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Abstract. Reverse-Time Migration (RTM) is a state-of-the-art technique in seismic acoustic imaging, because of the quality

and integrity of the images it provides. Oil and gas companies trust RTM with crucial decisions on multi-million-dollar drilling

investments. But RTM requires vastly more computational power than its predecessor techniques, and this has somewhat hindered

its practical success. On the other hand, despite multi-core architectures promise to deliver unprecedented computational power,

little attention has been devoted to mapping efficiently RTM to multi-cores.

In this paper, we present a mapping of the RTM computational kernel to the IBM Cell/B.E. processor that reaches close-to-

optimal performance. The kernel proves to be memory-bound and it achieves a 98% utilization of the peak memory bandwidth.

Our Cell/B.E. implementation outperforms a traditional processor (PowerPC 970MP) in terms of performance (with an 15.0×

speedup) and energy-efficiency (with a 10.0× increase in the GFlops/W delivered). Also, it is the fastest RTM implementation

available to the best of our knowledge.

These results increase the practical usability of RTM. Also, the RTM-Cell/B.E. combination proves to be a strong competitor

in the seismic arena.
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1. Introduction

Energy is the lifeblood of the world economy. The

importance of energy sources in the contemporary

geopolitical scenario cannot be overstated. Oil and gas

availability determines global growth, energy security

and regional stability.

In their search for new reserves, oil companies are

turning to complex geological structures so far left un-

explored because they are inherently hard to prospect

and analyze. The most prominent examples are re-

serves located under salt domes, like in the offshore of

the US Gulf of Mexico, which are estimated to hold

3000 sub-salt oil pools, which account for 37 billion

barrels of “undiscovered conventionally recoverable”

oil, and 191 trillion cubic feet of gas reserves [1]. Also,

the discovery of a Brazilian deep-water sub-salt explo-

ration area has recently been announced, which may

contain as many as 33 billion oil barrels [2].

*Corresponding author. E-mail: mauricio.araya.bsc.es

Oil discovery is a theoretical, algorithmic and com-

putational challenge. Prospection is primarily per-

formed with acoustic depth-imaging techniques: an in-

tense acoustic signal is directed into the ground, and

receivers record the signal’s echoes, e.g. as in Fig. 1.

Then wavefield reconstruction methods are used to

solve approximate equations that govern the propa-

gation of acoustic waves through the Earth. These

methods aim to determine densities and shapes of the

subsurface structures. Oil companies trust wavefield

reconstruction methods enough to rely on them for

crucial multi-million-dollar decisions like whether and

where to start drilling operations.

Two imaging methods dominate the arena: one-way

Wave Equation Migration (WEM) and Reverse-Time

Migration (RTM) [3]. WEM is very popular thanks to

its lower computational cost and its acceptable degree

of accuracy in traditional scenarios. RTM is more ac-

curate, but its computational cost (at least one order of

magnitude higher than WEM) hinders its adoption.
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Fig. 1. A prospecting ship gathering data. The array of airguns is marked with a large circle in the photo. Airguns produce an acoustic wave

whose echoes are recorded by the receivers (geophones). Receivers (small circles) are arranged in a grid located just behind the airgun array.

Fig. 2. A side-by-side comparison between the results of WEM

and RTM. RTM provides higher quality images, with better sig-

nal-to-noise ratio and clearer structure delineation.

When it comes to new scenarios like reserves lo-

cated beneath salt, large velocity contrasts or steeply

dipping formations, RTM’s imaging quality advantage

over WEM becomes paramount. In fact, RTM can han-

dle events that propagate along both directions of the

depth axis, whereas WEM cannot. As a consequence,

WEM performs poorly with structures, like salt flanks,

that are illuminated by overturned reflections. Figure 2

presents a visual comparison of the results provided by

WEM and RTM. In general terms, RTM allow savings

when finding oil and gas.

On the computer architecture side, the last years’

technological issues have put an end to frequency scal-

ing. Architecture designers and application develop-

ers have turned to multi-core architectures in search

for more performance. The IBM Cell/B.E. is a promi-

nent example of the multi-cores employed in scien-

tific computing, e.g. in the RoadRunner1 project at

the Los Alamos National Laboratory, with an expected

peak performance of 1.4 PFlops/s. One Cell/B.E.

processor provides remarkable floating point through-

put (>200 GFlops/s) and main memory bandwidth

(25 GB/s). Several works have shown how to reach

almost-optimal utilization of these resources [4], de-

pending on whether the workload is compute-bound or

memory-bound [5], even in the case of irregular, non-

numerical workloads [6–9].

Moreover, the Cell/B.E. outperforms by a factor of

3–4 any other HPC platform in terms of energy effi-

ciency [10], especially with high arithmetic-intensity

codes. This makes the Cell/B.E. the only available

choice to reach a given throughput for data centers lo-

cated in certain power-limited urban areas. Its higher

energy efficiency is mainly due to the use of software-

managed scratchpad memories in place of per-core

cache memories. Not only do caches occupy a rele-

vant fraction of silicon area and absorb a major portion

of the electrical power consumed in traditional multi-

core processors, but also the intense snooping traffic of

cache-coherent systems requires a larger, power hun-

grier on-chip interconnect.

Although the Cell/B.E.’s computational power

seems a good match to RTM’s demand, no work so far

has investigated an efficient mapping of the RTM to the

Cell/B.E. This mapping is the purpose of our work.

We present an optimized implementation of the

RTM’s computational kernel that is specifically de-

signed to exploit the architectural characteristics of

the Cell/B.E.: we have parallelized the workload into

loosely coupled threads to exploit the multiple in-

dependent processing elements, orchestrated the data

transfers to ensure the most efficient memory band-

width utilization, employed loop unrolling and Single

1See: http://www.lanl.gov/roadrunner/.
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Instruction Multiple Data (SIMD) arithmetics in the

computational kernel to exploit the large amount of

SIMD registers. Due to the relatively low arithmetic

intensity of the computational kernel, the workload

turns out to be memory-bound, and the cost of com-

putation can be completely hidden. Our implementa-

tion achieves 98% utilization of the memory band-

width. Results have been obtained on a dual-socket

IBM QS20/21 blade. To the best of our knowledge,

our RTM implementation has the best published per-

formance.

We provide a comparison against a reference HPC

platform that employs traditional cache-coherent

cores. To do so, we have developed an equally op-

timized implementation of the RTM kernel for IBM

JS21 blades, which sport a dual-core PowerPC 970MP

processor (detailed technical specifications are re-

ported in Table 1). Our results show that a Cell/B.E.-

based QS21 blade outperforms a JS21 blade by a factor

of 15.0 in terms of mere performance. Additionally, by

delivering 0.30 GFlops/W, a QS21 blade also surpasses

a JS21 in terms of energy efficiency, by one order of

magnitude.

Thanks to these results, RTM is finally a much more

accessible approach. Additionally our results show that

the Cell/B.E. has the potential to become a leading

platform for seismic imaging.

The remainder of this paper is organized as follows:

Section 2 introduces the basics of the RTM algorithm

and its main computational kernel. Sections 3 and 4

present respectively the results of developing/porting

RTM to a traditional multi-core HPC platform (an IBM

JS21 BladeCenter blade) and to a Cell/B.E. platform

(an IBM QS20/QS21 BladeCenter blade). Section 5

evaluates and compares the performance achieved by

the two solutions. In Section 6 we evaluate the coding

effort spent during the development/port to the plat-

forms considered. Finally, Section 7 concludes the pa-

per.

2. RTM in a nutshell

In this section we briefly present RTM, and we iden-

tify its main computational kernel, which is the opti-

mization target of this work.

The purpose of RTM is to generate the image of a

geological medium, e.g., multi-mile-deep volumes of

subsea geology. The RTM inputs consists of: an initial

version of the medium to be studied, a wavelet, and the

set of recorded acoustic wave pressure traces.

RTM simulates mathematically the propagation of

sound in the given medium. In the simulation, first the

medium is excited by introducing a wavelet (a shot),

expressed as a function of frequency and time. Then,

wave propagation (called forward propagation) is

mathematically simulated by using an acoustic wave

equation. Then, RTM repeats the task in a backward

fashion: starting from the data recorded by the re-

ceivers, it propagates the wave field back in time (back-

ward propagation). Finally, when both fields represent-

ing the forward and backward propagation are avail-

able, a cross-correlation between them is performed to

generate the output image.

The acoustic wave propagation equation is a Partial

Differential Equation (PDE). We assume an isotropic,

non-elastic medium, where density is not variable. This

equation is solved with a Finite Difference method

(FD) [11]. The PDE solver involves a 3D stencil com-

Table 1

Technical specifications of all the systems employed in our experiments

Blade JS21 type 8844 QS20 type 0200 QS21 type 0792

Processors PowerPC 970MP Cell/B.E. Cell/B.E.

Sockets × cores 2 × 2 2 × (1 PPE + 8 SPEs) 2 × (1 PPE + 8 SPEs)

Memory per blade (GB) 8 1 2

Clock frequency (GHz) 2.3 3.2 3.2

Peak throughput (GFlops/s) 18.4 250 250

SIMD registers (per core) 80 128 (SPE) 128 (SPE)

SIMD width 128 bit 128 bit 128 bit

Main memory standard DDR2 XDR XDR

Cache memory

L1 (data + instr.) 32 k + 64 k 32 k + 32 k 32 k + 32 k

L2 1 M per core 512 k per PPE 512 k per PPE

Scratchpad memory – 256 k per SPE 256 k per SPE
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Forward propagation part Backward propagation part

Input: medium, shots Input: medium, receivers’ traces, forward wavefield
Output: forward wavefield Output: image

1: for all time steps do
2: for all main grid points do
3: compute the wave field
4: end for
5: for all source location do
6: add the source wavelet
7: end for
8: for all absorbing area points do
9: apply absorption conditions

10: end for
11: end for

1: for all time steps do
2: for all main grid points do
3: compute the wave field
4: end for
5: for all receivers location do
6: add the receivers data
7: end for
8: for all absorbing area points do
9: apply absorption conditions

10: end for
11: end for
12: for all main grid points do
13: correlate wave fields,

forward and backward
14: end for

Fig. 3. The RTM algorithm.

Fig. 4. Execution time breakdown of the RTM workload. The com-

pute kernel (“Propagation”, also line 3 in Fig. 3) dominates, with

91.2% of the forward part and 70.2% of the backward part. The

cross-correlation between wave fields absorbs 20.9% of the back-

ward part.

putation, followed by its corresponding integration in

time.

Figure 3 gives a pseudo-code rendition of RTM,

where the forward and the backward propagation parts

are separated for sake of clarity. The PDE solver ap-

pears in line 3 of both the forward and the backward

propagation part. The loop in lines 2–4 of both parts

absorbs the vast majority of execution time (see Fig. 4,

more details below). We elect this computational ker-

nel as the object of study of this entire work.

The remainder of RTM as in Fig. 3 includes the

following tasks. For the forward part: source wavelet

introduction (line 6), boundary conditions (line 9).

For the backward part: receivers’ traces introduction

(line 6), boundary conditions (line 9) and wavefield

correlation (line 13). Lines 5–9 (both parts), and 12–

14 (backward part) do not absorb significant execution

time and are significantly simpler than the computa-

tional kernel.

We have benchmarked a sequential, unoptimized

implementation of the code (Fig. 3) in order to de-

termine the relative contribution to execution time of

the different portions of the workload. The results are

reported in Fig. 4. The benchmark shows that the

workload is clearly dominated by the PDE solver [12]

(line 3 in Fig. 3).

Figure 5 details the kernel. The loop structure shows

its 3D nature. Line 5 computes the stencil for each

point and lines 7–8 perform the time integration of the

PDE solver. Thanks to our isotropic assumptions, the

stencil can be computed as a Laplacian operator, i.e. in

just one pass (rather than as a gradient followed by a

divergence) as line 5 shows.

The computational weight of the kernel is due to the

relatively high number of operations it performs per

each data point. Its stencil uses the memory access pat-

tern [13] depicted in Fig. 6(a). Our PDE solver uses a

8-point (per axis) stencil, depicted in Fig. 6(b). Data

are stored in Z-major form (see Fig. 6(a)), therefore,

accesses across the X and Y axes may be significantly

more expensive in a cache-based architecture.

These concerns require us to pay special attention

to how data are accessed: we will explicitly apply

techniques to increase data reuse (reducing the overall

amount of data transfers) and exploit the memory hier-

archy as much as possible (reducing the overall trans-

fer latency).

We devote the next two sections to discussing the

details of mapping RTM to the two architectures that

we have considered in this study: the PowerPC 970MP

and the Cell/B.E. architecture, respectively.
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Input: dt2, C00, Z1, . . . , Z4, X1, . . . , X4, Y1, . . . , Y4, u2, u1

Output: u3

1: for y = 4, . . . , Y − 4 do

2: for x = 4, . . . , X − 4 do

3: for z = 4, . . . , Z − 4 do

4: /* Stencil computation */

5: u3[z,x,y] = C00 · u2[z,x,y] +

Y4 · (u2[z,x,(y − 4)] + u2[z,x,(y + 4)]) +

· · ·

X4 · (u2[z,(x − 4),y] + u2[z,(x + 4),y]) +

· · ·

Z4 · (u2[(z − 4),x,y] + u2[(z + 4),x,y]) +

· · ·

Z1 · (u2[(z − 1),x,y] + u2[(z + 1),x,y]);

6: /* Integration over time */

7: u3[z,x,y] = v[z,x,y] · v[z,x,y] · u3[z,x,y];

8: u3[z,x,y] = dt2 · u3[z,x,y] + 2 · u2[z,x,y] − u1[z,x,y];

9: end for

10: end for

11: end for

Fig. 5. Pseudo-code of the unoptimized PDE solver invoked in line 3 of RTM (see Fig. 3). Z, X, Y are the dimensions of the data set. Z1, . . . ,

Z4, X1, . . . , X4, Y1, . . . , Y4 and C00 are spatial discretization parameters, dt2 is a temporal discretization parameter. Integrating the equation

requires maintaining the wavefield of at least 2 earlier time steps (u2 and u1), while u3 is the current wave field.

Fig. 6. The 3D stencil we employ: its memory access pattern (a) and the data points it uses (b).

3. RTM on the PowerPC 970MP

We want to be able to compare the Cell/B.E.-based

RTM solution that is the focus of this paper against

a reference solution based on a traditional cache-

coherent multi-core platform. To set a fair comparison,

both platforms must be based on commodity hardware

available in an HPC-/supercomputing-oriented config-

uration. A platform that satisfies these requirements is

the IBM BladeCenter JS21 Type 8844 blade, which

sports two double-core PowerPC 970MP processors

running at 2.3 GHz. These cores employ traditional co-

herent L1 and L2 cache memories. The AltiVec/VMX
SIMD instruction set available in the 970MP proces-
sor is compatible with the one used in the Cell/B.E.’s
Power Processing Element (PPE) core, and very simi-
lar in width (128 bit) and capabilities to the one of the
Cell/B.E.’s Synergistic Processing Elements (SPEs).
The blade is an off-the-shelf product and it is ac-
tively employed in supercomputers (e.g., MareNos-
trum [14]). Detailed hardware specifications are re-
ported in Table 1. We have ported RTM to the JS21
platform and optimized its computational kernel to the
same degree as its Cell/B.E. counterpart we discuss in
Section 4.
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Fig. 7. The blocking strategy we adopt in our PowerPC 970MP im-

plementation.

For sake of clarity, we split the discussion on opti-

mization into two topics: optimizing the memory ac-
cesses, and optimizing computation.

Memory access patterns have been shown [15] to

be critical for the performance of the stencil compu-
tation, heart of the RTM kernel. Whereas this section

focuses on JS21, we adopt general techniques, which

are independent from low-level memory hierarchy de-
tails (e.g., number of levels, size, latency of each level,

use of hardware caches or software-managed scratch-

pads). Without optimizations, the accesses in lines 5, 7
and 8 (Fig. 5) cause heavy cache thrashing because u3,

u2, u1 and v are much larger than the L2 cache, and

the L2 cache has limited associativity. We counter that
with blocking [16,17]. To apply blocking, we trans-

form the 3D data space into a 6D space that better suits

the cache hierarchy. Figure 7 shows this decomposi-
tion. Each sub-block of the 3D space is computed as in

Fig. 6(a). Also, we employ OpenMP pragmas to enable

the generation of explicit cache prefetching instruc-
tions, in an attempt to mitigate cache misses. We have

considered including prefetching instructions manu-

ally in our source code, but our experiments showed
a negligible performance improvement over compiler-

generated code, at the expenses of an increased source

code complexity and maintainability.
As the optimization of computation is concerned,

we exploit all the forms of parallelism provided by the

architecture: the thread-level parallelism provided by
the multiple cores, and the data-level parallelism pro-

vided by the SIMD instruction set. We use 4 indepen-

dent threads per blade (2 sockets × 2 cores) with a par-
allelization strategy that partitions the 6D data space

into 3D sub-blocks (Fig. 7). Each core processes its as-

signed sub-set of sub-blocks independently. Since each
core has its own L2 cache, interference among threads

is minimal.

Our implementation employs OpenMP [18]. The
blocked version of the algorithm sweeps through an in-

Fig. 8. Our RTM algorithm enjoys a good scalability on the JS21

platform.

Fig. 9. Visual comparison between a scalar (left) and a SIMD stencil

(right) in our RTM computational kernel.

dex space of blocks that corresponds to the 3 outermost

loops of the 6D space, whereas the 3 innermost ones

are the ones in Fig. 5. We merged the 3 outer loops into

a single one, to provide OpenMP with more opportuni-

ties for scheduling, thus enhancing scalability (Fig. 8).

To exploit data-level parallelism, our code uses

the Altivec/VMX SIMD instruction set available in

the PPC970MP. SIMD instructions allow to process

4 single-precision floating-point operands per cycle.

The processor features relatively many SIMD registers

(80), so that loop unrolling can be used in conjunction

with SIMDization to extract more parallelism from the

application. But SIMD instructions can be used only if

the operand data are properly aligned. We specifically

align our data to allow for a SIMDized compute stencil,

as in Fig. 9(right). This organization delivers a signifi-

cant speedup in the stencil computation with respect to

a scalar implementation like the one in Fig. 9(left).

The techniques that we have just applied for our

RTM implementation on the PowerPC 970MP plat-

form provide us with an advanced starting point for our

Cell/B.E. port, which is the main subject of the follow-

ing section.
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Fig. 10. Functional block diagram of the Cell/B.E. processor.

4. Porting the RTM onto the Cell/B.E.

In this section, we present briefly the Cell/B.E. ar-

chitecture, and we illustrate the challenges and the de-

tails of our RTM optimized implementation for this tar-

get.

As a reference embodiment of the Cell/B.E. plat-

form, we consider the IBM BladeCenter QS20 and

QS21 blades (see Table 1 for the full specifica-

tions), which are dual-socket blades, mainly differ-

ing from each other by the amount of installed main

memory (1 and 2 GB, respectively).2 Each Cell/B.E.

processor (see Fig. 10) on a QS2x blade contains a

general-purpose 64 bit PowerPC-type PPE with cache

memories, and 8 SPE with software-based scratch-

pad memories called Local Stores (LS). The PPE

and the SPEs have both a (slightly different) 128-bit

wide SIMD instruction set, which allows for example

to process simultaneously 4 single-precision floating-

point operands.

Programming the SPEs in an efficient way is a chal-

lenging task because:

1. The use of SIMD instructions requires an appro-

priate data layout (padding and alignment);

2. The branch predictors are simple, and the mis-

prediction penalty is high; control-flow-intensive

should be rewritten as data-flow-intensive when

possible;

2At the time this study is written, QS22 blades are not available to

us yet. The major improvements of QS22 blades are a larger memory

endowment (32 GB) and the PowerXCell 8i processor, which fea-

tures fully-pipelined double precision SPE floating point units. Since

our RTM code only employs single-precision arithmetics, the impact

of QS22 blades would not be substantial.

3. Load/store instructions only operate on the LS,

which is small (256 kB, shared for code and

data); the programmer must divide computa-

tional kernels in fragments that operate on work-

ing sets small enough to fit the LS;

4. Accesses to the main memory only happen via

Direct Memory Access (DMA) operations, and

are performed independently by a Memory Func-

tion Controller (MFC); the programmer must use

the MFC to overlap computation and transfers, to

hide the shorter of the two latencies;

5. Also, DMA performance is influenced by usage

parameters (transfer block size and alignment,

average concurrent requests, bank congestion,

controller congestion, NUMA issues); it is the

programmer’s responsibility to adopt congestion-

avoiding memory access patterns.

In our implementation, we map our computational

kernel (wavefield computation, line 3 in Fig. 3) onto

to SPEs, while we run all the remaining tasks on the

PPE. Our parallelization strategy partitions the input

3D space along the X axis as in Figs 11 and 12. Each

SPE processes a distinct sub-cube. Within an SPE, Y is

the traversing direction. Sub-cubes are much larger

than the space available in the LS. Therefore, we im-

plement a double-buffered Z–X plane streaming. This

data-space traversal strategy proved [16] to be optimal

in reducing the traffic in the memory hierarchy.

To exploit SIMD, we have adopted an aligned and

padded data layout, and manually tuned the computa-

tional kernel by using the SIMD SPE intrinsics and lan-

guage extensions available in the IBM Cell SDK 3.0.

The many (128) SIMD registers allowed significant

loop unrolling, i.e. each basic block computes 20 data

points. This is a significant improvement over the Pow-
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Fig. 11. Our parallelization strategy on the Cell/B.E. processor partitions the 3D input space along the X axis.

Input: dt2, C00, Z1, . . . , Z4, X1, . . . , X4, Y1, . . . , Y4, u2, u1

Output: u3

1: for all subcubes do

2: for y = 1, . . . , 4 /* head */ do

3: for x = 1, X_subcube do

4: for z = 1, Z/4 do

5: Compute stencil and time integration /*4-way

SIMD*/

6: end for

7: end for

8: end for

9: for y = 5, . . . , Y − 4 /* body */ do

10: for x = 1, X_subcube do

11: for z = 1, Z/4 do

12: Compute stencil and time integration /*4-way

SIMD*/

13: end for

14: end for

15: end for

16: for y = Y − 3, . . . , Y /* tail */ do

17: for x = 1, X_subcube do

18: for z = 1, Z/4 do

19: Compute stencil and time integration /*4-way

SIMD*/

20: end for

21: end for

22: end for

23: end for

Fig. 12. Pseudo-code of the SIMDized PDE solver as implemented

on the Cell/B.E. The Z axis is 4-way SIMDized. The Y –X nested

loops use in-place buffer recycling. This loop needs a separate head

and tail to account for absorption boundary conditions. Every SPE

computes one or more subcubes depending on the X dimension size

and X_subcube size.

erPC 970MP-based implementation, where the fewer

registers (80) allowed only for 12 data points to be

processed for the same basic block.

Fig. 13. Peak aggregate main memory read bandwidth per socket, as

a function of the transferred block size. Transfers using a block size

of 512 bytes of larger achieve the highest aggregate bandwidth, i.e.

22.1 GB/s (when 8 SPEs are used concurrently).

5. Performance evaluation

This section presents the experimental performance

results obtained by our optimized Cell/B.E. implemen-

tation, and compares them against the theoretical per-

formance bounds and JS21 results.

For sake of clarity, we discuss separately the opti-

mization of data transfers and computation. Finally, we

show how the two overlap in time and motivate that

memory bandwidth is the bottleneck of the architecture

for this application.

To determine the peak aggregate bandwidth we

employ the same micro-benchmark suite as Kistler

et al. [20]. Benchmarks show that the maximum per-

socket bandwidth when all the SPEs transfer concur-

rently is 22.1 GB/s, and it is obtained when the block

size is 512 bytes or larger (Fig. 13) and each SPE

issues as many concurrent transfers as needed. This
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Table 2

Impact of our Cell/B.E. optimizations on the performance of RTM

Implementation version 1 2 3 4 5

SIMD vectorization No Yes Yes Yes Yes

Loop unroll factor – – – – 3

Clock cycles per iteration (M) 55 14 12 10 6

Average CPI 2.16 4.36 4.35 1.92 1.03

Single issue rate (%) 18.9 8.0 8.0 21.2 51.7

Dual issue rate (%) 11.0 6.6 6.6 12.2 18.7

Stall due to dependency (%) 13.4 10.8 10.7 9.8 22.4

Speedup 1.00 13.9 15.1 17.8 18.9

Aggregate bandwidth used (GB/s) 1.16 16.5 17.5 20.4 21.6

Notes: Our best implementation achieves a 18.9× speedup with respect to the unoptimized code. Results refer to a single Cell/B.E. processor.

represents the theoretical bound that our implementa-

tion should approximate. We have benchmarked the

data-transfer part of our application, which transfers

data in blocks as large as 15.6 kB, with the minimum

number of concurrent transfers needed to feed the in-

place multi-buffering recycling. We have measured a

bandwidth value that is 98% of the peak value (i.e.

21.66 GB/s).

We now discuss the optimization of the computa-

tional kernel in isolation. We have optimized it in a

sequence of refinement steps, which are summarized

in Table 2. Version 1 is unoptimized. Version 2 uses

SIMDization. Version 3 uses in-place buffer recycling

to minimize the data transfers, at the expenses of a

few additional address arithmetic instructions. Version

4 reduces the register pressure in the innermost loops,

reducing the amount of spilling. Version 5 unrolls the

loop along the X direction, reducing the dependency

stalls and amortizing better the loop branches. Our best

version (version 5) is a significant improvement over

the unoptimized version, in terms of SIMD efficiency,

dual issue rates and stalls: the instruction schedule, as

statically analyzed by asmvis [19] (in Fig. 14) shows

very dense code, with a high dual issue rate, limited

stalls and nops, and a corresponding high CPI.

Finally, we discuss how computation and data-

transfer interact to determine the overall performance

of the algorithm. We analyzed the latencies involved in

the computation kernel (for our best implementation)

and in the associated data transfers. Results show that

memory bandwidth is the bottleneck (last row of Ta-

ble 2), and the cost of computation can be hidden com-

pletely under the cost of data transfers as depicted in

Fig. 15. This condition holds for every possible input

set and any trace segment. For instance, in Fig. 16, the

body segment depicts has a computation time of 58 µs

and a transfer time of 63.6 µs.

Our experiments use a test configuration where the

input data set has 192 × 384 × 560 points (directions:

Z × X × Y ). In this configuration, computation takes

(on the average) 91.1% of the transfer latency. The

cost of scheduling and the impact of the loop heads

and tails on the overall performance are negligible, as

Fig. 16 shows. Scalability within a single Cell/B.E.

chip is very good, as Fig. 17 shows. Our current efforts

are targeting scalability of a single problem instance

across multiple chips and blades. The good intra-chip

scalability motivate little further optimization effort in

the compute kernel. As the last line in Table 2 shows,

our best implementation absorbs all the throughput that

our data transfers are capable of providing in isola-

tion.

We report comparative performance results in Ta-

ble 3. The reported execution times do not include I/O

time and non-recurring allocation or initialization de-

lays, but include the entire algorithm presented in Ta-

ble 3. Also, they are averages over repeated runs, to

eliminate spurious effects (e.g. bus traffic, or unpre-

dictable operating system events). Figure 18 shows an

output images for both the model (Fig. 18(left)) and a

RTM migration (Fig. 18(right)) when the algorithm is

applied in a test configuration with a constant velocity

field and one receiver.

The results show a clear advantage of QS2x blades

over JS21 ones, both in terms of performance and

energy efficiency. The Cell/B.E.’s higher energy ef-

ficiency is mainly explained by the absence of per-

SPE cache memories. Additionally, the programmer

can implement exactly his explicit working set pol-

icy on the SPEs, thanks to the MFC’s programma-

bility, whereas prefetching instructions offer a limited
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Fig. 14. The static-time analysis of our computational kernel performed with asmvis [19] shows a compact instruction schedule. Both pipelines

are occupied most clock cycles, the rate of dual issues (i.e., cycles in which both pipeline issue one instruction) is high, there are no stalls and

nop/lnop instructions are limited. These indicators vouch for a good code quality.

amount of control over the PowerPC 970MP’s cache

hierarchy.

6. Development effort

In this section we report productivity considerations

regarding the development effort required to map RTM

onto the JS21 and the QS2x architectures.

The work started by creating a portable, readable,

unoptimized implementation whose emphasis was on

the physics and mathematics of the underlying phe-

nomena. It is worth mentioning that our first naïve ver-

sion paid a high development effort price because of

the steep learning curve of the RTM concepts.

Our development process is described below as a se-

quence of broad refinement steps (not to be confused

with the “implementation versions” introduced in the

previous section, which only refer to the Cell/B.E.

port).

In step 1 of Table 4, we profiled the code and ap-

plied architecture-independent transformations to im-

prove the execution time (selective loop merging) and

reduce the memory footprint. We parallelized the code

for the IBM JS21 platform by using OpenMP [18] di-

rectives. The result exploits thread-level parallelism,
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Fig. 15. By using multi-buffering and by scheduling accurately com-

putation and data transfers, we can completely hide the latency of

computation.

but not data-level parallelism yet. This step involved

the most time-consuming task: performing blocking by

hand. The change required a rewrite of the data lay-

out, caused a large increase in project size and required

significant debugging effort.

In step 2, we manually SIMDized the computational

kernel.

In step 3, we ported the SIMDized JS21 implemen-

tation to the Cell/B.E. platform. We could reuse most

SIMDization effort done for the JS21, but we had to

replace the JS21-optimized blocked loops with explicit

code to manage the LS. Most of the effort involved par-

titioning the workload in working sets small enough

to fit the LS, and orchestrating computation and data-

transfers. Incidentally, during this port we could ap-

ply a larger number of locality-improving techniques

[16] that were not applicable on JS21. Finally, step 4

includes all the optimizations presented for the imple-

mentation version 5 of Table 2.

Table 4 summarizes the above considerations. The

larger size of the Cell/B.E. code with respect to the

JS21 is due to the need for explicit thread- and LS-

management code on the Cell/B.E. (1500 lines of code

(LOC) and 2 man-months). The last 500 LOC lead

us to a 18.9× speedup at a reasonable man-month

cost.

Admittedly, the development path we have adopted

mixes steps that were beneficial to both targets. Never-

theless, some conclusions on programmer productivity

can be drawn [22]. In summary, our experience sug-

gests that:

• A significant corpus of memory-footprint-

reducing and performance-improving optimiza-

tions are architecture independent; effort must be

spent on them no matter what is the target plat-

form;

• The effort to manually SIMDize a computational

kernel is fundamentally the same on all the target

platforms considered;

• Despite the memory hierarchy management code

(via cache blocking or LS management), which

varies a lot between architectures, we did not ob-

serve a significant difference in man-month cost

between the Cell/B.E. and the PowerPC.

7. Conclusions

We have presented an optimized software design for

the computational kernel of the RTM seismic imaging

approach, based on the Cell/B.E. architecture. Our im-

plementation is close to optimality according to per-

formance indicators (e.g., 98% of the peak bandwidth

throughput), and it shows a 15.0× speedup when com-

pared against a reference traditional multi-core plat-

form based on a PowerPC 970MP processor. Fur-

thermore, our implementation features an energy ef-

ficiency corresponding to 0.30 GFlops/W, which is

10.0× higher than the reference.

Our implementation is the fastest RTM implemen-

tation of which performance data are available. This

solution contributes to enabling RTM – which has

been regarded so far as desirable but too computation-

ally demanding: gigantic datasets and months of CPU
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Fig. 16. Results show a good load balance among the SPEs. The top trace graph shows multiple time steps of the algorithm. The bottom trace

zooms on a single time step. The head and tail (in light colors) represent a small portion of the overall execution time. The execution traces were

obtained with paraver [21].

Fig. 17. Scalability of our Cell/B.E. implementation as a function of

the Z dimension size, compared to ideal scalability.

time for today commodity processors – as a practi-

cally viable solution in everyday use for industrial-size

deployments. Moreover, it proves that the Cell/B.E.

has the potential to be the leading architecture in the

seismic domain in terms of performance and energy-

efficiency.

Future developments of this work include: tuning

the algorithm to peak performance, extending our ap-

proach to the entire, production-level RTM workload,

Table 3

Comparison between a JS21 and QS2x blades in terms of power

efficiency

Platform Average Execution Arithmetic Energy

power time throughput efficiency

(W) (s) (GFlops) (GFlops/W)

JS21 267 41.0 7.3 0.03

QS20 315 3.0 102.8 0.33

QS21 370 2.7 110.8 0.30

Notes: The QS2x blades featuring Cell/B.E. processors show signif-

icantly better values, up to 0.30 GFlops/W. QS2x results refer to two

instances of the kernel, one per each Cell/B.E. Power consumption

values were obtained in internal IBM measurements.

and developing an optimized system-scale paralleliza-

tion which exploits efficiently the inter-blade intercon-

nect.
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