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Abstract

This paper presents a new method for the recognition

and reconstruction of surfaces from 3D data. Line element

geometry, which generalizes both line geometry and the La-

guerre geometry of oriented planes, enables us to recog-

nize a wide class of surfaces (spiral surfaces, cones, heli-

cal surfaces, rotational surfaces, cylinders, etc.) by fitting

linear subspaces in an appropriate seven-dimensional im-

age space. In combination with standard techniques such

as PCA and RANSAC, line element geometry is employed

to effectively perform the segmentation of complex objects

according to surface type. Examples show applications in

reverse engineering of CAD models and testing mathemat-

ical hypotheses concerning the exponential growth of sea

shells.

1. Introduction

Computer Vision has adopted and extended a variety of

methods from geometry (see e.g. [1, 4]). Even such a spe-

cialized field as line geometry has recently received atten-

tion in connection with generalized cameras [14, 26] and 3D

shape understanding and surface reconstruction [3, 18, 17].

The latter topic has also been addressed with Gaussian im-

age methods [21], the extended Gaussian image [6] and the

Laguerre geometry of oriented planes [15].

The present paper introduces the geometry of oriented

line elements – a line element consisting of a line and a point

on it. From the structural viewpoint, line element geometry

is a unifying theory for the geometry of both oriented lines

and oriented planes. Mainly however it is a new tool for 3D

shape understanding and reconstruction capable of solving

problems which previous approaches could not handle.

This paper deals with surface-like point clouds and trian-

gle meshes. The link to line element geometry is provided

by the surface normals – we assume that we can obtain a

discrete number of points on the surface and estimate sur-

face normals there (see e.g. [21]; modern 3D photography
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and corresponding software actually deliver data points plus

normals).

Previous Work. We are interested in the recognition and

reconstruction of special surface types and in the segmen-

tation of a 3D data set according to these types. Thus we

limit our brief literature review to these topics. In Computer

Vision, recognition and reconstruction of special shapes is

often performed by methods related to the Hough transform

(see e.g. [7, 10]). Pure Hough transform methods work in

‘spaces of shapes’ and quickly lead to high dimensions and

reduced efficiency. They have therefore been augmented

by geometric constructions like the Gaussian image of dif-

ferential geometry [21]. Because that is constructed solely

from normal vectors, it is unable to distinguish, for exam-

ple, between parallel planes. Both the extended Gaussian

image [6] and the geometry of oriented planes [15] are im-

provements and work excellent for the detection of spheres

and developable surfaces. They cannot, however, easily de-

tect rotational or helical surfaces, which in turn are handled

nicely by line geometry [3, 18, 17].

We understand all these methods as local shape detec-

tors. Their beauty lies in the fact that after introducing

appropriate coordinates for the various geometric objects

associated with the original data, shape understanding and

reconstruction is reduced to the simple problem of fitting

linear subspaces to point cloud data. Both principal compo-

nent analysis (PCA) and the RANSAC principle [4] can ef-

fectively be employed. Even if such a method does not lead

to an optimal fit of the original data with a special surface

(e.g. due to noise), the results are still useful for initializing

nonlinear optimization procedures [21, 24].

The result of a local shape detector may be seen as a

labeled image (with N colors) defined on a surface. For

further processing, especially surface segmentation, region

growing algorithms [21] and other methods of mathemati-

cal morphology [5, 11, 19, 22] have been applied. In or-

der to make region growing procedures stop at feature re-

gions such as sharp edges or blended edges, Pottmann et al.

[16] uses a metric which incorporates the surface normals

as well. Their approach is a special case of an image man-

ifold in the sense of Kimmel, Malladi and Sochen [9], and
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Figure 1. Coordinates (l, l, λ) for a line element.

is closely related to line element geometry.

Contributions of the present paper. The main contribu-

tion of the present paper is to introduce line element geome-

try for use in 3D shape recognition and reconstruction. Line

element geometry does not appear in the classical geometric

literature, despite its close relation to well studied subjects

such as line geometry, Laguerre geometry, equiform kine-

matics [8] and spiral surfaces [25].

Our paper is organized as follows: We present the basics

of line element geometry and its relation to equiform kine-

matics in Sec. 2. Sec. 3 shows how surface normal elements

associated with the input data are used to detect a variety

of special surface types. A segmentation algorithm is dis-

cussed in Sec. 4. Sec. 5 illustrates our algorithms by means

of data obtained from nature and by reverse engineering of

3D technical objects.

2. The Manifold of Line Elements

A line element consists of a line L in R
3 and a point x

on it. We endow L with an orientation, which means that

we choose one of the two unit vectors parallel to L. Line

geometry [18] coordinatizes an oriented line by normalized

Plücker coordinates (l, l), where l is the unit vector parallel

to L, and l := x × l is the momentum vector of the line. l
does not depend on the choice of x on L and has the prop-

erty that l · l = 0. L is recovered from (l, l) as the solution

set of the 3 linear equations l = x × l. A 7-th coordinate is

needed in order to locate a point x on L: we add λ := x · l
to the standard Plücker coordinates, thus representing a line

element by (l, l, λ). It is elementary that x = l × l + λl
(see Fig. 1). The coordinate vector (l, l, λ) is a point of R

7.

Conversely it is not difficult to show that (l, l, λ) ∈ R
7 rep-

resents a line element if and only if l · l = 1 and l · l = 0.

Normal elements and Laguerre geometry. Each point x
of the surface Φ of a 3D volume has an outward unit normal

vector n, if Φ is smooth. Thus a normal line element at x
is defined, whose coordinates are (n, x × n, x · n). In this

way a surface Φ in R
3 has an associated surface Γ(Φ) in

R
7, which consists of the normal line elements of Φ. We

see below that for many important types of surfaces, Γ(Φ)
lies in a linear subspace of R

7. This fact is basic to surface

Figure 2. The velocity vector field v(y) of an equiform motion

according to (1), evaluated in random points yi of the shell of a

specimen of Saxidomus nutalli. The vectors v(yi) are almost

tangent to the surface.

recognition and reconstruction.

Other geometric objects associated with the point x are

the surface normal with Plücker coordinates (n, x × n) ∈
R

6 and the oriented tangent plane with coordinates (n, x ·
n) ∈ R

4. We see that both line geometry and the Laguerre

geometry of oriented planes [15] are part of line element

geometry.

Equiform motions. An equiform motion maps points

x ∈ R
3 according to y(t) = α(t)A(t) ·x+a(t), with a rota-

tion matrix A(t) and a scaling factor α(t). If α = const =
1, we obtain a rigid body motion. Like in the case of a rigid

body motion, the velocity vectors v(y) = ẏ(t) attached to

the points y(t) are not independent of each other and are

distributed according to

v(y) = c × y + γy + c. (1)

Such a velocity vector field is visualized in Fig. 2. For our

purposes it is sufficient to consider uniform equiform mo-

tions, whose velocity vector field (1) is time independent.

We describe the different types of such motions and the re-

lation between the velocity vector field (1) and their geo-

metric characteristics. We will need the two expressions

z(c, c, γ) = 1
γ(c2+γ2) (γc × c − γ2c − (c · c)c) ∈ R

3,

A(c, c, γ) = (c, 1
c2+γ2 (c2c − (c · c)c + γc × c)) ∈ R

6.
(2)

A uniform rigid body motion has α = 1 and γ = 0. Es-

pecially a uniform translation has A =E3, c =0 and ȧ(t)
= c =const. A uniform helical motion whose axis has the

Plücker coordinates A(c, c, 0) and pitch p = (c ·c)/c2 is the

general case of uniform rigid body motions [18]. A uniform

rotation is a special case of helical motion with p = 0, and

is recognized by c · c = 0.

Genuinely equiform motions have γ 6= 0 and possess a

center z = z(c, c, γ) where the velocity is zero (observed

in Fig. 2). There are the central similarities with center z,

characterized by c = 0, and the uniform spiral motions with

center z, axis A(c, c, γ), and spiral parameter p = γ/‖c‖: If



we move z into the origin and the spiral axis into the x3-axis

of a Cartesian coordinate system, a spiral motion assumes

the form

y(t) = epωt

[
cos ωt − sin ωt 0

sin ωt cos ωt 0

0 0 1

]
· x, (ω = ‖c‖). (3)

Surfaces generated by spiral motions are used to describe

the shape of shells [2, 25]. In Sec. 5 we test to which ex-

tent this mathematical model, which is based on exponential

growth, agrees with nature.

Linear complexes of line elements. A linear complex of

line elements is defined as the set of line elements whose

Plücker coordinates (l, l, λ) satisfy the linear equation

c · l + c · l + γλ = 0 (c, c ∈ R
3, γ ∈ R). (4)

We call (c, c, γ) ∈ R
7 coordinate vector of the complex. A

curve which undergoes a uniform equiform motion traces

out an equiform kinematic surface. This concept is used

by the following theorem [13] in order to show a relation

between linear complexes and equiform kinematics:

Theorem 1. The surface normal elements of a regular C1

surface in R
3 are contained in a linear line element complex

with coordinates (c, c, γ) if and only if the surface is part of

an equiform kinematic surface. In that case the uniform

equiform motion has the velocity vector field (1).

The shell of Fig. 2 approximates a kinematic surface very

well, as the velocity vectors v(y) are almost tangent to it.

3. Classification of Surfaces

Consider a sample (li, li, λi) (i = 1, 2, . . . , N , N ≥ 7)

of surface normal elements of a surface, taken from points

in general position. We want to determine if the surface is

an equiform kinematic surface, or at least approximately so.

Recognizing kinematic surfaces — the exact case. We

first consider data coming from an exact kinematic sur-

face and neglect numerical issues. We compute a basis

of the space of linear equations of type (4) fulfilled by

all (li, li, λi)’s. Assume that this basis is represented by

the coefficient vectors (c1, c1, γ1), . . . (ck, ck, γk) ∈ R
7.

Note that by Theorem 1, each homogeneous linear equa-

tion fulfilled by the given normal element data means a

uniform equiform motion which transforms the underlying

kinematic surface into itself. The complete classification is

given below.

• k = 4: Only planes are invariant with respect to four inde-

pendent uniform motions. It is trivial to find an equation of

that plane from the given data.

• k = 3: Spheres are invariant with respect to a three-

parameter family of uniform motions (all of them rotations).

The sphere’s center lies on all three rotation axes with Plüc-

ker coordinates A(ci, ci, 0) (i = 1, 2, 3).

• k = 2: (2a) A cylinder of revolution is invariant with re-

spect to a 2-parameter family of helical motions, spanned

by a translation along the helical axis, and by the rotation

about that axis. So for all linear combinations (c, c, γ) =∑2
j=1 µj(cj , cj , γj) except for the one representing the

translation, A(c, c, γ) is the same, whereas the spiral cen-

ter z(c, c, γ) is at infinity (division by zero).

(2b) A cone of revolution is invariant with respect to a 2-

parameter family of spiral motions, spanned by a similarity

whose center is the cone’s vertex, and a rotation about the

cone’s axis (Fig. 3.a–b). As in the cylinder case, A(c, c, γ)
is the cone’s axis (except for the similarity) and z(c, c, γ) is

the cone’s vertex (except for the rotation).

(2c) A spiral cylinder, which has a logarithmic spiral as

cross-section, is invariant with respect to a 2-parameter fam-

ily of spiral motions with the same axis and whose spiral

center varies along that axis. Translations parallel to the

axis are included in this family.

• k = 1: Surfaces invariant with respect to precisely one in-

dependent uniform motion (in brackets) are the following:

(1a) cylinders without rotational symmetry (translation);

(1b) cones without rotational symmetry (central similarity);

(1c) general surfaces with rotational symmetry (rotation);

(1d) helical surfaces (helical motion); (1e) spiral surfaces

(general spiral motion).

The diagram of (5) shows how to distinguish between

these five cases. The axis of the surface (meaningful

in cases 1c,d,e) is computed by A(c, c, γ), and its center

(meaningful in cases 1a,b,e) by z(c, c, γ).

c1 = 0 c1 = 0 c1 6= 0 c1 6= 0 c1 6= 0
γ1 = 0 γ1 6= 0 γ1 = 0 γ1 = 0 γ1 6= 0

c1 · c1 = 0 c1 · c1 6= 0
(1a) (1b) (1c) (1d) (1e)

(5)

Best fit with kinematic surfaces and PCA. Normal ele-

ment data (li, li, λi) = (ni, xi × ni, xi · ni) coming from

a surface-shaped point cloud xi and from estimates for sur-

face normals ni comprise a point cloud in R
7. The coor-

dinate system used to represent the original points xi is as-

sumed to be such that max ‖xi‖ ≈ 1. In order to find a

linear equation with coefficient vector (c, c, γ) according to

(4) which fits these data, we minimize

F (c, c, γ) =
∑N

i=1(c · li + c · li + γλi)
2 (6)

under the side condition c2 + c2 + γ2 = 1 (which makes

sense only if the point data have magnitude about 1 unit).

We rewrite F as F (c, c, γ) = (c, c, γ)M (c, c, γ)T with

M =
∑N

i=1(li, li, λi)
T (li, li, λi). (7)



It is straightforward that an eigenvector (c, c, γ) of M cor-

responding to a numerically zero eigenvalue µ leads to

an equation of type (4) which is fulfilled by the given

(li, li, λi)’s. In that case, F (c, c, γ) = µ. Thus the number

of small eigenvalues of M (one to four) and the correspond-

ing eigenvectors determine which type of kinematic surface

the original point data are approximated with.

Classifying surfaces. When performing the classification

task on a real data set, the number of decisions to be made

implies that the setting of thresholds is critical. Numerical

experiments have shown that the strategy described below

works in a satisfactory way.

(i). Check if the original data are planar or spherical,

using well known methods [12, 20]. If they are, go to (v).

(ii). Compute M and its eigenvalues and eigenvec-

tors as described above. Sort the eigenvalues µi such that

0 ≤ µ1 ≤ µ2 ≤ . . . . The magnitude of eigenvalues is N
times length squared, so use νi =

√
µi/N for comparison

purposes. As spherical and planar surfaces are excluded by

now, the number k of numerically zero eigenvalues of M
can be 0, 1 or 2. If ν1 is large, the best approximation of the

given data by a kinematic surface is not very good, and we

may choose not to proceed further (breaking up composite

surfaces is the topic of Sec. 4). Otherwise, two small eigen-

values (case k = 2 above) are detected, if ν3/ν2 > ν2/ν1,

or if both ν1, ν2 are smaller than a certain threshold.

(iii). In the case k = 2, consider the eigenvectors

(ci, ci, γi) (i = 1, 2) and compute the spiral center z(c, c, γ)
for a number of linear combinations (c, c, γ) = cos t (c1, c1,
γ1) + sin t (c2, c2, γ2) with t = iπ

r
, i = 1, . . . , r, r = 20,

say (Fig. 3.c). The location of these centers distinguishes

between cases 2a,b,c . With very noisy data it is helpful to

bear in mind that in real life there are no spiral cylinders –

if neither 2a nor 2b fits, we might as well move on to (iv)

and have the surface type detected again.

(iv). In case of one small eigenvalue, distinguish be-

(a) (b) (c) (d)

Figure 3. (a–b) Velocity vectors on a cone of revolution correspond-

ing to eigenvectors (ci, ci, γi) (i = 1, 2) of M via Equ. (1).

(c) A sequence of 200 spiral centers and axes computed from linear

combinations of these two eigenvectors. (d) Robustly reconstructed

vertex and axis.

tween the cases listed in (5) by choosing appropriate thresh-

olds. These are set according to the application we have

in mind and the surface types we expect. Genuine spiral

surfaces are rarely observed in machine-made parts, for in-

stance. If appropriate, compute axis and center. Finding a

generator curve of the kinematic surface in question from

the given point data is discussed in Sec. 5.

(v). In all cases we get a kinematic surface Ψ approxi-

mating the given point cloud. This least squares fit is made

robust by iteratively downweighting outliers in the defini-

tion of M :

M = 1
P

σi

∑N

i=1 σi · (li, li, λi)
T (li, li, λi), (8)

where σi is a weight penalizing the distance of the data point

xi from Ψ and the distance of the surface normal element

(li, li, λi) from the subspace with equation (4).

Inhomogeneous linear equations and offset surfaces.

If the inhomogeneous equation c · li + c · li + γλi =
k with γ 6= 0 is fulfilled by normal elements (li, li, λi)
with ‖li‖ = 1, then the line elements (li, li, λ

new
i ) with

λi − λnew
i = k/γ fulfill the homogeneous equation (4).

The change λi → λnew
i means moving the point xi to

xi −
k
γ
li. Fortunately the new elements are normal ele-

ments of a surface again, namely of an offset at distance

k/γ of the original data. By minimizing F̃ (c, c, γ, k) =∑N

i=1(c · li + c · li + γλi − k)2 we can find an offset of a

kinematic surface which approximates the given data, pro-

vided γ turns out to be nonzero.

4. Segmentation

The bottom up approach to segmentation, where local

shape detectors classify small surface patches, which are

subsequently fitted together is e.g. used by N. Gelfand and

L. Guibas in [3]. They employ Euclidean kinematics and

line geometry in a way similar to our use of equiform kine-

matics and line element geometry.

We use a top-down multi-pass algorithm which first de-

tects planes and spheres, then the cases 2a+b of Sec. 3, and

at last the remaining cases. The description of the first pass,

which uses RANSAC in the well known way together with

line element geometry serves also as an introduction into the

next one, where line element geometry is more prominent.

Detecting planar and spherical surfaces. The procedure

described by this paragraph is standard. For a random sam-

ple of centers chosen from the original data set (denoted by

C), we determine neighbourhoods Ni. Size and number of

the Ni’s are chosen in relation to the complexity of the data

set: A substantial part of at least some Ni’s should be cov-

ered by a single surface detected by the procedure. We use

the RANSAC principle [4] as follows: R times we choose

four random points in Ni, fit a sphere Ψij to them, and find



(a) (b)

Figure 4. (a) Support Sij of sphere (dark) computed from point data

only. (b) Sij trimmed using line element data.

the set Sij of points x ∈ C which fulfill dist(x,Ψij) < δ.

For the choice of R we follow [4], p. 104 and let R = 25;

for the choice of δ we take the noise level of C into ac-

count. If Ψij’s radius is very large, we fit a plane instead of

a sphere and recompute Sij . Sij is the support of the sur-

face Ψij (Fig. 4.a). Ψij’s with large support are investigated

more closely (see next paragraph).

Trimming supports. Some vertices of C close to the

sphere/plane Ψij are not contained in the spherical/planar

face of the given surface which we want to detect (Fig. 4.a).

Their normal elements (lr, lr, λr) do not satisfy (4), where

(c, c, γ) is any linear complex belonging to the kinematic

surface Ψij according to Theorem 1 and the discussion

in Sec. 3. Thus we choose exact normal line elements

from Ψij , compute M and the eigenvectors (ci, ci, γi) for

i = 1, . . . , k as in Sec. 3 (k = 3 for a sphere and k = 4 for

a plane). A data point is kept in the support Sij only if its

normal element satisfies

∑k

i=1(ci · lr + ci · lr + γiλr)
2 < δ2. (9)

See Fig. 4.b for such a trimmed support. We finally mark

the support as a surface detected and iterate, until supports

of spheres and planes detected become too small. This con-

cludes pass 1 of the algorithm.

Detection of rotational cylinders and cones. Seven is

the minimum number of vectors in R
7 for which the ques-

tion if they lie in a hyperplane makes sense. Thus for each

neighbourhood Ni, we perform R rounds of RANSAC as

follows: We choose 7 random normal elements in Ni to

compute the matrix M and its k small eigenvalues and cor-

responding eigenvectors (ci, ci, γi) according to Sec. 3 (k =
0, 1, 2). 7 degrees of freedom mean that R ≈ 100 ensures a

high probability that a kinematic surface hidden in the data

is actually detected. The j-th round of RANSAC computes

the support Sij as the set of line elements (lr, lr, λr) of the

entire remaining data set which fulfill (9). In pass 2 of the

segmentation algorithm we consider only supports where

k = 2, i.e., which lead to cylinders and cones of revolu-

tion. Fig. 5.a shows such a support consisting of all normal

elements which fit the kinematics of a cylinder.

Robust computation of geometric characteristics. If a

cone or cylinder “Ψij” of revolution is detected, each lin-

(a) (b)

Figure 5. (a) Support of rotational cylinder computed from line ele-

ment data only (dark). (b) Trimmed supports (light).

(a) (b)

Figure 6. (a) Pass 3: data points whose normal elements fit a rotation

(dark). (b) Removing curve-like parts of support.

ear combination of the first two eigenvectors according to

Sec. 3 yields an axis and a center. The axes are supposed to

cluster around the actual axis of Ψij , and in the cone case

the spiral centers cluster around the cone’s vertex (Fig. 3.c).

Averaging and downweighting outliers yields robustly com-

puted geometric characteristics (axis and/or center) of Ψij

(Fig. 3.d). In the cylinder case, each data point in Sij has

a distance from the axis — we use the median of these dis-

tances as radius of Ψij and remove all points of the support

too far away from Ψij (Fig. 5.b). The procedure for a cone

is similar, with the aperture angle computed by a median.

As in the pass 1, we mark maximal supports Sij as surfaces

detected and iterate, until no cylinders and cones are found.

The spiral cylinder (case 2c of Sec. 3) is ignored here —

in the unlikely case it occurs, it will be detected in pass 3

either as a general cylinder or as a spiral surface.

Simply invariant surfaces and morphological opera-

tions. Pass 3 of the algorithm repeats the procedure of

pass 2, but this time also the case k = 1 is allowed. Be-

cause of k = 1, (9) reduces to 1 condition. Thus the sup-

ports found will contain curve-like parts which we would

like to throw away (Fig. 6.a). The opening operation of

mathematical morphology [5, 11, 19, 22] can be used for

that purpose. Fig. 6 shows the result of detecting a surface

of revolution directly, bypassing passes 1 and 2, on an arti-

ficial data set, and subsequent opening of the support. The

cleaning and closing operations remove small outliers and

holes. A further enhancement is to detect and remove edges,



(a) (b)

(c) (d)

Figure 7. (a) Laser scanner data obtained from the shell of Saxido-

mus nutalli. (b) Axis and center of the spiral motion whose ve-

locities are shown in Fig. 2. Data are moved into a plane and are

approximated by a generator curve. (c) Kinematic surface approxi-

mating the shell. (d) combines (a),(c).

(a) (b) (d)

Figure 8. (a) Laser scanner data obtained from Helix pomata.

(b) Axis, center and generator curve analogous to Fig. 7.b. (d) Re-

constructed spiral surface and original data superimposed.

and to apply segmentation to the remaining components.

5. Examples

In this section we apply the procedure for fitting a kine-

matic surface of Sec. 3 to point data obtained by laser

scanning and give examples for segmentation according to

Sec. 4.

Reconstructing generator curves of invariant surfaces.

The data set of Fig. 7.a is recognized as a general spiral sur-

face by segmentation and classification algorithms. Spiral

axis and center are computed from the first eigenvector of

the matrix M with Equ. (2).

When the given points xi undergo the uniform spiral mo-

tion thus detected, the spiral paths yi(t) are near the final

kinematic surface Ψ. By definition, Ψ is generated by sub-

jecting a generator curve to that spiral motion. To find the

generator, we select a plane through the axis and intersect

the paths yi(t) with the plane (dark points in Fig. 7.b). If

the given data really are well approximated by a spiral sur-

face with the geometric parameters just computed, these in-

tersection points must now lie in a curve-like planar point

cloud. The generator is found by approximating that cloud

by a curve (e.g. using the method of [23]), and Ψ is com-

plete (Fig. 7.c).

This way of finding a generator curve applies to cases

1.a–e of (5) (general cone, general cylinder, and rotational,

helical, and spiral surface). It is a common feature of these

surface classes that a member of the class cannot be de-

scribed by a finite number of parameters like in the case of

multiply invariant surfaces (k > 1 in Sec. 3), but is gener-

ated by the motion of an arbitrary curve.

Downweighting outliers yields a better approximant: We

may let σi = 1/(1 + Cδ2
i ) in (8) and approximate again.

Fig. 8 illustrates the same procudure with a land snail’s

shell. For shape analysis of shells, it is interesting to com-

pute spiral axes and centers for various subsets of a given

data set, as illustrated in Fig. 9. They turn out to be con-

tained in the transparent cylinder and sphere which are

shown in Fig. 9 and which represent axis and center of a

spiral surface fitted to the entire data set.

Segmentation examples. Point clouds (16K and 50K

vertices) obtained by laser scanning the object shown in

Fig. 10.a undergo the segmentation algorithm. Pass 1 for

instance, detectes planes (Fig. 10.b). We want to know if

the object happens to possess simpler parts which together

make up a surface invariant only with respect to one equi-

form motion: We apply pass 3 of segmentation to the entire

data set and get the result shown by Fig. 10.d — a large part

of the object is a general cylinder and thus translationally

invariant. Small parts of the surface which do not fit this

cylinder, like the protruding features visible in the lower

part of the object, are recognized only at the higher resolu-

tion (Fig. 10.c).

Conclusions and Future Research

We showed how line element geometry and equiform

kinematics can be employed in constructing local shape de-

tectors for surfaces and a top-down segmentation method.

The surfaces handled by this approach include simple

shapes, but also equiform kinematic surfaces in general,

which are general cylinders (translation-invariant surfaces),

general cones (homothetically invariant surfaces), and rota-

tional, helical, and spiral surfaces. Robustness is achieved

with standard techniques like RANSAC. We showed re-

verse engineering as well as zoology applications. The fact

that surface normals are used in a prominent way implies a

direction of future research: the connection with the feature

sensitive metric [16] and its applications.



(a) (b)

(c) (d)

Figure 9. (a)–(b) Laser scanner data of Turbo marmoratus and

reconstruction of spiral axis from different parts of the surface.

(c) the same for the entire surface. (d) Picture of the shell.
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(c) (d)

Figure 10. (a) Picture of original object. (b) Applying pass 1 of

the segmentation algorithm to a 50 K point cloud: a planar face

“X” is detected. (c) Detail (see text). (d) Applying pass 3 of the

segmentation algorithm to 16K point cloud: a general cylinder “Y ”

is found.
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