steps t and t + 1. The com-

putation of homographies between successive frames then

proceeds by first applying the motion induced by the mov-

ing plane representation with the ego-motion part removed,

and then the relative ego-motion from time step t to t + 1.

Recall that the rotation R and the translation t of a moving

plane are stored in the coordinate system of the canonical

view, thus unaware of any ego-motion. Then we can remove

the relative ego-motion of the canonical view E0 by applying

(E0)−1 = [(Q0)−1| − (Q0)−1s0].
As an example, the homography between the frames t and

t + 1 in the left view becomes

t
l H

t+1
l (π)

= K
(

Qt (Q0)−1R −
(

Qt (Q0)−1(t − s0) + st
)

(nt
l )

T

)

K−1.

(23)

Further note the use of the corrected view normal in Eq. (23),

for which we can find a similar expression:

nt
l =

Qt−1(Q0)−1Rnt−1
l

1 + (t − s0)TRnt−1
l + (st−1)TQt−1(Q0)−1Rnt−1

l

.

(24)

Other homographies and view-normals can be corrected

for ego-motion accordingly. The estimation of camera ego-

motion of a stereo camera system is a well-studied problem

(e.g., Badino and Kanade 2011). Here we use the method

proposed in Sect. 4.6.

5.4 Approximate Inference for View-Consistency

Our inference procedure closely follows the approach for

a single reference view in Sect. 4.5. Again, we perform infer-

ence in a discrete CRF and optimize the energy in two steps,

first solving for the mappings P , while keeping the segmen-

tation fixed. Then we proceed the other way around, fixing

the mappings from segments to moving planes and optimiz-

ing w.r.t. to the segmentation mappings S . The alternation

can be iterated further, but again without practical benefits.

Instead of an initial superpixel segmentation, we prefer to

start from a regular checkerboard grid with an edge length

of 16 pixels. Seed points e ∈ E (see Eq. 20) are simply

the grid centers. This trivial “segmentation” is more effi-

cient and also reduces aliasing artifacts, caused by a possibly

uneven size of segments across views. The per-pixel refine-

ment step (Fig. 11) will eventually deliver a consistent over-

segmentation across views, adhering to depth and motion

boundaries.

Because of the grid structure, segments can be treated

as large pixels when solving for P . However, the use of

an initially not view-consistent segmentation will lead to

aliasing effects. We thus relax the consistency constraints

and set ǫ := 0.1 and θmvp := 3/16 θoob in the first

optimization round, to ensure that proposals are not dis-

carded at an early stage. We generate the proposal set in

the same manner as described in Sect. 4.6. We discov-

ered that by first running a single segment-to-plane step of

our reference-view above, and removing unused proposals,

above, the proposal set is filtered without loosing impor-

tant information, leading to a significantly reduced compu-

tation time. When optimizing over more than two frames,

proposals are generated for all consecutive frame pairs. I.e.,

when using 3 frames we generate proposals for time steps

t = −1 and 0, and additionally for t = 1 when using 4

frames. The additional proposals are discarded when they

are found to be similar to already existing ones nearby.

We consider proposals to be valid in a certain expansion

region, centered at the seed point in the canonical frame.

Empirically, we found that an expansion region size of
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Fig. 11 Example from the KITTI training set (#191): consistent moving plane assignments at segment level (left) and final consistent superpixel

segmentation (right)

13×9 cells (208×144 pixels) yields a good compromise

between accuracy and speed. During a fusion move, we

thus only have to instantiate a local graph, which is deter-

mined by a projection of the expansion region into all other

views.

The inference for the pixel-to-segment mappings S fol-

lows similar principles. Unused moving plane proposals are

discarded. The size of the instantiated graph is restricted by

the region constraint (Eq. 20), using an expansion region of

39 × 39 pixels (NS = 20), and determined by projection into

the other views. We penalize inconsistencies more strictly

here, since the decisions are made on a per-pixel basis, and

use the default parameters for ǫ and θmvp from Sect. 5.2.

Figure 11 illustrates the computed mappings over the course

of the optimization for one of the cameras. Consistent mov-

ing plane assignments at segment level are shown on the

left, illustrating the distribution of P . The final, consistent

superpixel segmentation S is depicted on the right.

5.4.1 Hierarchical Refinement

The grid-based segment structure, furthermore, allows for

a very simple refinement procedure, which we found to

work well in practice. Instead of directly redistributing pix-

els to segments by solving for S after all segments have

been assigned a moving plane, we optionally refine the seg-

mentation and solve for P again. In practice we halve

the grid resolution in each image and start the inference

from the previous assignment. We prune the initial pro-

posal set by retaining only those moving planes that are in

use. In our experience, this hierarchical approach allows to

reduce aliasing problems due to the smaller segment size,

but still considers a more global context during the optimi-

sation stage. Because we again set the expansion region to

13 × 9 cells and the set of moving plane proposals is already

reduced significantly, this step is very efficient. Note that

after the refinement, we also reduce the expansion region

(i.e. NS = 10) accordingly when re-assigning pixels to

segments.

6 Experiments

We begin the experimental evaluation with our basic model

based on a single reference view and later examine the view-

consistent approach. Quantitative experiments rely on the

KITTI dataset (Geiger et al. 2012), which has emerged as a

standard benchmark for optical flow and stereo algorithms,

with over 50 submissions in both categories. Its images are

acquired by a calibrated stereo rig, mounted on top of a car

together with a laser scanner, which delivers the semi-dense

ground truth. Targeting automotive applications, the scenes

are challenging for mainly two reasons. First, the strong for-

ward motion of the car leads to very large displacements in

stereo (>150 pixels) and flow (>250 pixels). Consequently,

there are also many pixels without direct correspondence

in the other image. Second, the images are acquired out-

doors under realistic lighting conditions and exhibit over-

saturation, shadows and lens flare, but also translucent and

specular glass and metal surfaces. The KITTI benchmark is

the first large scale dataset that allows evaluating scene flow

methods along with their 2D counterparts, stereo and optical

flow. However, it often lacks ground truth for independently

moving objects, which leads to a bias toward methods that

focus on the dominant background. Nonetheless, we strongly

believe that this dataset is better suited for the evaluation of

scene flow methods than other existing, synthetic datasets

used previously (e.g., Huguet and Devernay 2007; Vogel et al.

2011).

Our quantitative experiments mainly employ the KITTI

training dataset, which is ideal for a detailed performance

and parameter study due to its size of 194 images (1240 ×
376 pixels) with public ground truth. For a comparison to

the state of the art, we also submitted our results on the 195

images of the test portion of the KITTI dataset to the offi-

cial KITTI benchmark (Sect. 6.5); there the ground truth is

withheld. Because of inaccuracies in the laser measurements

from the moving platform, the standard KITTI metric is to

compute the number of outlier pixels that deviate more than a
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certain threshold from the ground truth. We report results for

error thresholds of 2, 3, 4, and 5 pixels for the entire image

(All), or only for unoccluded areas (Noc). We additionally

report the endpoint error (EPE) for optical flow and stereo.

We occasionally use the abbreviations SN for stereo without

occluded areas, and SA when including these regions. Simi-

larly, we shorten the respective identifiers for optical flow as

FN and FA.

6.1 Evaluation of the Single Reference View Model

All experiments use fixed parameters, except where stated.

We set the smoothness weight to λ = 1/16, and the weight

of the segmentation term relative to λ as μ = 1/10λ. If

not mentioned otherwise, we regularize in 2D space and fix

ηG =ηM =20.

We generate the proposal set from the output of 2D optical

flow and stereo algorithms. For computing optical flow we

employ the algorithm of Vogel et al. (2013a), which uses a

census data term and a total generalized variation regularizer,

a popular and effective combination for the KITTI scenes.

To obtain an estimate in a reasonable time, we only apply 3

warps and 10 iterations per warp with an up-scaling factor

of 0.9 in the image pyramid. The disparity map is obtained

using semi-global matching (Hirschmüller 2008).

First, we evaluate the proposal fitting procedure from

Sect. 4.6. Figure 12 (top) shows the KITTI metric at the

default threshold (3 pixels), as well as the endpoint error

of the plain 2D proposal algorithms (Init), and after the

per-segment fitting took place (Fit). We observe only small

changes in error, thus can conclude that planar rigid seg-

ment fitting does not significantly affect the accuracy. We

attribute slight deviations in error to non-planar or non-rigid

segments, e.g. due to misalignment with depth and motion

boundaries.

Next, we investigate the simplification of the smoothness

term when reasoning over segments, and how it affects the

results. Recall that for computational efficiency we evaluate

the spatial regularizer directly on the endpoint distances of

the shared edge, instead of accumulating the contribution of

all boundary pixels (Sect. 4.2). As we can see in Fig. 12 (bot-

tom), the approximation (App) is quite accurate given our

compact superpixels and on par with the exhaustive compu-

tation (Full), but in our experience ∼30× faster. Note that

we here report results directly after the segment-level opti-

mization, since both approaches employ the same per-pixel

refinement step.

We now demonstrate that our representation and optimiza-

tion approach are quite robust, in the sense that the results do

not strongly depend on the initialization, parameter choice,

etc. The importance of the initial segmentation is evaluated

in Fig. 13 (left). Starting from a trivial “grid” segmentation

(edge length 16 pixels) leads to a slight decrease in perfor-
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Fig. 12 (top) Proposal fitting procedure: error of the 2D proposal algo-

rithms (blue) and after planar rigid segment fitting (orange). (bottom)

Approximation of the regularization term after the per-segment step:

error when evaluating the integral per pixel (orange) and when inte-

grating the distances at the endpoints of the shared edge (blue) (Color

figure online)

mance before the per-pixel refinement takes place. This gap

is closed after the refinement step. Only a small difference in

accuracy remains compared to starting from a proper super-

pixel segmentation. Note that this also helps understanding

why, as mentioned, iterating the alternating inference further

has little practical benefit; energy and error are not signifi-

cantly reduced further.

The effect of starting with a different number of super-

pixels is depicted on the left of Fig. 14. After using more

than ∼1000 initial segments, the accuracy of the final result

becomes stable, as the per-pixel refinement can compensate

for eventual inaccuracies in the coarser initial segmentation.

But even starting with fewer segments does not harm the

performance dramatically.

Similarly, varying the weight for the regularization term λ

(Fig. 14, center) and the maximum superpixel size NS in the

per-pixel refinement (Fig. 14, right) shows that the method

is not sensitive to changes in these parameters. In the lat-

ter case higher values lead to better results, but also longer

computation times.
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Fig. 13 Evaluation of different model choices on the KITTI training

set for the per-segment and the final solution after per-pixel refinement.

(left) Initial segmentation: using a grid (light blue and red) compared to

a superpixel segmentation (blue and yellow). (center left) Regulariza-

tion: comparison of 2D (blue and yellow) and 3D regularization (light

blue and red). (center right) Occlusion handling: our basic model with

(light blue and red) and without (blue and yellow) occlusion handling.

(right) Visibility term: predicting all pixels to stay in bounds (orange)

compared to our standard predictor (blue) (only per-pixel error) (Color

figure online)
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the maximum superpixel size NS . The legend distinguishes Pix(el)/Seg(ment)-F(low)/S(tereo) -A(ll)/N(oc)

Next, we investigate the behavior when switching from

2D to 3D regularization. For 3D regularization we set ηG =
ηM = 5 and λ = 0.25, thus increase the robustness in the

smoothing process. We can observe from Fig. 13 (center left)

that regularization w.r.t. 2D entities is slightly superior in the

evaluated measures. This can possibly be explained by the

fact that the error measures do not evaluate the 3D quality of

the scene flow, but only its reprojection, i.e. disparity and 2D

optical flow.

Figure 13 (right) depicts the effect of replacing the visibil-

ity prediction (Sect. 4.4) by a trivial predictor, which assumes

pixels to always stay in bounds. As we can see, predicting

visibility by the initial 2D algorithms has a strong effect on

the flow endpoint error in occluded regions. Other measures,

however, are nearly unaffected.

The biggest impact on the quality of the estimated scene

flow is given by the different proposal algorithms we utilize.

In Fig. 15 we extend our standard 2D proposal set by adding

proposals from 3D scene flow methods (3D-Props), namely

L1-regularized 3D scene flow (Basha et al. 2010) and locally

rigid 3D scene flow (Vogel et al. 2011). Furthermore, we

evaluate our local replacement strategy (R), the ego-motion

proposals (E, Sect. 4.6.1), and combine both proposal meth-

ods (R+E). Additionally, we evaluate a variant in which we

replace the rigid motion component of our proposals with

the estimated camera motion (E-Hard), thus simulating a

motion stereo algorithm, which enforces a rigid scene with

only ego-motion, similar to Yamaguchi et al. (2013, 2014).

We can observe that adding more proposals improves results;

especially the endpoint error of optical flow is reduced. A

larger gain is achieved by local replacement and, furthermore,

by adding additional ego-motion proposals. Both approaches

are complementary to some extent, as a combination slightly

improves the results further. Finally, the best results can be

achieved by enforcing ego-motion as a hard constraint, under-

lining the bias in the KITTI benchmark.

6.1.1 Evaluation of the Occlusion Model

We begin the evaluation of our occlusion model of Sect. 4.7

with a qualitative example of a street scene2 from Vaudrey

2 Compared to KITTI images, the less challenging lighting conditions

allow us to refrain from our usual census data cost. We use brightness

constancy with ρ(a, b) = min(|a − b|, ζ ), truncated at ζ = 10% of

the intensity range. We use 3D regularization with rather aggressive
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Fig. 15 Comparison of different strategies to generate proposals: we

compare using only 2D proposals (Pix), adding more proposals from

scene flow algorithms (3D-Props), local replacement (R), ego-motion

(E), a combination of both (R+E), and removing all but ego-motion

proposals (E-Hard (constraint)). Errors are evaluated using the KITTI

metric and w.r.t. the endpoint error after per-pixel refinement

Fig. 16 Example scene from Vaudrey et al. (2008), demonstrating occlusion handling and the different processing steps. Results are given for the

estimated depth and the lateral 3D motion component. Detected occlusions are highlighted in white

et al. (2008). The scene is recorded from a vehicle approach-

ing a roundabout. Several independently moving traffic par-

ticipants and a rather complex occlusion pattern pose a chal-

lenging scenario for our method. Figure 16 displays the

results after the different processing steps of our approach.

The estimate appears acceptable without occlusion handling,

except for regions that are not visible in the reference image,

e.g. at the left of the pedestrian. Adding the occlusion han-

dling from Sect. 4.7 allows to detect occluded regions and

to extrapolate the lateral motion in a plausible way. The

per-pixel refinement (Per-Pixel and Occlusion) enhances the

object contours and improves the occlusion boundaries even

more.

We now quantitatively compare our basic model with

and without additional occlusion handling. Figure 13 (cen-

ter right) shows a small, but consistent advantage of explicit

occlusion handling. The gap is largest for optical flow evalu-

Footnote 2 continued

truncation parameters (ηG =ηM =1). Other deviating parameters were

set to λ=0.1, μ=0.1, θocc =0.03.

ated over the whole image. Note, however, that with addi-

tional proposals the advantage diminishes and the differ-

ence between both models becomes smaller. Recall that in

order to perform optimization with graph-cut based tech-

niques, like QPBO, the higher-order potentials, which can

occur in case of multiple occlusions, have to be reduced to

pairwise ones (Sect. 4.7). The resulting optimization prob-

lem possesses supermodular edges, such that nodes can

remain unlabeled after running QPBO. To approximately

minimize this NP-hard problem, Rother et al. (2007) pro-

posed the QPBO-I method, which we also apply here. Table 1

summarizes our experience when applying the method on

the KITTI training dataset. While the number of super-

modular edges and unlabeled nodes appears to be small,

employing QPBO-I instead of QPBO has a notable impact

on the resulting energies. At the pixel level, the number

of nodes that cannot be labeled by QPBO alone appears

rather high at 7.7%. Optimization with QPBO-I, however,

takes an order of magnitude more time. Another challenge

is that this form of occlusion reasoning is sensitive to out-
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Table 1 Optimization with explicit occlusion handling: percentages

of supermodular edges and resulting unlabeled nodes, resulting energy

when using QPBO or QPBO-I

Inference Supermodular Unlabeled Energy Energy

stage edges (%) nodes (%) w/ QPBO w/ QPBO-I

Seg 4.8 3.8 760,692 753,196

Pix 1.3 7.7 678,110 664,497

Numbers are averaged over the KITTI training set

liers in the data term, such as specular highlights on the

window of the car in Fig. 16. Note that without occlusion

handling unlabeled nodes occur only very rarely (<1 per

image).

6.2 Evaluation of the View-Consistent Model

As before, we keep all parameters fixed, unless otherwise

mentioned. The only parameter that deviates strongly from

the reference-view model is the smoothness weight. We set

λ = 1/60, and regularize using the intensity-weighted edge

length (Eq. 13), which is now based on multiple images. We

set NS = 20 to speed up the per-pixel refinement, and start

from an initial grid segmentation.

We begin with several quantitative analyses to illustrate

the different aspects of the proposed approach. First, we

investigate whether our model can benefit from the hierarchi-

cal refinement of the grid described in Sect. 5.4.1. Figure 17

(left) compares the performance after a single and two refine-

ment levels to the result without hierarchical refinement. The

gain in performance is not large, but consistent throughout

the evaluation; we use a single refinement step in the remain-

ing experiments.

As our model is capable of jointly reasoning over multiple

frames by assuming constant velocity for the rigidly moving

segments, we investigate the performance when considering

2, 3, or 4 consecutive frames in Fig. 18. We further distin-

guish the addition of proposals from time steps other than the

current one (“+”), meaning that we derive proposals from

the disparity and 2D flow computed from the other adja-

cent frame pairs in the time window. Moreover, we include

a variant that reasons about only two frames, but is provided

with proposals extracted from three frames (VC-2F+). For

comparison, we also add the single reference-view version

PWRS+R (with local replacement), which is used to reduce

the initial proposal set of the current frame pair. Note again

that this reference-view method is only applied at the segment

level.

Analyzing Fig. 18 one can observe that moving away

from the single reference view (PWRS+R vs.VC-2F) already

yields a significant improvement, most notably in the optical

flow error w.r.t. all pixels. View-consistency benefits by con-

sidering the data of all views jointly. Parts that are occluded

in the canonical view used for evaluation (and as a refer-

ence view PWRS+R) can still be visible in two other views.

Furthermore, a strong drop in the endpoint error hints at a

reduction of gross outliers. Including proposals from the pre-

vious time step (VC-2F+), and considering the image data

of the previous frames (VC-3F) improve the results further.

But only a combination (VC-3F+) of both leads to a larger

performance gain in all measures, again affecting occluded

regions most strongly. This suggests that a larger set of pro-

posals from multiple frames alone is not sufficient, but that

the image evidence from the longer sequence is important.

Finally, including a fourth frame into the model yields dimin-

ishing returns, with only marginal improvements over the

three frame case.

In another experiment we analyze the effect of the pro-

posal set. Recall that we use the reference-view version of
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Fig. 17 (left) Error after refining the segmentation in the two-frame

model, once (green), twice (red), or not at all (blue). (center) Effect of

the proposals on the view-consistent three-frame model: 2D proposals

(blue), single reference-view model (light blue), local replacement (yel-

low), and additional ego-motion (red). (right) Evaluation with a poor

proposal set: 2D proposals (blue) and VC-2F (orange), with PWRS-

Seg+R pruning. Results are shown w.r.t. the KITTI metric (> 3 pixels)

and the endpoint error (Color figure online)
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Fig. 18 Evaluation across different number of frames: Single

reference-view method on 2 frames (dark blue), view-consistent method

on 2 frames (blue), 3 frames (cyan), 2 frames with proposals from the

previous frame (yellow), 3 frames with proposals from previous frame

(orange), and 4 frames with proposals from all 4 frames (red). Results

are shown w.r.t. the KITTI metric (> 3 pixels) and the endpoint error

(Color figure online)

our method in order to prune the proposal set in the begin-

ning, with the advantage of a reduced computation time for

the view-consistent model. Figure 17 (center), however, also

shows an effect on the accuracy of the algorithm, here eval-

uated for the three frame case without considering addi-

tional proposals from the previous time step. Interestingly,

despite the fact that the application of PWRS-Seg yields

only a subset of the original proposals (2D-Proposals), the

results improve. An analysis shows that both variants deliver

almost the same final energy, such that the cause is not

well-captured by our energy formulation. We posit that this

may be due to the proposal set not being sufficiently varied

in crucial parts of the solution space, which is supported

by the fact that the observed accuracy difference dimin-

ishes when we use proposals from the previous time step as

well (VC-3F+). As we would expect given previous results

Fig. 15, we observe a strong accuracy gain from the local

replacement strategy (PWRS-Seg+R) and ego-motion pro-

posals (PWRS-Seg+R+E); in these cases the additional pro-

posals also noticeably lower the final energy.

Because our method requires proposals for computing

scene flow, we investigated how much a poor proposal set

affects the performance. To that end we change the parame-

ters of the initial 2D stereo and flow algorithms. For instance,

in the optical flow case we use only a single warp per image

pyramid and change the pyramid scale to 0.5. We then apply

our two-frame view-consistent method (VC-2F) with PWRS-

Seg+R to reduce the proposal set. The result is depicted in

Fig. 17 (right). The notably high error of the 2D algorithms

is reduced by a factor of 6 on average, showing that our scene

flow approach can also cope with unfavorable proposal sets.

This somewhat surprising result, achieved without consid-

ering ego-motion information, can partially be explained by

the particularities of the dataset and the algorithms used to

compute the proposals. The flow algorithm should deliver

reasonable results in areas with only small 2D motion vec-

tors. Given the largely planar nature of the street scenes in the

dataset, these parts can then be propagated into other image

areas, which have the same 3D motion and geometry, but

strongly differing 2D motion. This in turn suggests that 3D

scene flow may be well-suited to cope with large motions

due to its internal 3D representation.

Recall that the formulation of the data term, although

directly leading to only pairwise edge potentials, introduces

supermodular edges into the energy. In Table 2 we investi-

gate the situation in a similar manner as for the occlusion

handling strategy with a single reference view, again collect-

ing data over the whole KITTI training set. We apply the

QPBO-I algorithm to the optimization problem given by our

three-frame version (VC-3F) and count the number of unla-

beled nodes and supermodular edges over the course of the

optimization. As we can see, the number of non-submodular

edges is not much lower than in the reference-view case, but

unlabeled nodes occur significantly less often. This motivates

considering to solve the problem using graph cuts by apply-

ing the LSA-AUX algorithm (Gorelick et al. 2014) to find

a submodular approximation of the problem at each expan-

sion step. Conveniently, the local approximation bounds the

true energy from above, such that the overall energy cannot

increase, which is not the case if supermodular terms are just

truncated. The final solutions show a comparable energy to

results obtained with QPBO-I, while being an order of mag-

nitude faster. A similar performance can be obtained by using

QPBO instead of LSA-AUX and graph cuts.
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Table 2 Optimization in the view-consistent model (3 frames): average number of nodes and edges in the graph, average percentage of supermodular

edges and resulting unlabeled nodes (before applying QPBO-I), and resulting energy when using LSA-AUX or QPBO-I

Inference # # Supermodular Unlabeled Energy Energy

stage nodes edges (%) (%) QPBO-I LSA-AUX

Seg 2,064 7,485 4.01 0.4 3,295,790 3,306,453

Pix 3,749 20,102 0.64 1.2 2,907,666 2,908,031

Numbers are averaged over the KITTI training set

6.3 Qualitative Examples

We begin with an illustration of several difficult examples

from the KITTI benchmark (Fig. 19) recovered by our three-

frame method (VC-3F+). The most interesting example is

shown at the top (#74). In the presence of severe lens flares

in both cameras, many optical and scene flow methods fail

hopelessly to recover the motion in this scene. While the

appearance of these artifacts is rather consistent in consecu-

tive views, their location is not. This allows our approach to

recover the scene flow reasonably well. Notably only 8.1%

of the flow vectors of all pixels and 5.7% in the visible areas

are outside the standard 3-pixel error threshold of KITTI. It

is important to note that the robust handling of these artifacts

is achieved only through view- and multi-frame consistency.

Also depicted is a scene (#11) with low image contrast in

shadow regions. Scene #123 is interesting because of similar

problems with lens flare as for #74, here however challenging

the reconstruction of the geometry as their location is con-

sistent across frames. Finally #116 has fine structures in the

image (e.g., the traffic sign), several areas with occlusions,

and a car moving independently, albeit without ground truth.

Figure 20 illustrates results for different outdoor scenes

from Meister et al. (2012). We display the input images on

the left. Our scene flow estimates (VC-3F+) are shown as dis-

parities (center) and reprojected optical flow in the usual color

coding. These examples show that our model is capable of

handling independent object motion under unfavorable con-

ditions. Even though the motion displacements in the image

plane are rather small, the scenes contain many scenarios that

are hard for conventional flow and stereo algorithms. The

scenes ‘car truck’ and ‘crossing’ have saturated highlights

and reflections, as well as a rather complex occlusion pat-

tern. The scene ‘car truck’ also exhibits cast shadows dancing

on the truck and the street. More challenging is ‘sun flares’,

where the sun causes lens flares and ‘flying snow’, which

as the name suggests contains heavy snow fall and a wet

and reflecting street. The scene from Fig. 2 shows the wiper

occluding the view and is, therefore, very difficult to recover

for conventional approaches that parameterize the scene in a

single camera only. The most complex scene is ‘night snow’,

in which the aperture of the cameras is wide open and the

image has only a shallow depth of field. Moreover, the wind-

shield is wet, causing the headlights of approaching cars to

flare. We can only give a qualitative evaluation here, as no

ground truth for these scenes is available. Apart from the last

scene, which has an incorrect depth in the sky region, our

estimates appear quite appropriate.

6.3.1 Typical Failure Cases

Figure 21 displays some typical failure cases of our method.

For example, it is challenged by over-saturated areas, espe-

cially if these are located close to the boundary of the images

or in occlusion regions. Recall that we replace the data term

with a fixed penalty (θocc or θoob), if a pixel lacks a cor-

respondence in other images. Now assume that a proposal

exists that maps this over-saturated image region to a sim-

ilarly over-saturated, but incorrect one in the other images.

The data penalty in this case is close to zero, which com-

pared to the energy of the true solution in our model (θoob) is

decidedly lower. By demanding view-consistency, this incor-

rect solution will still incur penalties for the incorrect regions,

since the geometry and/or motion is not consistent. However,

as the penalties are accumulated per pixel, whether the cor-

rect correspondence can be recovered depends on the size of

the respective regions in the images.

As already mentioned, a second challenge are imaging

artifacts, e.g. sun flares (Fig. 21, bottom), that appear con-

sistently in all the views. In the example the sun flare even

leads to over-saturation, such that the low data energy may

overrule the consistency penalty.

6.4 Quantitative Summary and Timings

A direct comparison between the view-consistent and sin-

gle reference-view models is given in Table 3. Note that

these differ from the published results in (Vogel et al. 2013b,

2014) due to a change in the KITTI ground truth, slightly

different parameter sets, and extensions such as the local

replacement strategy. The first row gives results for the 2D

algorithms used to derive the proposals (2D Algorithms).

Otherwise, we use the usual notation: PWRS for our basic

reference-view model, PWRS+R for a version with local

replacements, and PWRS+R+E to denote the usage of addi-

tional ego-motion proposals. For the view-consistent version

(VC) we use PWRS+R+E to prune the proposals and distin-

guish between the two, three and four-frame versions, with
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Fig. 19 Examples from the KITTI training set. Input images (top left)

and recovered scene flow (top right), color coded as disparity (from

white—near to blue—far) and motion vectors, reprojected into the

image plane. Arrow lengths are depicted with a log-scale. Colors encode

the length of the actual 2D displacement (blue—small to red—large).

Color coded endpoint error for disparity (bottom left) and flow (bottom

right) (Color figure online)
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Fig. 20 Challenging examples from Meister et al. (2012): input frames of our method (left). Recovered scene flow, reprojected to disparity (center)

and 2D flow field (right)
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Fig. 21 Typical failure cases from the KITTI training set: (top) Over-

saturated area moving out of viewing frustum at the wall on the left.

(bottom) Example from Meister et al. (2012) showing a sun flare with

a consistent motion pattern

(+) and without proposals from all frames. In general the

numbers improve from top to bottom. Already our basic ver-

sion achieves a significant reduction in all error measures

compared to the state-of-the-art 2D proposals. Both strate-

gies to generate additional proposals show their benefit, espe-

cially for flow. The view-consistent model leads to a visible

reduction of the error in all measures already for the two-

frame case. Moving to three frames further improves the

results, especially for occluded areas, but considering four

frames only yields marginal improvements. Notably, all but

two numbers are at least halved when comparing our best

result with the initial 2D solution.

Table 4 illustrates the time spent on the different parts of

the algorithm. We distinguish between running the 2D flow

and stereo algorithms (Init), the proposal fitting procedure

(Fit), and further time the inference at the segment level (Seg)

and at the pixel level (Pix). We also show the time needed for

generating additional proposals (R and E), and one hierarchi-

cal refinement step (Ref ). We compare numbers when start-

ing with 1,850 and 1,150 segments. In both cases, our model

with a single reference view (PWRS) needs less time for the

optimization and both additional proposal generation strate-

gies than for computing the initial optical flow and disparity

maps. For the view-consistent case, we exploit the reduction

in the number of proposals by first running PWRS+R+E at

the segment level. With a low number of segments, our basic

version (PWRS) needs only 20s to deliver a result. However,

running the 2D proposal algorithms already takes signifi-

cantly more time. Our most advanced three-frame method

needs ∼3 min including proposals.

6.5 Comparison with the State of the Art

Table 5 shows a comparison of our piecewise rigid scene

model with the state of the art on the KITTI test set. At the

time of writing, (August 2014) the benchmark has over 50

submissions in both categories. Our scene flow methods rank

among the top performers, with the view-consistent model

coming out first overall for both stereo and flow, when con-

sidering full images with occluded areas. Note that several

top-ranked methods assume epipolar motion as a hard con-

straint (Setting ms). In contrast, our method can handle scenes

with independently moving objects (c.f. Fig. 20), which are

uncommon in the benchmark. Considering only methods

applicable to general scenes, i.e. with independent object

motion, the distance to the next best competitor is rather large,

which demonstrates that scene flow from our piecewise rigid

scene model, has a clear advantage over single camera meth-

ods for motion estimation under challenging conditions.

Table 3 Results on the KITTI training set: average KITTI metric (% of flow vectors/disparities above 2, 3, 4, 5 pixels of endpoint error) and average

endpoint error [px] with (All) and without (Noc) counting occluded regions

Method Flow Stereo

KITTI metric AEP KITTI metric AEP

All Noc All Noc All Noc All Noc

2 px 3 px 4 px 5 px 2 px 3 px 4 px 5 px 2 px 3 px 4 px 5 px 2 px 3 px 4 px 5 px

2D Algorithms 14.6 11.7 10.1 9.0 8.5 6.5 5.5 4.8 3.5 1.6 10.3 7.5 6.1 5.2 9.4 6.8 5.5 4.7 1.5 1.4

PRSF 9.9 7.3 6.0 5.2 5.7 4.0 3.2 2.7 2.4 1.1 7.7 5.3 4.1 3.4 6.7 4.5 3.5 2.9 1.1 1.0

PRSF+R 9.1 6.4 5.0 4.3 5.2 3.5 2.7 2.3 1.9 1.0 7.4 5.1 4.0 3.3 6.4 4.4 3.4 2.9 1.1 1.0

PRSF+R+E 8.6 6.0 4.7 3.9 5.0 3.3 2.6 2.1 1.7 0.9 7.3 5.1 4.0 3.3 6.3 4.3 3.4 2.8 1.0 0.9

VC-2F 7.8 5.2 4.0 3.2 4.3 2.8 2.1 1.7 1.2 0.7 6.6 4.5 3.5 2.8 5.7 3.8 2.9 2.4 0.9 0.8

VC-2F+ 7.4 4.9 3.7 3.0 4.2 2.7 2.0 1.7 1.2 0.7 6.2 4.2 3.3 2.7 5.4 3.6 2.8 2.3 0.9 0.8

VC-3F 6.9 4.3 3.1 2.5 4.1 2.6 1.9 1.6 1.1 0.7 5.7 3.8 2.9 2.3 5.1 3.4 2.6 2.1 0.8 0.8

VC-3F+ 6.4 4.0 2.8 2.2 4.0 2.5 1.9 1.5 1.1 0.7 5.4 3.6 2.8 2.3 5.0 3.4 2.6 2.1 0.8 0.7

VC-4F+ 6.3 3.9 2.8 2.2 3.9 2.5 1.8 1.5 1.1 0.7 5.2 3.6 2.8 2.2 4.8 3.3 2.5 2.1 0.8 0.7
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Table 4 Timings on KITTI images (0.5 MPixels), measured on a dual Intel Core i7 computer and two proposals per segment, for two different

numbers of initial segments

# Segments Proposals PWRS VC-SF

Init Fit Seg R E Pix Seg-2F Seg-Ref-2F Seg-3F Seg-Ref-3F Pix-2F Pix-3F

1,850 60s 16s 19s 8s 9s 15s 23s 9s 46s 12s 18s 30s

1,150 60s 16s 10s 8s 5s 10s 17s 6s 32s 8s 14s 23s

Table 5 Comparison with the

state-of-the-art on the KITTI test

set: our methods are denoted as

PRSF+R (reference view, 2D

proposals, local replacement),

PRSF+R+E (with ego-motion

proposals), and VC-3F+ (view

consistent, 3 frames, using

PRSF+R to reduce the proposal

set)

The settings column marks

scene flow (sf), multi-frame

(mv), and motion stereo (ms)

methods

Method Setting KITTI metric (% > 3 px) EPE [px]

All Noc All Noc

Stereo evaluation

(Yamaguchi et al. 2014) sf ms 3.64 2.83 0.9 0.8

VC-3F+ sf mv 3.31 3.05 0.8 0.8

(Yamaguchi et al. 2013) 4.72 3.40 1.0 0.8

(Yamaguchi et al. 2013) 5.11 3.92 1.0 0.9

PRSF+R+E sf 4.87 4.02 1.0 0.9

(Yamaguchi et al. 2012) 5.37 4.04 1.1 0.9

PRSF+R sf 5.22 4.36 1.1 0.9

(Einecke and Eggert 2014) 5.94 4.86 1.2 1.0

(Spangenberg et al. 2013) 6.18 4.97 1.6 1.3

(Ranftl et al. 2013) 6.88 5.02 1.6 1.0

Optical flow evaluation

VC-3F+ sf mv 4.84 2.72 1.3 0.8

(Yamaguchi et al. 2014) sf ms 5.61 2.82 1.3 0.8

PRSF+R+E sf 7.07 3.57 1.6 0.9

(Yamaguchi et al. 2013) ms 8.28 3.64 2.2 0.9

PRSF+R sf 7.39 3.76 2.8 1.2

(Yamaguchi et al. 2013) ms 10.56 3.91 2.7 0.9

(Ranftl et al. 2014) 11.96 5.93 3.8 1.6

(Braux-Zin et al. 2013) 15.15 6.20 4.5 1.5

(Demetz et al. 2014) 11.03 6.52 2.8 1.5

(Vogel et al. 2013a) 14.57 7.11 5.5 1.9

7 Conclusion

In this paper we introduced a scene flow approach that

models dynamic scenes as a collection of piecewise planar,

local regions, moving rigidly over time. It allows to densely

recover geometry, 3D motion, and an over-segmentation of

the scene into moving planes, leading to accurate geometry

and motion boundaries. Employing unified reasoning over

geometry, motion, segmentation and occlusions within the

observed scene, our method achieves leading performance

in a popular benchmark, surpassing dedicated state-of-the-art

stereo and optical flow techniques at their respective task. We

extend our basic reference-view technique to leverage infor-

mation from multiple consecutive frames of a stereo video.

Our view-consistent approach exploits consistency over time

and viewpoints, thereby significantly improving 3D scene

flow estimation.

In particular, our model shows remarkable robustness to

missing evidence, outliers, and occlusions, and can recover

motion and geometry even under unfavorable imaging con-

ditions, where many methods fail. In future work we plan to

incorporate long-term temporal consistency into our frame-

work, and to relax the constant velocity assumption to a more

flexible formulation. Moreover, we aim to explicitly model

small deviations from the local planarity and rigidity assump-

tions. Another promising route may be to include object-level

semantic image understanding into the segmentation scheme,

with associated class-specific motion and geometry models.
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Appendix: Higher-Order Reductions for Occlusion Han-

dling with a Reference View

We here describe how to convert the occlusion-sensitive data

term from Eq. (17) into a quadratic pseudo-Boolean function.

Note that the only interesting case is |O0
p | ≥ 2, that is there

are two or more possibly occluding pixels. Otherwise, the

problem is already in quadratic form (|O0
p | = 1), or there is

no occluding pixel and only the (unary) data term is required

(|O0
p |=0).

Recall that Eq. (17) is defined as part of a single α-

expansion step, i.e. a pixel can only be assigned two possible

labels (α or its previous label). For simplicity we restrict the

analysis to the case i =0. We thus consider the term

û0
p[xp = 0]

∏

(q, j)∈O0
p

[xq 	= j]. (25)

The reduction for i =1 is analogous.

First, let us consider the special case in which there is a

pixel q that occludes pixel p in both possible assignments

of xq, that is (q, 0) ∈ O0
p and (q, 1) ∈ O0

p . In that case the

pixel p is always occluded and Eq. (25) vanishes. For the

remaining cases, we distinguish between û0
p <0 and û0

p >0.

Case û0
p < 0: We can substitute the whole term with the

help of at most one non-submodular term with weight û0
p. No

non-submodular term is introduced if all Boolean variables

in the term are inverted, i.e. j ≡ 1. In that case Eq. (25)

becomes

û0
p(1 − xp)

∏

(q,1)∈O0
p

(1 − xq). (26)

Introducing an additional variable z, the polynomial in

Eq. (26) can be replaced by

min
z

û0
p

(

1 − z − (1 − z)xp −
∑

(q,1)∈O0
p

(1 − z)xq

)

(27)

in quadratic form.

If xp = 0 and the other variables encode a constellation

where p is not occluded, then the expression becomes equal

to û0
p (by setting z =0). Otherwise, the minimum is attained

at 0 (with z =1).

In the case of there being a (q, 0) ∈ O0
p , we follow the

scheme introduced by Rother et al. (2009). With the introduc-

tion of two auxiliary variables z0, z1, we replace the product

in Eq. (25) by

min
z0,z1

− û0
p(z0z1 − z1 + (1 − z0)xp)

− û0
p

∑

(q, j)∈O0
p

(

z1(1 − xq) + (1 − z0)xq

)

.
(28)

Here, the term −û0
pz0z1 is not submodular. Like in the pre-

vious case, if the variables do not encode an occlusion, and

if xp = 0, the minimum is û0
p (setting z0 = 0 and z1 = 1).

Otherwise the minimum is 0 (setting z0 =1 and z1 =0).

Case û0
p > 0: We approach this problem using a series of

substitutions. Following Ali et al. (2008), we replace a prod-

uct of two variables in Eq. (25), xq1 xq2 , with a new variable

z, and add

min
z

û0
p(xq1 xq2 − 2xq1 z − 2xq2 z + 3z), (29)

such that after the substitution Eq. (25) becomes

û0
p(xq1 xq2 − 2xq1 z − 2xq2 z + 3z)+

û0
p(1 − xp)z

∏

(q, j)∈O0
p\

{(q1,0),(q2,0)}

[xq 	= j]. (30)

Two inverted Boolean variables can be replaced in the same

manner. Note that we are not restricted to replacing only

variables from O0
p , but can also substitute 1 − xp itself.

The substitution introduces one non-submodular term

with weight û0
p. To arrive at a quadratic polynomial one needs

to replace all but two literals of the product as described, lead-

ing to n − 1 or n − 2 non-submodular terms.

References

Adiv, G. (1985). Determining three-dimensional motion and struc-

ture from optical flow generated by several moving objects. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 7(4),

384–401.

Ali, A. M., Farag, A. A., & Gimel’Farb, G. L. (2008). Optimizing binary

MRFs with higher order cliques. In European Conference on Com-

puter Vision.

Badino, H., & Kanade, T. (2011). A head-wearable short-baseline stereo

system for the simultaneous estimation of structure and motion. In

IAPR Conference on Machine Vision Application (pp 185–189).

Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J., & Szeliski,

R. (2011). A database and evaluation methodology for optical

flow. International Journal of Computer Vision, 92(1), 1–31.

vision.middlebury.edu/flow

Barnes, C., & Shechtman, E. (2009). PatchMatch: A randomized cor-

respondence algorithm for structural image editing. ACM Trans-

actions on Graphics, 28(3), 24:1–24:11.

Basha, T., Moses, Y., & Kiryati, N. (2010). Multi-view scene flow esti-

mation: A view centered variational approach. In IEEE Conference

on Computer Vision and Pattern Recognition.

Black, M. J., & Anandan, P. (1991). Robust dynamic motion estimation

over time. In IEEE Conference on Computer Vision and Pattern

Recognition.

123

http://vision.middlebury.edu/flow


Int J Comput Vis (2015) 115:1–28 27

Bleyer, M., Rother, C., & Kohli, P. (2010). Surface stereo with soft seg-

mentation. In IEEE Conference on Computer Vision and Pattern

Recognition.

Bleyer, M., Rhemann, C., & Rother, C. (2011a). PatchMatch stereo:

Stereo matching with slanted support windows. In British Machine

Vision Conference.

Bleyer, M., Rother, C., Kohli, P., Scharstein, D., & Sinha, S. N. (2011b).

Object stereo: Joint stereo matching and object segmentation. In

IEEE Conference on Computer Vision and Pattern Recognition.

Braux-Zin, J., Dupont, R., & Bartoli, A. (2013). A general dense image

matching framework combining direct and feature-based costs. In

IEEE International Conference on Computer Vision.

Brox, T., & Malik, J. (2011). Large displacement optical flow: Descrip-

tor matching in variational motion estimation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 33(3), 500–513.

Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accu-

racy optical flow estimation based on a theory for warping. In

European Conference on Computer Vision.

Carceroni, R. L., & Kutulakos, K. N. (2002). Multi-view scene capture

by surfel sampling: From video streams to non-rigid 3D motion,

shape and reflectance. International Journal of Computer Vision,

49, 175–214.

Courchay, J., Pons, J. P., Monasse, P., & Keriven, R. (2009). Dense and

accurate spatio-temporal multi-view stereovision. In Asian Con-

ference on Computer Vision.

Demetz, O., Stoll, M., Volz, S., Weickert, J., & Bruhn, A. (2014). Learn-

ing brightness transfer functions for the joint recovery of illumi-

nation changes and optical flow. In European Conference on Com-

puter Vision.

Devernay, F., Mateus, D., & Guilbert, M. (2006). Multi-camera scene

flow by tracking 3-D points and surfels. In IEEE Conference on

Computer Vision and Pattern Recognition.

Einecke, N., & Eggert, J. (2014). Block-matching stereo with relaxed

fronto-parallel assumption. In IEEE Intelligent Vehicles Sympo-

sium Proceedings (pp 700–705).

Furukawa, Y., & Ponce, J. (2008). Dense 3D motion capture from syn-

chronized video streams. In IEEE Conference on Computer Vision

and Pattern Recognition.

Garg, R., Roussos, A., & Agapito, L. (2013). A variational approach to

video registration with subspace constraints. International Journal

of Computer Vision, 104(3), 286–314.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous

driving? In IEEE Conference on Computer Vision and Pattern

Recognition. www.cvlibs.net/datasets/kitti/.

Gorelick, L., Veksler, O., Boykov, Y., Ben Ayed, I., & Delong, A. (2014).

Local submodular approximations for binary pairwise energies. In

Computer Vision and Pattern Recognition.

Hirschmüller, H. (2008). Stereo processing by semiglobal matching and

mutual information. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(2), 328–341.

Hornacek, M., Fitzgibbon, A., & Rother, C. (2014). SphereFlow: 6 DoF

scene flow from RGB-D pairs. In IEEE Conference on Computer

Vision and Pattern Recognition.

Huguet, F., & Devernay, F. (2007). A variational method for scene flow

estimation from stereo sequences. In IEEE International Confer-

ence on Computer Vision.

Hung, C. H., Xu, L., & Jia, J. (2013). Consistent binocular depth and

scene flow with chained temporal profiles. International Journal

of Computer Vision, 102(1–3), 271–292.

Irani, M. (2002). Multi-frame correspondence estimation using sub-

space constraints. International Journal of Computer Vision, 48(3),

173–194.

Ishikawa, H. (2009). Higher-order clique reduction in binary graph cut.

In IEEE Conference on Computer Vision and Pattern Recognition.

Kolmogorov, V., & Zabih, R. (2001). Computing visual correspondence

with occlusions using graph cuts. In IEEE International Confer-

ence on Computer Vision (pp 508–515).

Lempitsky, V., Roth, S., & Rother, C. (2008). FusionFlow: Discrete-

continuous optimization for optical flow estimation. In IEEE Con-

ference on Computer Vision and Pattern Recognition.

Lempitsky, V., Rother, C., Roth, S., & Blake, A. (2010). Fusion moves

for Markov random field optimization. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 32(8), 1392–1405.

Lucas, B. D., & Kanade, T. (1981). An iterative image registration tech-

nique with an application to stereo vision. International Joint Con-

ference on Artificial Intelligence, 81, 674–679.

Meister, S., Jähne, B., & Kondermann, D. (2012). Outdoor stereo cam-

era system for the generation of real-world benchmark data sets.

Optical Engineering, 51(2), 021107-1.

Müller, T., Rannacher, J., Rabe, C., & Franke, U. (2011). Feature-

and depth-supported modified total variation optical flow for 3D

motion field estimation in real scenes. In IEEE Conference on

Computer Vision and Pattern Recognition.

Murray, D. W., & Buxton, B. F. (1987). Scene segmentation from visual

motion using global optimization. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 9(2), 220–228.

Nir, T., Bruckstein, A., & Kimmel, R. (2008). Over-parameterized vari-

ational optical flow. International Journal of Computer Vision,

76(2), 205–216.

Park, J., Oh, T. H., Jung, J., Tai, Y. W., & Kweon, I. S. (2012). A

tensor voting approach for multi-view 3D scene flow estimation

and refinement. In European Conference on Computer Vision.

Rabe, C., Müller, T., Wedel, A., & Franke, U. (2010). Dense, robust,

and accurate motion field estimation from stereo image sequences

in real-time. In European Conference on Computer Vision.

Ranftl, R., Pock, T., & Bischof, H. (2013). Minimizing TGV-based

variational models with non-convex data terms. In International

Conference on Scale Space and Variational Methods in Computer

Vision.

Ranftl, R., Bredies, K., & Pock, T. (2014). Non-local total generalized

variation for optical flow estimation. In European Conference on

Computer Vision.

Rother, C., Kolmogorov, V., Lempitsky, V., & Szummer, M. (2007).

Optimizing binary MRFs via extended roof duality. In IEEE Con-

ference on Computer Vision and Pattern Recognition.

Rother, C., Kohli, P., Feng, W., & Jia, J. (2009). Minimizing sparse

higher order energy functions of discrete variables. In: IEEE Con-

ference on Computer Vision and Pattern Recognition.

Schoenemann, T., & Cremers, D. (2008). High resolution motion layer

decomposition using dual-space graph cuts. In IEEE Conference

on Computer Vision and Pattern Recognition.

Spangenberg, R., Langner, T., & Rojas, R. (2013). Weighted semi-

global matching and center-symmetric census transform for robust

driver assistance. In International Conference on Computer Analy-

sis of Images and Patterns.

Sun, D., Sudderth, E. B., & Black, M. J. (2010). Layered image motion

with explicit occlusions, temporal consistency, and depth ordering.

In: Conference on Neural Information Processing Systems.

Sun, D., Wulff, J., Sudderth, E., Pfister, H., & Black, M. (2013). A fully-

connected layered model of foreground and background flow. In

IEEE Conference on Computer Vision and Pattern Recognition.

Tao, H., & Sawhney, H. S. (2000). Global matching criterion and color

segmentation based stereo. In: IEEE Workshop on Applications in

Computer Vision.

Unger, M., Werlberger, M., Pock, T., & Bischof, H. (2012). Joint motion

estimation and segmentation of complex scenes with label costs

and occlusion modeling. In IEEE Conference on Computer Vision

and Pattern Recognition.

123

www.cvlibs.net/datasets/kitti/


28 Int J Comput Vis (2015) 115:1–28

Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., & Theobalt,

C. (2010). Joint estimation of motion, structure and geometry from

stereo sequences. In European Conference on Computer Vision.

Vaudrey, T., Rabe, C., Klette, R., & Milburn, J. (2008). Differences

between stereo and motion behaviour on synthetic and real-world

stereo sequences. In International Conference on Image and Vision

Computing New Zealand.

Vedula, S., Baker, S., Collins, R., Kanade, T., & Rander, P. (1999).

Three-dimensional scene flow. In IEEE Conference on Computer

Vision and Pattern Recognition.

Veksler, O., Boykov, Y., & Mehrani, P. (2010). Superpixels and super-

voxels in an energy optimization framework. In European Confer-

ence on Computer Vision.

Vogel, C., Schindler, K., & Roth, S. (2011). 3D scene flow estimation

with a rigid motion prior. In IEEE International Conference on

Computer Vision.

Vogel, C., Roth, S., & Schindler, K. (2013a). An evaluation of data

costs for optical flow. In Pattern Recognition (Proc. of GCPR) (pp

343–353).

Vogel, C., Schindler, K., & Roth, S. (2013b). Piecewise rigid scene flow.

In IEEE International Conference on Computer Vision.

Vogel, C., Roth, S., & Schindler, K. (2014). View-consistent 3D scene

flow estimation over multiple frames. In European Conference on

Computer Vision.

Volz, S., Bruhn, A., Valgaerts, L., & Zimmer, H. (2011). Modeling tem-

poral coherence for optical flow. In IEEE International Conference

on Computer Vision.

Wang, J. Y. A., & Adelson, E. H. (1994). Representing moving images

with layers. IEEE Transactions on Image Processing, 3, 625–638.

Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., & Cremers, D.

(2008). Efficient dense scene flow from sparse or dense stereo data.

In European Conference on Computer Vision.

Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., &

Bischof, H. (2009). Anisotropic Huber-L1 optical flow. In British

Machine Vision Conference.

Yamaguchi, K., Hazan, T., McAllester, D., & Urtasun, R. (2012). Con-

tinuous Markov random fields for robust stereo estimation. In

European Conference on Computer Vision.

Yamaguchi, K., McAllester, D., & Urtasun, R. (2013). Robust monoc-

ular epipolar flow estimation. In IEEE Conference on Computer

Vision and Pattern Recognition.

Yamaguchi, K., McAllester, D., & Urtasun, R. (2014). Efficient joint

segmentation, occlusion labeling, stereo and flow estimation. In

European Conference on Computer Vision.

Zabih, R., & Woodfill, J. (1994). Non-parametric local transforms for

computing visual correspondence. In European Conference on

Computer Vision.

123


	3D Scene Flow Estimation with a Piecewise Rigid Scene Model
	Abstract 
	1 Introduction
	1.1 Piecewise Rigid Scene Model
	1.2 View-Consistent Multi-frame Scene Flow
	1.3 Contributions

	2 Related Work
	3 Piecewise Rigid Model for 3D Scene Flow
	3.1 Preliminaries and Notation

	4 Single Reference View
	4.1 Data Term
	4.2 Spatial Regularization of Geometry and Motion
	4.3 Spatial Regularization of the Segmentation
	4.4 Visibility Term
	4.5 Approximate Inference
	4.6 Proposal Generation
	4.6.1 Additional Proposals

	4.7 Occlusion Handling

	5 View-Consistent Model
	5.1 Model Overview
	5.2 View-Consistent Data Term
	5.3 View-Consistent Multi-frame Extension
	5.4 Approximate Inference for View-Consistency
	5.4.1 Hierarchical Refinement


	6 Experiments
	6.1 Evaluation of the Single Reference View Model
	6.1.1 Evaluation of the Occlusion Model

	6.2 Evaluation of the View-Consistent Model
	6.3 Qualitative Examples
	6.3.1 Typical Failure Cases

	6.4 Quantitative Summary and Timings
	6.5 Comparison with the State of the Art

	7 Conclusion
	Acknowledgments
	Appendix: Higher-Order Reductions for Occlusion Handling with a Reference View
	References


