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Abstract

We describe a method for 3D object scanning by align-

ing depth scans that were taken from around an object with

a time-of-flight camera. These ToF cameras can measure

depth scans at video rate. Due to comparably simple tech-

nology they bear potential for low cost production in big

volumes. Our easy-to-use, cost-effective scanning solution

based on such a sensor could make 3D scanning technology

more accessible to everyday users. The algorithmic chal-

lenge we face is that the sensor’s level of random noise is

substantial and there is a non-trivial systematic bias. In

this paper we show the surprising result that 3D scans of

reasonable quality can also be obtained with a sensor of

such low data quality. Established filtering and scan align-

ment techniques from the literature fail to achieve this goal.

In contrast, our algorithm is based on a new combination

of a 3D superresolution method with a probabilistic scan

alignment approach that explicitly takes into account the

sensor’s noise characteristics.

1. Introduction

Nowadays, 3D geometry models of real world objects

are essential in many application scenarios, such as design

and virtual prototyping, quality assurance or applications in

visual media, such as games, virtual worlds and movie spe-

cial effects - to name just a few. Existing 3D shape scan-

ning technology is often based on rather specialized and

complex sensors, such as structured light camera/projector

systems or laser range finders, Sect. 2. Even though they

produce data of high quality, they are quite expensive and

often require expert knowledge for their operation. It is

thus no wonder that semi-professional or everyday users

have usually no access to such technology. On the other

hand, if easy-to-operate and cheap 3D scanners were more

amenable, 3D shape models could turn into a much more

widely used asset, just as image and video data are today.

This could open the door for many new applications, for

instance in community web platforms or online shopping.

In this paper, we therefore propose a new easy-to-use 3D

object scanning approach based a time-of-flight (ToF) 3D

camera. A ToF camera has a variety of advantages over al-

ternative 3D scanning technology: It can measure 3D depth

maps at video rate and thus lends itself for integration into

a fast object scanner. It is an active sensor that measures the

travel time of infrared light, and therefore it does not inter-

fere with the scene in the visual spectrum [17, 16]. Its core

components are a CMOS chip and an infrared light source

which bears the potential for low cost production in big vol-

umes. Finally, its practical operation is no different from a

video camera and can thus be easily performed by everyday

users.

The biggest algorithmic challenge we face when putting

this idea into practice is also the reason why ToF cam-

eras have not yet taken over the 3D scanning market: ToF

sensors have a very low X/Y resolution, an adverse ran-

dom noise behavior, and a notable systematic measurement

bias [1]. After a first look at the data quality of a single ToF

depth scan, e.g. Fig. 1b, one may be tempted to not even try

to use such a camera for shape scanning. However, in this

paper we show that an appropriate combination of ToF spe-

cific resolution enhancement and scan alignment enables us

to combine ToF scans taken from around an object into 3D

shape models of reasonable quality, Fig. 1c. Shape acquisi-

tion is rather flexible and can be performed by rotation of an

object in front of the camera or by hand-held motion of the

camera around the object. Our main contributions therefore

are, Sect. 3: 1) A 3D shape scanning approach based on

a Time-of-Flight Camera. 2) A ToF-specific probabilistic

procedure for simultaneous non-rigid alignment of multiple

depth scans. 3) The integration of a ToF 3D superresolu-

tion approach with this alignment procedure into a complete

ToF shape scanning approach. We will show that the com-

bination of these steps and the explicit consideration of the

camera’s noise behavior is essential to make this possible.

We tested our algorithm on a variety of objects and show

that it compares favorably to laser scanning in visual and

quantitative comparison, Sect. 4.
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(a) Color Image (b) Raw Scan (c) Proposed Method (d) Laser Scan (e) Error Plot (f) Color Coding Legend

Figure 1: Antique head (a); our algorithm computes a 3D model of reasonable quality (c) despite severe errors in the raw ToF

data (b). Reconstruction error (e) compared to a laser scan (d) shows that no circumstance the error was larger than 2.5 cm,

while for most of the surface it was below 1.0 cm.(Note: raw aligned scans, no hole filling done)

2. Related Work

Most commercial systems for 3D shape scanning are

based on structured light projection or laser stripe projec-

tion, please refer to [18, 10] for a recent overview. Pas-

sive image-based methods have also been successfully used

for 3D shape reconstruction [24]. To build a complete 3D

model, it is commnon to align several scans taken from dif-

ferent viewpoints (usually under very controlled motion). In

contrast to ToF cameras, the above mentioned sensors pro-

vide rather clean data of relatively low random noise and

systematic error. On such data, local rigid alignment tech-

niques, such as Iterative Closest Points (ICP) and its vari-

ants [5] or global rigid alignment techniques, e.g. [4, 3, 11]

can be used to register the scans against each other. Fi-

nally, a scan merging procedure, such as [8] can be applied

to build a single 3D mesh. Hand-held scanners based on

the above technologies have been proposed where the cam-

era can be freely moved around an object (or vice versa),

e.g. [22]. Our work supports both hand-held scanning and

scanning under controlled motion, e.g. with a turntable. A

related idea to build a relatively simple 3D scanner has been

proposed by Bouguet et al. [6] who measure 3D shape by

recording a shadow cast by a rod moved over the object.

However, freely moving the scanner around the object is

not easy with this approach.

So far, time-of-flight (ToF) cameras [17, 16] have rarely

been explored as sensors for 3D object scanning [12, 25],

even though they have a variety of advantages over the

above technologies (see Sect. 3 for details). This is mainly

due to the challenging noise and bias characteristics [1]

which renders direct application of established filtering and

alignment approaches infeasible. Some previous work pro-

poses pre-calibration approaches to compensate for instance

bias effects in the cameras [19]. Others tried to attack ToF

camera deficiencies by combining them with normal color

cameras, e.g. [26, 2]. In contrast, in this paper we show

that reliable shape capture is feasible with ToF cameras

alone. To this end we capitalize on recent time-of-flight

superresolution methods [21, 23]. Related to these meth-

ods is the method by Kil et al. [14] for 3D superresolution

with a laser scanner. The former approaches are designed

for the more challenging noise characteristics of ToF cam-

eras. In addition, in our algorithm the systematic camera

error is compensated by a new global non-rigid scan align-

ment approach. Some previous work already deals with

global non-rigid shape alignment [7], but not under consid-

eration of ToF specifics. Related to our work is also research

on surface reconstruction from noisy, but already aligned,

scans [13, 9]. Our approach differs in that it extends pre-

vious work on probabilistic non-rigid alignment of pairs of

scans [20] into a global method. Suitable rigid and non-

rigid scan alignment is achieved by explicitly incorporating

ToF specific noise characteristics.

3. Our Algorithm

Our goal is to build the, to our knowledge, first 3D shape

scanner based on a Time-of-Flight camera that can be used

in hand-held and turntable scanning mode. We use a MESA

Swissranger SR4000 as ToF sensor. In a nutshell, it emits

infrared light into the scene and at each pixel measures the

return time of the reflected light from which it determines

the depth of the pixel. More about the phase-shift based

internal measurement principle of the SR4000 can be found,

for instance, in [17, 16].

The time-of-flight sensor has a variety of conceptual ad-

vantages over previously used sensor techniques for shape

scanning: it captures full frame depth at video rate, i.e. it

does not need to subsequently scan scene points for a single

depth map (like a laser scanner), it does not rely on time

multiplexing like structured light scanners ( even though

internally the ToF camera performs several measurements;

for normal motion at normal speed this effect is negligi-
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Figure 2: Outline of our processing pipeline.

ble). Additionally, its measurement quality is largely inde-

pendent from scene texture and it does not interfere with the

scene in the visual spectrum enabling simultaneous texture

recording. Finally, it is based on comparably simple CMOS

technology enabling low cost manufacturing in large num-

bers.

During acquisition the camera is either moved by hand in

an arc around the object, or the object is turned in front of

the static camera, e.g. using a turntable. The object should

stay roughly in the center of the field of view and the dis-

tance of the camera to the object is kept approximately con-

stant, Fig 3. This way, a sequence of i = 1, . . . , Nc depth

maps Di is obtained from Nc subsequent positions along

the camera path, each of which can be described by a tuple

of a rotation matrix and a translation vector with respect to

a global coordinate system (Ri, ti).

Unfortunately, the previously mentioned advantages of

the ToF sensor come at the price of very low X/Y sensor

resolution (Nx = 176 × Ny = 144 pixels for the SR4000),

random depth noise with significant standard deviation and

a substantial systematic measurement bias that distorts the

depth maps [1, 15], see Figs. 1, 2 and 8 for examples of raw

ToF depth scans. Our new approach presented in this pa-

per enables us to combine and align these rather low qual-

ity depth scans. The result is a 3D model of substantially

higher quality than a single depth scan would suggest. It’s

algorithmic core and the main novelty is a combination of

3D ToF superresolution with a new ToF-specific probabilis-

tic method for simultaneous rigid and non-rigid alignment

of multiple depth scans. Our algorithm comprises the fol-

lowing steps, Fig. 2:

1) Initial estimates for the scan poses (Ri, ti) are found

by using the Voodoo camera tracker 1 on the amplitude im-

ages provided by the camera for each depth map Di.

2) We subdivide the set of Nc depth images into a set of

ℓ = 1, . . . ,K chunks of depth images, Fig. 3. Each chunk

Cℓ = (Dρ(ℓ), . . . , Dρ(ℓ)+C) comprises C subsequent depth

images starting from a frame index ρ(ℓ). To each chunk

of depth images a ToF superresolution approach is applied,

yielding K new depth maps Hℓ with much higher X/Y res-

olution, Section 3.1.

3) the Hℓ are converted to 3D geometry Yℓ and aligned

1Voodo camera tracker: www.digilab.unihannover. de/index.html

by means of a probabilistic alignment approach that not

only recovers the rigid scan alignment parameters, but

also compensates for non-rigid bias-induced deformations,

Sects. 3.2 and 3.3. Please note that we don’t perform ex-

plicit scan merging, e.g. to build a single surface mesh. Any

surface reconstruction or scan merging strategy from the lit-

erature can be applied after our alignment.

3.1. Superresolution

To each chunk of frames Cℓ, we apply the LidarBoost

ToF superresolution approach [23] which yields a high-

resolution depth map aligned to the center frame of the

chunk. In the following we briefly describe the core con-

cepts of LidarBoost and refer the reader to [23] for more

detail. First, all depth maps in the chunk are aligned to the

center frame using optical flow. This is sufficiently accu-

rate since the maximum viewpoint displacements through-

out the entire chunk are typically one to two depth pixels.

LidarBoost extracts a high-resolution denoised center depth

map Hℓ, Fig. 2, from the aligned low resolution depth map

by solving an optimization problem of the form:

min
Hℓ

Edata(Lρ(ℓ), . . . , Lρ(ℓ)+C , Hℓ) + Ereg(Hℓ) . (1)

Here, Lρ(ℓ), . . . , Lρ(ℓ)+C are the raw depth maps aligned to

the center one. Edata measures the agreement of Hℓ with the

aligned low resolution maps; unreliable depth pixels with

low amplitude are discarded. Ereg is a feature-preserving

smoothing regularizer tailored to ToF data. We upsample

the depth data by factor 4 in both X and Y resolution. The

Cl

Figure 3: A typical camera path: The dotted segments are

the frame chunks Cℓ from which superresolved depth scans

are computed.



Hℓ are straightforwardly converted into 3D point clouds Yℓ

by reprojection into space using the ToF camera’s intrinsic

parameters (calibrated off-line).

3.2. Systematic Bias

While the random noise is effectively reduced by the su-

perresolution approach, the ToF data’s systematic bias leads

to non-rigid ToF scan distortions and therefore needs spe-

cial attention. Let xi, i = 1, . . . , Nx × Ny be a 3D point

measured by the depth camera (i.e. the point in space after

reprojection of the depth pixel), and Vi be the the direc-

tion of the camera ray towards the point. Then the bias can

be modeled as a systematic offset di along this ray which

makes the camera measure the value xi = x̃i + Vidi rather

than the true 3D point x̃i (Fig. 4a). Previous studies have

shown that the depth bias is pixel dependent and dependent

on many factors, including the camera’s integration time,

scene reflectance, surface orientation, and distance [1, 15].

Accounting for all such dependencies in our framework

would render the problem intractable. We therefore make

a few simplifying assumptions. First, in practice the bias

dependency on reflectance, surface orientation, and integra-

tion (since it stays constant for a scan) can be neglected.

Second, the depth range covered by the scanned object is

usually limited and the distance of the camera to the ob-

ject remains fairly constant. Therefore, we ignore the depth

dependency of the bias. Finally, when averaging hundreds

of depth frames of a flat wall, the resulting 3D model typi-

cally shows a radially symmetric deviation from the plane,

with increasing curvature (bias) the further one is away from

the depth image center. We therefore assume that all depth

pixels with the same radial distance from the image center

have the same bias, and the bias increases with the radius.

Since the Hℓ are computed from closely spaced low reso-

lution ToF scans, we assume the above bias characteristics

also applies to them. The set of radially symmetric bias val-

ues therefore is parameterized as (d1, . . . , dO) with O being

half the maximum number of pixels on the diagonal of all

Hℓ.

3.3. Probabilistic Simultaneous Scan Alignment

The last and most important step of ToF scan recon-

struction is a probabilistic global alignment approach that

solves for the rigid alignment (Rℓ, tℓ) of all high-resolution

3D point clouds Yℓ, as well as the systematic bias values

(d1, . . . , dO). Rather than pre-compensating the bias, as

in [15], we explicitly model the set of bias variables as un-

knowns of the alignment procedure. This enables us to ac-

commodate for the potential scene dependency of the bias

to a certain degree while keeping the number of variables in

reasonable bounds.

Our algorithm is inspired by the non-rigid registration

approach for pairs of scans described in [20]. We extend

R
,
t

V
Xi · d

X

Picture

Plane

(a) (b)

Figure 4: (a) During multi-scan alignment, the motion if the

points in the scan is parameterized by a rigid component

(R, t) and a non-rigid warp along the viewing ray direc-

tion (representing measurement bias). (b) Point sampling

strategy during alignment (in pixel domain). Red line is the

sparse sampling strategy for the reference set X; the green

region is the sampling region for the Yℓ.

their ideas to our setting and develop an approach for simul-

taneous rigid and non-rigid multi-scan alignment that incor-

porates knowledge about the ToF bias characteristics. ToF

scan registration is formulated as a maximum-likelihood es-

timation problem. We choose any one of the high-resolution

3D point clouds as the reference 3D point set, henceforth

termed X = {xn | n = 1, . . . , Nr}. Each of the remain-

ing high-resolution 3D point clouds, Yℓ, is simultaneously

aligned to the reference point cloud. For ease of explana-

tion, in the following we describe the alignment process

for a single point cloud, henceforth Y = {ym | m =
1, . . . , Nd}, before we show how this process is applied to

all scans.

On each point in Y , a multi-variate Gaussian is centered.

All Gaussians share the same isotropic covariance matrix

σ2I , I being a 3 × 3 identity matrix and σ2 the variance in

all directions. Hence the whole point set can be considered

a Gaussian Mixture Model (GMM) with density:

p(x) =

Nd
∑

m=1

1

Nd

p(x|m) with x|m ∝ N(ym, σ2I) .

(2)

Alignment of Y to X is performed by maximizing the

likelihood function. In our setting, the motion of Y to-

wards X is parameterized by the rigid motion component

(R, t), as well as the bias motion component, i.e. a transla-

tion of each point ym along the local viewing ray direction

Vm by the bias factor dm, Figure 4a. Please note that while

the rigid component for X remains fixed, the bias-induced

non-rigid deformation is also applied to X when searching

for optimal alignment. The maximum likelihood solution

for (R, t) and d1, . . . , dO is found by minimizing the nega-

tive log-likelihood which yields the following energy func-



• Initialize: Rℓ, tℓ ∀ℓ = 1, . . . ,K from structure

from motion (Sect. 3); (d1, . . . , dO) = 0
• Repeat until no further improvement or max. itera-

tions :
– Update variance σ2 according to Eq. (4)

– Rigid registration, for all pairs Yℓ,X (case I):

1. E-step: Compute P for pair Yℓ,X

2. M-step: Solve for Rℓ, tℓ by minimizing

Eq. (7) as linear least squares system

– Non-rigid registration, for all pairs Yℓ,X (case

II):

1. E-step: Compute P for all pairs Yℓ, X

2. M-step: Solve for (d1, . . . , dO) by com-

bining O ·K linear equations of the form
∂(Qnon−rigid(d1,...,dO))

∂di
= 0 into a joint

linear least squares system (i.e. combine

the equations for all ℓ = 1, . . . ,K)

Figure 5: Probabilistic simultaneous scan alignment

tional:

E(R, t, d1, . . . dO) =

−
Nr
∑

n=1
log

Nd
∑

m=1
exp

(

− 1
2

∥

∥

∥

xn+Vxn dn−(R(ym+Vym dm)+t)
σ

∥

∥

∥

2
)

+λ ‖(d1 − d2, . . . , dO−1 − dO)‖
2

.

(3)

The variance σ2 of the mixture components is estimated us-

ing

σ2 =
1

NrNd

Nr
∑

n=1

Nd
∑

m=1

‖xn − (Rym + t)‖
2

. (4)

Note that our energy functional contains a regularization

term weighted by λ (λ = 3 in all our experiments) which

ensures a smooth distributions of the bias values. In ac-

cordance with Sect. 3.2 the term favors monotonous bias

distributions with increasing radius from the image center.

We use an iterative Expectation Maximization (EM)

like procedure to find a maximum likelihood solution of

Eq. (3). During the E-step the best alignment parameters

from the previous iteration are used to compute an estimate

of the posterior pold(m|xn) of mixture components by us-

ing Bayes theorem. During the M-step, new alignment pa-

rameter values are found by minimizing the negative log-

likelihood function, or more specifically, its upper bound Q

which evaluates to:

Q(R, t, d1, . . . , dO) =
Nr
∑

n=1

Nd
∑

m=1
P old(m|xn)

‖xn+Vxn dn−(R(ym+Vym dm)+t)‖2

2σ2

+λ ‖(d1 − d2, . . . , dO−1 − dO)‖
2

.

(5)

The above EM procedure converges to a local minimum of

the negative log-likelihood function. Please note that the

variances σ2 are continuously recomputed which is similar

to an annealing procedure in which the support of the Gaus-

sians is reduced when point sets get closer.

Experimentally, we could verify that a simultaneous op-

timization of all alignment parameters often fails to con-

verge to a suitable minimum. Instead, we propose to alter-

nate between optimizing for (R, t) with fixed (d1, . . . , dO)
(case I), and optimizing for (d1, . . . , dO) with fixed (R, t)
(case II).

In case I, pold(m|xn) is computed as matrix P ∈
M(Nd × Nr) with entries

pmn =
exp

(

‖xn+Vxndn−(R(ym+Vym dm)+t)‖2

−2σ2

)

Nd
∑

k=1

exp

(

‖xn+Vxn dn−(R(yk+Vyk
dk)+t)‖

2

−2σ2

) . (6)

Eq. (5) evaluates to

Qrigid(R, t) =
Nr
∑

n=1

Nd
∑

m=1
P old(m|xn)

‖xn+Vxn dn−(R(ym+Vym dm)+t)‖2

2σ2 .

(7)

In the case II, the same expression reads

Qnon−rigid(d1, . . . , dO) =
Nr
∑

n=1

Nd
∑

m=1
P old(m|xn)

‖xn+Vxn dn−(R(ym+Vym dm)+t)‖2

2σ2

+λ ‖(d1 − d2, . . . , dO−1 − dO)‖
2

.

(8)

The format of the entries of P follows accordingly. The

complete EM procedure for aligning all Yℓ against the ref-

erence set X is given in Figure 5 as pseudocode. The op-

timizer terminates if there is no further improvement or the

maximum number of iterations has been reached. The re-

sult is the set of rigid alignment parameters (Rℓ, tℓ), ℓ =
1, . . . ,K, as well as the systematic bias values d1, . . . , dO.

We remark that the bias values are assumed to be the same

for all high resolution scans.

Please note that for efficiency reasons, in case II we don’t

evaluate Qnon−rigid for all 3D points, but only for a subset

of samples from X and the Yℓ. Fig. 4b illustrates this sam-

pling pattern in the pixel (depth image) domain. The red

lines are the depth pixels (3D points) of X which are in-

cluded, and the green elliptical regions are the ones from

each Yℓ included. Also, for camera paths covering a larger

viewpoint range, we perform several global alignments to

several reference scans, such that sufficient overlap is guar-

anteed.

Due to space limitations we do not provide all mathe-

matical expressions in detail, but provide an additional doc-

ument with more specifics.



(a) ICP with 70 Raw In-

puts

(b) ICP with 7 Averaged

Raw Inputs

(c) ICP with 7 Superre-

solved Inputs

(d) Proposed Method

Figure 6: All steps in our pipeline are important. (a) Aligning 7 chunks of frames (10 frames each) with ICP fails (severe

noise, wrong alignment - e.g. around feet (red)). (b) averaging 10 frames from the center view of each chunk center reduces

noise, but does not provide more resolution. ICP alignment fails. (c) Superresolution of the chunks boosts resolution, but

ICP fails due to non-rigid distortions. (d) our method produces clear detail and correct alignment. (Note: no hole-filling was

done; triangles at occlusion edges were filtered).

4. Results

We have tested our approach with four different test ob-

jects: an antique head (height 31 cm), a vase (height 47 cm,

a Buddha statue (height 59 cm), and a sculpture of two an-

gels (height 34 cm), Fig. 1 and 8 and supplemental video.

For each object we also captured a ground truth model with

a Minolta Vivid 3D scanner. We have chosen these objects

due to their reasonable size and surface detail below the ToF

resolution. Of each object we captured 600 frames on an arc

covering around 120◦ around the object. The distance of

the camera to the object was about 140 cm in all cases. We

used two different setups to capture the object. In the first

setting the object was placed on a turn table that was man-

ually turned in front of the static camera (exposure time 30
ms). For all figures but the angels in Fig. 8k-8o this setup

was used. The angels were scanned with a hand-held setup

where the camera was manually moved moved around the

object. Here the integration time was 35 ms. We plan to

make the data sets and results available for download.

For all scenes we used K = 7 chunks with frames

5, 105, · · · , 505, 595 being the center frames for the chunks.

The chunk size was always C = 10 frames. All of the 3D

renderings of our results in this paper were created by con-

verting the individual 3D scans (low-resolution and high-

resolution) to meshes and render them in the same coordi-

nate system. Meshes are created by regular triangulation

according to the depth pixel order in each depth map. Tri-

angles that span occlusion boundaries were filtered out as

good as possible, but some remaining jaggy edges may re-

main in parts. Note that this is not a reconstruction artifact

but a side-effect of our rendering method. We did no hole

filling, neither on the laser scans nor on our models, in or-

der to display the original output of our method. We also

abstain from explicit scan merging or single surface recon-

struction as this is not the main focus of this paper and may

lead to unwanted smoothing.

In a single ToF scan (Fig. 2 and Fig. 8) one can hardly

even recognize the overall type of an object, let alone fine

detail. Please note that in some raw depth scans depth pix-

els with low return amplitude have been discarded, as they

are considered unreliable by the superresolution approach,

see Sect. 3.1. The superresolution approach creates high-

resolution denoised depth scans for certain viewpoints (the

chunks), as shown in Fig. 2. By this means, the resolution

and visible detail in each such scan is already dramatically

improved, but each map only covers a part of the object

and suffers from nonlinear distortion due to the camera bias.

Our final alignment registers the scans into a 3D model of

reasonable quality, Fig. 8 and 1. A lot of finer scale de-

tail that lies close to the resolution limit of the ToF camera

comes out in the final results, such as the petals of the flower

in the angels sculpture, or the folds in the robe of the Bud-

dha statue. Note that the holes in some parts, e.g. in the

flower, are due to the camera path where this region was

occluded. As stated above, we purposefully refrain from

hole-filling.

Of course, the resolution and shape quality of our mod-

els cannot rival that obtainable with a laser scanner, Fig. 8

and 1, and we never claimed that. Nonetheless, our mod-

els are of sufficient quality for many applications were sub-

millimeter accuracy is not required, a result that was at first

unexpected looking at the raw ToF quality.

Validation Each step in our algorithm is important for the

success of the method. To demonstrate this, we show in

Fig. 6 the failures of a few alternative strategies which one

may have considered: First, aligning raw depth scans using

ICP fails due to severe noise and non-rigid bias-induced dis-

tortions of the individual 3D scans, Fig. 6a. Averaging 10

ToF scans at 7 fixed viewpoints around the object reduces

random noise, but does not boost resolution. Alignment

with ICP still fails, Fig. 6b. Performing 3D superresolu-

tion for 7 chunks around the object and aligning with ICP



boost detail, but still fails to align the scans properly as vis-

ible by the multiple layers of geometry in the arms, Fig. 6c.

This is due to the fact that the systematic bias also non-

rigidly distorts the superresolved geometry. In contrast, the

combination of ToF 3D superresolution and our new prob-

abilistic scan alignment produces correctly aligned results

with clearly visible detail, Fig. 6d.

We also quantitatively measured the reconstruction qual-

ity against the laser scanned ground truth. As one can see

in the color-coded reconstruction error renderings in Fig. 8

and 1 our models compare very favorably. In most areas the

error is below 1.0 cm, and there are only a few outliers. In

the figures, areas where there is no ground truth geometry

in the laser scan (e.g. holes due to occlusion) are rendered

in grey.

Fig. 7 plots the bias distribution against the pixel dis-

tance from the depth map center for all four objects. The

bias distribution is fairly stable across objects, and follows

our assumption of monotonous increase with radius. Slight

differences between the four scenes exist. This can be due

to slight scene dependencies which our algorithm can ac-

commodate for in certain bounds.

Throughout our experiment we used the same parame-

ters for the LidarBoost (λSR = 1, 5 × 5 regularizer region,

see [23]) algorithm and our alignment procedure (λ = 3).

This shows that our method is rather stable and does not

require scene dependent parameter tuning. With an unop-

timized MATLAB implementation it takes around 330 min

to run the entire pipeline for one data set.

Limitations Our approach is subject to a few limitations:

the ToF camera fails to capture good data for certain sur-

face materials, like highly specular objects. However, other

scanners suffer from similar limitations. We use a structure

from motion approach for initialization, so certain features

must be visible in the amplitude images. Other non-optical

initialization would be feasible. While scan acquisition is

straightforward and fast, the runtime of scan reconstruction

is notable. However, almost 95% of the current runtime

is due to the superresolution. We expect dramatic speedups

by using a gradient-based optimizer rather than the one sug-

gested by [23] which we currently use. Despite these lim-

itation, we were able to demonstrate that good quality 3D

shape scanning without manual correction is also feasible

with low quality sensors.

5. Conclusion

In this paper we demonstrated that 3D shape models of

static objects can also be acquired with a Time-of-Flight

sensor that, at first glance, seems completely inappropriate

for the task. The key in making this possible is the effective

combination of 3D superresolution with a new probabilis-

tic multi-scan alignment algorithm tailored to ToF cameras.
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Figure 7: Bias factors with increasing pixel distance from

the center for the four test objects. Note that the vase and

the head cover less field of view in the ToF sensor, thus the

curves terminate earlier.

In future, we plan to investigate approaches for real-time

shape scanning, as well as incorporation of more sophisti-

cated noise models into the reconstruction framework.
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