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Abstract. This paper describes the set-up of a segmentation competi-

tion for automatic and semi-automatic extraction of the liver from com-

puted tomography scans and the caudate nucleus from brain MRI data.

This competition was held in the form of a workshop at the 2007 Medical

Image Computing and Computer Assisted Intervention conference. The

rationale for organizing the competition is discussed, the training and

test data sets for both segmentation tasks are described and the scoring

system used to evaluate the segmentation is presented.

1 Introduction

In 1986 Keith Price wrote a highly amusing article [1] in which he complained
that “computer vision suffers from an overload of written information but a
dearth of good evaluations and comparisons.” He asks the question: “How do
you evaluate the works of others when you do not have their programs? You can
look at their results in the papers, but that leaves many questions unanswered.”
And he concludes, after a brief literature survey: “One area where ‘non-result’
papers are valid (and are lacking) is in a detailed analysis and comparison of
various approaches to the same type of problem.” Although much has changed
in two decades and researchers in medical image analysis nowadays have to take
evaluation seriously in order to get their work published in high ranking journals,
Price’s musings still sound all too familiar to many of us.

A wide variety of methods are available for medical image segmentation.
Rule-based systems building upon classical image processing techniques remain
popular, level-set frameworks are ubiquitous, there is a large variety of methods
that learn models of the shape and appearance of objects from training data
and can fit these models to unseen data, elastic registration is proving to be a
powerful tool for segmentation through atlas matching, classification techniques
from pattern recognition and machine learning are attracting a growing number
of proponents, and this enumeration is far from complete. Not only is the number
of available methods increasing, more and more methods are, or claim to be,
generic and applicable to multiple segmentation tasks, usually after applying
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some suitable modifications and tweaks. Even for experienced researchers in the
field it is difficult to choose the appropriate technique for a particular problem.

To facilitate a comparison between a wide range of segmentation techniques
we have organized a competition for two important segmentation tasks. The
first is liver segmentation from CT scans. This is important for surgery plan-
ning, monitoring of therapy, and several other clinical applications. The second
is the extraction of the caudate nucleus from brain MRI. The delineation of brain
structures such as the caudate is essential for disease understanding, diagnosis,
treatment monitoring and functional analysis of the brain. Both tasks are chal-
lenging and have been the subject of a range of published papers, but in clinical
practice they are routinely segmented completely manually by human experts.

This competition is one of an increasing number of initiatives to achieve
scientific progress by sharing data and comparing methods. A survey of such
efforts is outside the scope of this paper but we mention a few here. Competi-
tions for liver segmentation and liver cancer extraction have been organized in
Japan1. There exist data repositories for e.g. brain2 (which supplied data sets
for this competition), lung3 and retinal data4. Benchmark studies are ongoing
for registration5. Outside the medical domain, there have been competitions for
stereo matching6, face recognition7, tracking8 and a 1 million dollar prize for
constructing an accurate system to predict movie ratings9 is attracting interest
from thousands of research teams worldwide.

The competition serves more purposes than a comparative study of a range of
algorithms on a common database. It also provides an snapshot of which methods
for medical image analysis are currently popular. Moreover, for many researchers
it is difficult to obtain a sizeable amount of training and test scans with high
quality segmentations such as the one made available for this competition. From
the feedback of the participating teams and other researchers who downloaded
the data, we conclude that this workshop already sparked many ideas to improve
segmentation algorithms.

2 Data & organization

Any team could enter the competition after signing a letter of intent. Both fully
automatic and semi-automatic methods were allowed to participate. All papers
on caudate segmentation describe fully automatic approaches. For the liver com-
petition, results for both automatic and semi-automatic systems were submitted.

1 See http://www.tuat.ac.jp/~simizlab/CADM/report_of_competition2005.pdf
2 See http://www.cma.mgh.harvard.edu/ibsr/
3 See [2] for CT data and http://www.jsrt.or.jp/cdrom_nodules.html for chest x-

ray data.
4 See http://www.isi.uu.nl/Research/Databases/DRIVE
5 See http://www.insight-journal.org/rire/
6 See http://vision.middlebury.edu/stereo/
7 See http://www.ee.surrey.ac.uk/CVSSP/banca/icpr2004/index.html
8 See http://pets2007.net/
9 See http://www.nextflixprize.com
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In our initial call for papers we stated that user interaction for semi-automatic
methods should be limited to pre-processing and initialization of an automatic
computation stage. For the liver competition, two papers were submitted that
use interaction until the user is completely satisfied with the segmentation result.
These papers have also been included in these proceedings, under the heading
‘Interactive Liver Segmentation’ becasue we believe such an approach may be
very attractive for clinical application, and the amount and nature of the inter-
action among semi-automatic methods varies substantially so it is hard to define
a clear boundary between semi-automatic and interactive.

For both competitions three data sets were constructed. The first is a training
data set that includes both images and binary masks of the segmentations of the
structures of interest, produced by human experts. Participants can use these
images to train their algorithm, but they are free to use their own training data in
addition to the supplied data. They may also use the training data to determine
suitable values for free parameters in their algorithms. The second data set is a
test set that was distributed with the training data (both could be downloaded
from a web site). The test set did not include segmentations and participants
had to send in the segmented test sets before a given deadline.

Finally there is a second test set for both tasks that will be released at the
start of the one-day workshop on October 29, 2007. This set is the online test set.
Segmentation results are to be submitted within three hours after the online test
set has been made available. Participants unable to meet these demands were al-
lowed to make an executable version of their program available to the workshop
organizers who processed the data with the supplied software in advance. Com-
pletely automatic methods were eligible for cash prizes made available by the
sponsors of the workshop. Teams containing members of the workshop organizers
were excluded from this on-line competition.

The reason for using two different test sets is that distributing the test data
to be segmented together with the training data allows teams to optimize their
algorithms for the provided test cases. This can be the case even if the segmen-
tations of the test cases are unknown, and can happen even unintentionally10. A
contest during the actual meeting on new test data also increased the competitive
element of the workshop.

All submitted segmentations were processed with a fixed evaluation protocol
described in the next Section. The following subsections describe the data for
both tasks in more detail.

10 Too many of us have learned this the hard way, and some have not learned it yet.
From page 483 of [3] we quote: “It is essential that the validation (or the test) set not
include points used for training the parameters in the classifier — a methodological
error know as ‘testing on the training set’. A related but less obvious problem arises
when a classifier undergoes a long series of refinements guided by the results of
repeated testing on the same test data. This form of ‘training on the test data’ often
escapes attention until new test samples are obtained.”
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2.1 Liver data

All CT images were enhanced with contrast agent and scanned in the central
venous phase on a variety of scanners (different manufacturers, 4, 16 and 64
detector rows). As it is CT, all data sets were acquired in transversal direction.
The pixel spacing varied between 0.55 and 0.80 mm, the inter-slice distance
varied from 1 to 3 mm. There was no overlap between neighboring slices.

A total of 40 images was used for the workshop. Most of them were pathologic
and included tumors, metastasis and cysts in different sizes. Images have been
randomized into three groups: 20 training images, 10 images for the first test set
and 10 for the on-line contest.

All segmentations were created manually by radiological experts, working
slice-by-slice in transversal view. The first tool they employed was an intensity-
based region grower. In case of leakage, these leaks were removed by drawing
manual cut-lines. The segmentation was defined as the entire liver tissue includ-
ing all internal structures like vessel systems, tumors etc. In general, a vessel
counts as internal if it is completely surrounded by liver tissue (in the transver-
sal view). For the large vessels that enter the liver (vena cava and portal vein)
the parts enclosed by liver tissue, i.e. as the convex hull of the liver shape in
that area, were included in the segmentation.

2.2 Caudate data

The caudate data consisted of a total of total 33 training images from two
sources: a) 18 datasets of healthy controls from the Internet Brain Segmenta-
tions Repository provided by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital 11, b) 15 datasets of healthy controls and subjects
in a Schizoptypal Personality Disorder (SPD) study [4] provided by Psychiatry
Neuroimaging Laboratory at the Brigham and Women’s Hospital, Boston. The
definition of the caudate in these two datasets is not exactly the same. Caudate
manual segmentation protocols often differ in regard to the exact separation of
caudate to the nucleaus accumbens anteriorly and the level of inclusion of the
vanishing tail posteriorly. Such variability in caudate definition is common place
and part of clinical routine when comparing studies. The authors were instructed
to state in their paper what training population their method was built upon.

The testing data stems from a variety of sources. The diversity of the test
data evaluates the algorithms in respect to a) flexibility to pathology, age group,
and signal-to-noise aspects, b) stability in a test/re-test situation, and c) stability
in respect to slight differences in caudate definition:

1. As the first set of data an additional 14 cases were selected from the same
SPD study [4] provided by Psychiatry Neuroimaging Laboratory at the
Brigham and Women’s Hospital, Boston. These scans can be considered
routine adult data sets.

11 Online available at http://www.cma.mgh.harvard.edu/ibsr
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2. The second and third data sets consist of 5 pediatric (age 2-4 years) and
5 elderly (age 60-75 years) subjects provided by the UNC autism research
group and the UNC Parkinson research group, University of North Carolina
at Chapel Hill. Both datasets serve to test the versatility of the segmentation
methods. The manual segmentation protocol for the caudates was the same
for both datasets but slightly different from the training datasets.

3. The last 10 data sets expose the algorithms to a test/re-test situation in
order to assess the reliability and stability of the algorithm. A single female
subject (age 25 years) was scanned two times within a 24 hour time window
each at five different MR sites over a period of six weeks. The age of the
subject plus the absence of physical or mental illness suggests that the brain
of the subject did not change in the six week period. Four of the five sites
acquired the images using a GE Signa 1.5 Tesla scanner and one site was
using a Philips Gyro Scan NT 1.5 Tesla scanner. The datasets were provided
by the Duke Image Analysis Laboratory (DIAL) [5]. This dataset allows
for an evaluation of reproducibility of image analysis methods. The main
sources of variance in this dataset are patient positioning, scanner geometry,
scanner intensity variation (RF coil) and discrete image artifacts, e.g. motion
artifacts.

All datasets were scanned with an Inversion Recovery Prepped Spoiled Grass
sequence on a variety of scanners (GE, Siemens, Philips, all 1.5 Tesla). Some data
sets were acquired in axial direction, others in coronal direction. All data sets
were re-oriented to axial orientation, but were not aligned in any fashion. The
resolution of the datasets is at 0.9375 × 0.9375 × 1.5 mm. All datasets were
randomized and authors were blind to the randomization.

3 Evaluation

The quality of a segmentation can be evaluated in many different ways. A sensible
evaluation criterion depends on the purpose of the segmentation procedure. If
the goal is to estimate the volume of an object, the volumetric error would be
an obvious criterion. But a segmentation with exactly the same volume as the
reference (we refer to the manual segmentations that we consider to be the ‘truth’
as reference) can be completely wrong if a voxel by voxel comparison is made. As
a result, there are different evaluation metrics in common use and most papers
on segmentation report results in terms of more than one metric. An overview
of various metrics and their peculiarities is given in [6] and [7].

As we are organizing a competition, we need a single evaluation criterion, but
several popular metrics exist. To deal with this situation we devised a scoring
system that combines several metrics into a single overall score. To be able to give
a meaningful interpretation to these scores, we decided to gauge each score by
relating it to the result that could be expected if an independent human observer
would perform the segmentation manually. We also wanted to avoid that a few
completely failed segmentations would damage an overall score irreparably. Thus
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we decided to award 100 points for a perfect result (the best value that could be
obtained for a metric) and a predefined amount X for a score that is typical for
an independent human observer. The scaling between these two gauge values is
linear, but negative scores are impossible, so 0 points is the minimum possible
value to achieve. The free value of X was chosen such that segmentations that
visually corresponded to the subjective notion of a ’complete failure’ would get
0 points. Some preliminary tests prompted us to set X = 75 for the liver and
x = 90 for the caudate.

The following five metrics were used, formulated in such a way that for each
metric, 0 corresponds to a perfect result:

– Volumetric overlap error, in percent. This is the number of voxels in the
intersection of segmentation and reference divided by the number of voxels
in the union of segmentation and reference, subtracted from 1 and multiplied
by 100. This value is 0 for a perfect segmentation and has 100 as the lowest
possible value, when there is no overlap at all between segmentation and
reference.

– Relative absolute volume difference, in percent. The total volume difference
of the segmentation to the reference is divided by the total volume of the
reference. The result is multiplied by 100. This signed number is reported in
the tables of the papers in these proceedings, so one can recognize underseg-
mentations by negative values and oversegmentation by positive values. To
compute a score, the absolute value is taken. Note that the perfect value of
0 can also be obtained for a non-perfect segmentation, as long as the volume
of that segmentation is equal to the volume of the reference.

– Average symmetric surface distance, in millimeters. The border voxels of
segmentation and reference are determined. These are defined as those voxels
in the object that have at least one neighbor (of their 18 nearest neighbors)
that does not belong to the object. For each voxel along one border, the
closest voxel along the other border is determined (using Euclidean distance,
not signed, and real world distances, so taking into account the different
resolutions in the different scan directions). All these distances are stored,
for border voxels from both reference and segmentation. The average of all
these distances gives the average symmetric absolute surface distance. This
value is 0 for a perfect segmentation.

– Root Mean Square (RMS) symmetric surface distance, in millimeters. This
measure is similar to the previous measure, but stores the squared distances
between the two sets of border voxels. After averaging the squared values,
the root is extracted to give the symmetric RMS surface distance. This value
is 0 for a perfect segmentation.

– Maximum symmetric surface distance, in millimeters. This measure is similar
to the previous two, but in this case the maximum of all voxel distances is
taken instead of the average. This value is 0 for a perfect segmentation.

The reference values for an independent human observer, that yield scores of
75 and 90 for the liver and caudate tasks are listed in Table 1. For the caudate
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segmentation task, scores were computed independently for the left and right
caudate and averaged to get the score per case. For each case, each metric was
converted to a score. The overall score for a case was simply the average of the
individual metric scores. Tables in the papers in these proceedings list all scores
for each test case.

Liver Caudate

Volumetric overlap error [%] 6.4 15.8
Relative absolute volume difference [%] 4.7 5.6
Average symmetric surface distance [mm] 1.0 0.27
RMS symmetric surface distance [mm] 1.8 0.56
Maximum symmetric surface distance [mm] 19 3.4

Table 1. Reference values for the scoring systems for liver and caudate segmentation.

Using this scoring system one can loosely say that 75/90 points for a liver or
caudate segmentation is ‘comparable to human performance’. But this is only
a rough indication, as the scores of humans will vary across cases, and across
humans. For difficult cases, a score below 75/90 points may therefore still be
very good. We have not investigated this in detail for the data sets used in this
competition. The reference values for the liver segmentation were computed us-
ing a segmentation of the ten test sets by a medical student with no previous
experience in liver segmentation and no experience with the segmentation pro-
tocol employed by the experienced radiologists who determined the reference.
An accurate (interactive) segmentation may therefore well achieve scores above
75 points. To gauge the caudate scoring system, multiple human segmentations
on a subset of the test cases (the UNC cases only) were used. They were all
performed by experienced operators who were trained to use the segmentation
protocol and software. This may make it harder to achieve 90 points for the
caudate than to achieve 75 points for the liver.

For the caudate segmentation task, one group of test cases are 10 scans of
the same subject acquired on different scanners. For these cases no reference
segmentations were available, and these cases therefore do not contribute to
the total score. These cases are employed to test if a method is reproducible
in a test/retest situation, as well as in presence of scanner variability. This re-
producibility or stability measurement is based on the coefficient of variation
(COV = σ

µ
times 100%) of the volumetric measurements. The reference caudate

segmentations of human experts show in average a COV of 3.1%.
In addition to the measures listed above, Pearson correlation between ref-

erence and segmentation volumes is also reported for the caudate results. This
coefficient captures how well the segmentation volumes correlate with those of
the reference in a range of [-1,1]. This measure is of high significance in neuro-
morphological studies that are still strongly routed in volumetric assessment, but
was not included in the score computation. In such neuro-morphological stud-
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ies, a systematic bias in the segmentation method that results in clear errors
in the above scores, but still very good correlation with the reference is often
acceptable. Furthermore, the correlation values should be close to those between
human raters, otherwise this indicates that the use of the segmentation method
would be a source of additional variation. Using the same expert segmentations
as for computing the score values, the average Pearson correlation across human
expert segmentations of the caudate is 0.71.

The scores were computed by the workshop organizers after participating
teams had uploaded results to a website. Each team received a table with the
scores, and a panel with their segmentation and the reference shown on some
representative slices. Each paper in the proceedings contains one or more of these
tables and panels.

4 Outlook

Despite the short period between the call for papers for the workshop was re-
leased and the letters of intent for participation had to be sent in, an unexpected
large number of 44 teams registered and downloaded the data for one or both
tasks. Of these, 25 were from Europe, 15 from North America, 3 from Asia and
1 from Australia. More than half of all registered teams submitted results. For
the caudate competition 9 papers were eventually accepted for the workshop
and are included in these proceedings. For the liver competition 16 papers were
accepted. We believe this large response shows that there is a definite interest
within the medical image segmentation research community to participate in
comparative studies such as these.

We intend to make the data sets and the results of the various systems
described in these proceedings publicly available after the workshop. We hope to
report on the results of the workshop, including those of the on-line competition,
in future publications.
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