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Abstract. An alternative method of diagnosing malignant lung nod-
ules by their shape, rather than conventional growth rate, is proposed.
The 3D surfaces of the detected lung nodules are delineated by spher-
ical harmonic analysis that represents a 3D surface of the lung nodule
supported by the unit sphere with a linear combination of special ba-
sis functions, called Spherical Harmonics (SHs). The proposed 3D shape
analysis is carried out in five steps: (i) 3D lung nodule segmentation with
a deformable 3D boundary controlled by a new prior visual appearance
model; (ii) 3D Delaunay triangulation to construct a 3D mesh model of
the segmented lung nodule surface; (iii) mapping this model to the unit
sphere; (iv) computing the SHs for the surface; and (v) determining the
number of the SHs to delineate the lung nodule. We describe the lung
nodule shape complexity with a new shape index, the estimated number
of the SHs, and use it for the K-nearest classification into malignant and
benign lung nodules. Preliminary experiments on 327 lung nodules (153
malignant and 174 benign) resulted in a classification accuracy of 93.6%,
showing that the proposed method is a promising supplement to current
technologies for the early diagnosis of lung cancer.

1 Introduction

A great deal of work has been published regarding the usefulness of morphologic
features for discriminating malignant from benign pulmonary nodules on Com-
puted Tomography (CT) and to a lesser extent, chest radiographs. Several stud-
ies have shown a correlation between different nodule shape characteristics and
underlying pathology. For example, Furuya et al. [1] analyzed the margin charac-
teristics of 193 pulmonary nodules on high-resolution CT and subjectively classi-
fied them as one of several types, including round, lobulated, densely spiculated,
ragged, and halo. They found a high level of malignancy among the lobulated
(82%), spiculated (97%), ragged (93%), and halo nodules (100%), while 66% of
the round nodules proved to be benign. Automatically extracted features have
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also been shown to correlate with underlying malignancy. Kawata et al. [2] quan-
tified the surface curvature and the degree of surrounding radiating pattern in
biopsy-proven benign and malignant nodules, and compared the resulting feature
maps. Their results showed good separation of the feature maps between the two
categories. Similarly, fractal analysis has been used to quantify the nodule margin
characteristics of benign and malignant nodules. Although none of these studies
directly assessed the accuracy of their methods in predicting a diagnosis, they sup-
port the notion that nodule shape can potentially be used by automated systems
to distinguish benign from malignant nodules. In summary, the existing shape-
based approaches show the following limitations: (i) most of them classify the lung
nodules based on extracted 2D features (e.g., round, lobulated, ragged, and halo,
etc.) and they did not take into account the 3D features of lung nodules; (ii) most
of them did not provide a quantitative measure that has the ability to describe the
shape complexity of detected lung nodules; and (iii) most of the existing features
(e.g., curvature, round, etc.) depend on the accuracy of the used nodule segmen-
tation algorithm which make this process difficult for clinical practitioners to use.
This work aims to address these limitations in a way that will make evaluating
small lung masses more consistent.

2 Methods

2.1 Lung Nodules Segmentation

Accurate lung nodule segmentations from 3D Low Dose Computed Tomography
(LDCT) images are a challenging problem because the intensities of the lung
nodules and their surrounding tissues (e.g., blood vessels, etc.) are not clearly
distinguishable. To overcome this problem, we use a conventional 3D parametric
deformable boundary [3] and control its evolution with a new prior probabilis-
tic visual appearance model. The prior is a 3D Markov-Gibbs Random Field
(MGRF) model of the lung nodule intensities with translation- and rotation-
invariant pairwise voxel interaction.

Let (x, y, z) be Cartesian 3D point coordinates. A parametric deformable sur-
face, B(P1, . . . ,PK), specified by K control vertices, Pk = (xk, yk, zk), evolves
in the directions that minimize its energy, E, depending on internal, ζint (B),
and external, ζext (B), forces [3]:

E = Eint + Eext ≡
∫
B

(ζint (B) + ζext (B)) dB (1)

In this paper, we introduce a new type of external energy that depends on the
learned prior appearance model. Let Q = {0, 1, . . . , Q − 1} and L = {nl, bg} be
finite sets of image intensities (gray values) and region labels, respectively. Let a
finite 3D arithmetic lattice R = [(x, y, z) : x = 0, . . . , X−1; y = 0, . . . , Y −1, z =
1, . . . , Z−1] support a 3D image g : R → Q and its region map m : R → L. The
label, mx,y,z, associates the voxel, gx,y,z, with the lung nodule or the background.
To reduce the impacts of global contrast and offset deviations of intensities due



3D Shape Analysis for Early Diagnosis of Malignant Lung Nodules 177

to different sensors, each input 3D image is normalized by mapping its signal
range [qmin, qmax] to the maximal range of [0, 255].

To consider the normalized images as samples of a prior MGRF model but ex-
clude any image alignment before the segmentation, we use a generic translation-
and rotation-invariant MGRF with only voxel-wise and central-symmetric
pairwise voxel interaction.The latter is specifiedbya setNof characteristic central-
symmetric voxel neighborhoods {nν : ν ∈ N} on R and a corresponding set
V of Gibbs potentials, one per neighborhood. A central-symmetric neighborhood
nν embraces all voxel pairs such that the (x, y, z)-coordinate offsets between any
voxel (x, y, z) and its neighbor (x′, y′, z′) belong to an indexed semi-open interval
[dν,min, dν,max); ν ∈ N ⊂ {1, 2, 3, . . .} of the inter-voxel distances: dν,min ≤√

(x − x′)2 + (y − y′)2 + (z − z′)2 < dν,max.

Learning the appearance prior. Let S = {(gt.mt) : t = 1, . . . , T} be a train-
ing set of 3D images with known region maps. Let Rt = {(x, y, z) : (x, y, z) ∈
R ∧ mt;x,y,z = nl} denote the part of R supporting lung nodule in the t-th train-
ing pair (gt, mt); t = 1, . . . , T . Let Cν,t be a family of voxel pairs in R2

t with the
co-ordinate offset (ξ, η, γ) ∈ nν in a particular neighborhood. Let Fvx,t and Fν,t

be an empirical marginal probability distribution of voxel intensities and of in-
tensity co-occurrences, respectively, in the training lung nodule from gt: Fvx,t =[
fvx,t(q) = |Rt,q|

|Rt| : q∈Q
]

and Fν,t =
[
fν,t(q, q′) = |Cν,t;q,q′ |

|Cν,t| : (q, q′) ∈ Q2
]

where
Rt,q = {(x, y, z) : (x, y, z) ∈ Rt ∧ gx,y,z = q} is a subset of voxels support-
ing the intensity q and Cν,t;q,q′ is a subset of the voxel pairs cξ,η,γ(x, y, z) =
((x, y, z), (x+ ξ, y +η, z +γ)) ∈ R2

t supporting the intensity co-occurrence (q, q′)
in the training lung nodule from gt. Let Vvx = [Vvx(q) : q ∈ Q] be a poten-
tial function of voxel intensities that describes the voxel-wise interaction. Let
Vν = [Vν(q, q′) : (q, q′) ∈ Q2] be a potential function of intensity co-occurrences
in the neighboring voxel pairs that describes the pairwise interaction in the
neighborhood nν ; ν ∈ N. The MGRF model of the t-th training pair is specified
by the joint Gibbs probability distribution on the sublattice Rt:

Pt =
1
Zt

exp
(|Rt|

(
VT

vxFvx,t +
∑

ν∈Nρν,tVT
ν,tFν,t

))
(2)

where ρν,t = |Cν,t|/|Rt| is the average cardinality of nν with respect to Rt.
To identify the MGRF model in Eq. (2), the Gibbs potentials are approxi-

mated analytically1:

Vvx,nl(q) = log fvx,nl(q) − 1
Q

∑
κ∈Q

log fvx,nl(κ) for q ∈ Q; and (3)

Vν,nl(q, q′) = λρν (fν,nl(q, q′) − fvx,nl(q)fvx,nl(q′)) for (q, q′) ∈ Q2 (4)

where the common factor λ is also computed analytically.

1 For proof, please see: https://louisville.edu/speed/bioengineering/faculty/
bioengineering-full/dr-ayman-el-baz/supplemental-materials.

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
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Boundary evolution under the appearance models. To guide the bound-
ary evolution, we embed in the external energy term of Eq. (1) the learned prior
appearance model of the detected lung nodule as follows:

ζext (P = (x, y, z)) = −πp(gx,y,z|S) (5)

Here, πp(q|S) is the prior conditional probability of q, given the fixed current
intensities in the characteristic central-symmetric neighborhood of P for the
MGRF model of Eq. (2):

πP(gx,y,z|S) = exp(EP(gx,y,z|S))/
∑

q∈Q exp(EP(q|S))

where EP(q|S) is the conditional Gibbs energy of pairwise interaction for the
voxel P provided that an intensity q is assigned to the lung nodule while the
other current intensities in all its neighboring voxels over the characteristic neigh-
borhoods nν ; ν ∈ N, remains fixed:

EP(q|S) = Vvx,nl(q) +
∑

ν∈N

∑
(ξ,η,γ)∈nν

(Vν,nl(gx−ξ,y−η,z−γ , q) + Vν,nl(q, gx+ξ,y+η,z+γ))

After changing the energy EB of the 3D region RB ⊂ R inside the evolving
boundary B:

EB =
∑

∀P=(x,y,z)∈RB

EP(gx,y,z|S) (6)

stops, the evolution terminates.

2.2 Spherical Harmonics (SHs) Shape Analysis

Spectral SH analysis [4,5] considers 3D surface data as a linear combination of
specific basis functions. In our case, the surface of the segmented lung nodule is
first approximated by a triangulated 3D mesh (see Fig. 1) built with an algo-
rithm by Fang and Boas [6]. Secondly, the lung nodule surface for each subject is
mapped for the SH decomposition to the unit sphere. We propose a novel map-
ping approach, called “Attraction-Repulsion,” that calls for all the mesh nodes
to meet two conditions: (i) the unit distance of each node from the lung nodule
center, and (ii) an equal distance of each node from all of its nearest neighbors.

To detail our Attraction-Repulsion algorithm (see its summary in Algorithm 1),
let τ denote the iteration index, I be the total number of the mesh nodes (in all
the experiments below I = 4896 nodes), and Pτ,i be the Cartesian coordinates
of the surface node i at iteration τ ; i = 1, . . . , I. Let J be the number of the
neighbors for a mesh node and dτ,ij denote the Euclidean distance between the
surface nodes i and j at iteration τ , where i = 1, . . . , I and j = 1, . . . , J . Let
Δτ,ji = Pτ,j − Pτ,i denote the displacement between the nodes j and i at
iteration τ . Let CA,1, CA,2, and CR be the attraction and repulsion constants,
respectively, that control the displacement of each surface node.
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Fig. 1. Generating a 3D mesh for the
lung nodule surface from a stack of suc-
cessive segmented 2D LDCT slices

(a) (b) (c)

Fig. 2. Lung nodule mesh (a), its smoothed
version (b), and the Attraction-Repulsion
mapping to the unit sphere (c)

The starting attraction step of the proposed mapping tends to center each node,
Pi; i = 1, . . . , I, with respect to its neighbors by iteratively adjusting its location:

P′
τ,i = Pτ,i + CA,1

J∑
j=1;j �=i

Δτ,jid
2
τ,ji + CA,2

Δτ,ji

dτ,ji
(7)

where the factor CA,2 keeps the tightly packed nodes from collision and pushes
the adjusted nodes away from their neighbors if a certain neighbor is much closer
than the others.

The subsequent repulsion step inflates the whole mesh by pushing all the
nodes outwards to become evenly spaced after their final back-projection onto
the unit sphere along the rays from the center of the sphere. To ensure that
the nodes that have not been shifted will not collide with the altered node, the
location of each node, Pi; i = 1, . . . , I, is updated before the back-projection as:

P◦
τ+1,i = P′

τ,i +
CR

2I

I∑
j=1;j �=i

(
Δτ,ji

|Δτ,ji|2
)

(8)

where a repulsion constant CR controls the displacement of each surface node and
establishes a balance between the processing time and accuracy (e.g., a smaller
CR values guarantees that the node faces will not become crossed during the
iterations at the expense of the increased processing time). All the experiments
below are obtained with 0.3 ≤ CR ≤ 0.7.

The original lung nodule mapped to the unit sphere with the proposed
Attraction-Repulsion algorithm is approximated by a linear combination of SHs,
the lower-order harmonics being sufficient to represent more generic information,
while the finer details requiring the higher-order ones. The SHs are generated
by solving an isotropic heat equation for the nodule surface on the unit sphere.
Let S : M → U denote the mapping of a nodule mesh M to the unit sphere
U. Each node P = (x, y, z) ∈ M mapped to the spherical position u = S(P) is
represented by the spherical coordinates u = (sin θ cosϕ, sin θ sin ϕ, cos θ) where
θ ∈ [0, π] and ϕ ∈ [0, 2π) are the polar and azimuth angles, respectively. The SH
Yαβ of degree α and order β is defined as [7]:
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Algorithm 1: Attraction-Repulsion Algorithm

Initialization
– Construct the 3D lung nodule mesh

(Fig. 2,a).
– Smooth it by the Laplacian filtering

(Fig. 2,b).
– Initialize the mapping of the smoothed mesh

to the unit sphere.
Repeat

– For i = 1 −→ I
• Attraction:

∗ Select a node to process.
∗ Update the node using Eq. (7)

• Repulsion:
∗ Update the node using Eq. (8).

– End (all nodes in the mesh are shifted and
back-projected onto the unit sphere).

While changes in the node positions occur
(Fig. 2,c).

B M

OM

1 SH

5 SHs

10 SHs

15 SHs

60 SHs

Fig. 3. Approximation of
the 3D shape for malignant
(M), benign nodules (B),
and original mesh (OM)

Yαβ =

⎧⎪⎨
⎪⎩

cαβG
|β|
α cos θ sin(|β|ϕ) −α ≤ β ≤ −1

cαβ√
2
G

|β|
α cos θ β = 0

cαβG
|β|
α cos θ cos(|β|ϕ) 1 ≤ β ≤ α

(9)

where cαβ =
(

2α+1
2π

(α−|β|)!
(α+|β|)!

) 1
2

and G
|β|
α is the associated Legendre polynomial

of degree α and order β. For a fixed α, the polynomials Gβ
α are orthogonal over

the range [−1, 1]. As shown in [7], the Legendre polynomials are effective in
calculating SHs. This is the main motivation behind their use in this work.

Finally, the lung nodule is reconstructed from the SHs of Eq. (9). In the case of
the SHs expansion, the standard least-square fitting does not accurately model
the 3D shape of the lung nodule and can miss some of the shape details that
discriminate between the malignant and benign lung nodules. To circumvent this
problem, we used the iterative residual fitting by Shen et al. [8] that accurately
approximates the 3D shapes of malignant and benign lung nodules. As shown in
Fig. 3, the model accuracy does not significantly change for the benign nodule
from 15 to 60 SHs, while it continues to increase for the malignant nodule.

2.3 Quantitative Lung Nodule Shape Analysis

Our main hypothesis is that the shape of malignant nodules is more complicated
(e.g., with spiculation) when compared with the shape of benign nodules which
are simpler (smoothed shape) as in Fig. 3, so that more SHs have to be used for
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Fig. 4. Estimation of the shape index
from the total nodule approximation
error for malignant and benign nodules

Fig. 5. The ROC curves for our approach
and the surface curvature-based diagnostic
approach

accurate approximation of the shape of malignant lung nodule. Therefore, the
number of the SHs after which there are no significant changes in the approxi-
mations can be used as a new shape index that quantifies the shape complexity
of the detected lung nodules. Due to the unit sphere mapping, the original mesh
for each nodule is inherently aligned with its reconstructed mesh shape, and
the sum of the Euclidean distances between the corresponding nodes gives the
total error between both the mesh models. As shown in Fig. 4, the total error
curves for the increasing number K of the SHs can be statistically analyzed to
differentiate between the detected lung nodules.

3 Experimental Results and Conclusions

To justify the proposed methodology of analyzing the 3D shape of both ma-
lignant and benign nodules, the above proposed shape analysis framework was
pilot-tested on a database of clinical multislice chest LDCT scans of 327 lung
nodules (153 malignant and 174 benign). The CT data sets each have 0.7×0.7×
2.0 mm3 voxels, with nodule diameters ranging from 3 mm to 30 mm. Note
that these 327 nodules were diagnosed using either bronchoscopy and needle
biopsy, or two-year follow-up with CT scans2. Also, our current database does
not contain Ground Glass Nodules (GGN).

The training subset for classification (15 malignant lung nodules and 15 benign
lung nodules) were arbitrarily selected from 327 lung nodules. The accuracy of
classification based on using a K-nearest classifier for both the training and test
subjects was evaluated using the χ2-test at 95% confidence level. At the 95% con-
fidence level, 143 out of 153 malignant nodules (a 93.5% accuracy) were correctly
classified, and 163 out of 174 control subjects (a 93.7% accuracy) were correctly
classified. The overall accuracy using the proposed 3D shape-based CAD system
is 93.6% in the first detection of lung nodules. The classification based on the
2 For complete details about our nodules database, please see: https://louisville.
edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/

supplemental-materials.

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
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traditional analysis of surface curvature-based diagnostic approach [2] correctly
classifies 77 out of 153 malignant nodules (a 50.3% accuracy), and 103 out of
174 benign nodules (a 59.2% accuracy) at a 95% confidence level. These results
highlight the advantage of the proposed approach.

Another way to measure and test the performance of the proposed diagnostic
system is to compute the Receiver Operating Characteristic (ROC). Each point
on the graph is generated by using a different cut point (classification thresh-
old). Figure 5 shows the ROC curves of the two approaches, our proposed shape
index-based diagnostic approach and the surface curvature-based diagnostic ap-
proach [2]. It is clear from the data in Fig. 5 that the area under the ROC curve
of our present approach is much larger (Az = 0.9782) than the area under the
ROC curve of the surface curvature-based diagnostic approach [2] (Az = 0.5949).
The high sensitivity and specificity of the proposed approach is due to using the
estimated number of spherical harmonics to approximate the 3D shape of a de-
tected lung nodule as a new discriminatory feature which is more separable than
using surface curvature. More experimental results that address the sensitivity
of our approach w.r.t. the accuracy of segmentation and mesh generation steps
has been posted on our web site2.

As demonstrated in this paper, the preliminary results justify the elaboration
of the proposed alternative method for diagnosing malignant lung nodules. Its
novelty lies in using the shape of a 3D nodule instead of the more conventional
surface curvature as a reliable diagnostic feature. The shape is described in terms
of a linear combination of SHs.
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