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Abstract—This paper presents the characterization of an
algorithm aimed at performing accurate fiber optic-based
shape sensing. The measurement of the shape relies on the
evaluation of the strains applied to an optic fiber in order to
identify relevant spatial parameters, such as the curvature
radii and bending direction, which define its shape. The mea-
surement system is based on a 7-core multicore fiber, con-
taining up to 9 triplets of fiber Bragg grating sensors (FBGs)
organized around a central core used as reference. The pro-
posed study aims at comparing the widely used Frenet-Serret
equations with an algorithm based on the homogeneous
transformation matrices that are normally used in robotics to
express the position of a point in different frames, i.e. from
local to global coordinates. The numerical results of the performed experiments (with different multicore fibers and
setups) extensively prove the superiority of the alternative method over the Frenet-Serret equations in terms of finding a
trade-off between accuracy and execution time.

Index Terms— Shape sensing, fiber Bragg grating, multicore optical fiber, homogeneous transformation matrix, Frenet-
Serret, performance, three-dimensional.

I. INTRODUCTION

S
HAPE measurement is an essential part of the sensing

field, which has been receiving a lot of interest in the

past few decades. Conventional shape sensors are divided into

two groups: non-contact based and contact-based sensors [1].

Non-contact sensors rely on different approaches, such as

magnetic-based tracking techniques, structured illumination,

3D cameras and image-based techniques [1]–[6]. Contact

sensors are mostly based on electrical resistivity and strain

sensors, micro-electromechanical systems, and optoelectronic
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measurements [7]–[9]. One of the more challenging

application of shape sensing is in those cases where

non-contact visual systems are not viable, and accurate real-

time information of the shape of a dynamic object is needed.

Amongst the contact sensors, optical fiber sensors have

attracted a specific interest due to their unique advantages,

such as immunity to external electromagnetic fields,

small dimensions (40-250 µm diameter), low mass, ease of

attachment, robustness and multiplexing capabilities [10]–[12].

These properties allow the fiber optic sensors to be easily

embedded in the object to be monitored, and require a single

remote interrogator unit, without the complexity of wiring

several sensors.

Fiber optic shape sensing is mainly based on

multi-dimensional bend measurements along the sensing fiber,

that can be distributed [13], [14] and quasi-distributed [15].

Distributed strain sensing relies on two light scattering

phenomena: Rayleigh and Brillouin scatterings. Sensing

based on Rayleigh scattering is able to measure only relative

changes of strain because it analyses the spectral shift

between a new measurement and the reference measurement

(without strain applied) [16]. Brillouin-based sensing, on the

other hand, can be used for absolute measurements since

it utilizes a linear relationship between the applied strain

and the energy of the acoustic phonons [17]. All distributed

sensing techniques are mainly limited by the low scanning
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Fig. 1. Shape reconstruction algorithm based on homogenous transformation matrices. a) FBGi section view, nx,ny plane - the information from
the outer cores allow for the calculation of the curvature vector of the overall fiber. The angle αi (i = 1,2, 3) locates the position of the cores with
respect to versor nx. b) From FBGi to FBGi+1 - location oi+1 is identified starting from oi with the knowledge of ϑi, Ri and triplet xi, yi, zi. c) FBGi
section view, xi, yi plane - FBGi senses a curvature radius Ri and an azimuth angle ϑi, which identify an in-plane rotation center ci. FBGi+1 is out of

the considered section plane. The first passage consists in aligning the x axis with the rotation center ci. d) Multicore fiber, external side view, x
′

i
, z

′

i
plane - FBGi+1 is located by performing a circular motion of length s (FBG distance) around center ci starting from FBGi. The angle ϕi is obtained
from the known parameters Ri and s, and is used to re-align the x axis towards the rotation center ci. e) From FBGi to FBGi+1 - location oi+1 is
identified starting from oi with the knowledge of ϑi, Ri and triplet xi,yi, zi.

rate and the high cost of the interrogation devices for practical

applications.

Quasi-distributed fiber optic shape sensing relies on fiber

Bragg grating (FBG) strain measurements. FBG results from

a periodic modulation of the refractive index in the fiber core,

that strongly reflects a specific wavelength, called the Bragg

wavelength, when broadband light is incident on it [18]. This

characteristic wavelength is function of the grating period
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(the distance between two consecutive high-index regions)

and the effective refractive indices of two high-index regions,

that, in their turn, are changed when mechanical strain or

temperature is applied to the grating. As a result, the Bragg

wavelength monitoring allows point strain or temperature

measurement. Also, multiple FBGs (FBG array) with different

grating periods can be used along the same fiber to have a

quasi-distributed strain measurement. In this case, a wave-

length division multiplexing (WDM) property is used, i.e.,

the set of different reflected Bragg wavelengths is analysed

to measure strain values at spatially distributed gratings.

The high sampling rates (up to 10 kHz) and lower costs

of the interrogation devises for FBG measurements make

quasi-distributed shape sensing more suitable for real-time

applications [19].

Since FBG-based shape sensing provides quasi-distributed

strain data along the fiber, local position and orientation of

the fiber are obtained at discrete points. This discreteness of

the measurements can introduce mathematical errors in the

results of shape reconstruction. Two possible ways to reduce

these errors are: (a) the use of highly dense FBG arrays

or (b) interpolation of the real measured data on a larger

number of points. The first approach is limited by the WDM

capabilities of the interrogation device and the FBG array,

i.e., the limited amount of Bragg wavelengths that can be in

the wavelength range of the interrogator. As a result, the FBG

array has a trade-off between spatial resolution and sensing

length of the array. The second approach with interpolation

of the real data solves the WDM limitation problem and

decreases the mathematical errors of the reconstruction. How-

ever, the increase of data sets decreases the speed of real-time

shape reconstruction yielding a trade-off between accuracy

and performance of reconstruction. As a result, the search for

an algorithm for shape reconstruction optimized for specific

applications becomes relevant.

The Frenet-Serret equations constitute the most popu-

lar approach for description of curves in three-dimensional

space [15], [20]–[22], but are affected by implementation

errors, which can influence the final reconstruction accuracy.

In particular, the vectors of the reference frame do not main-

tain unitary norm due to the aforementioned implementation

errors, and the movements in the direction of the current

tangent vector are linear, whereas the actual shape of the

fiber is a curve. These errors can be reduced by simulating

a more spatially resolved set of measurements, which can be

accomplished by interpolating the real data on a larger number

of points. Because the amount of mathematical operations

directly depends on the dataset size, accuracy and computa-

tional performance are in conflict.

In this work we use the same concepts already introduced by

Roesthuis et al. [32] and report an alternative shape reconstruc-

tion algorithm based on homogenous transformation matri-

ces. The performances of the algorithm are then thoroughly

analysed by comparing them with the ones obtained with the

equations of Frenet-Serret, which are the most widespread

technique currently in use for shape sensing with multicore

optical fibers. A 3D shape measurement system based on FBG

arrays inscribed into a 7-core optical fiber by femtosecond

laser inscription technique [23] was used to perform the

experiments and assess the algorithm performances.

II. ALGORITHM

A. Estimation of Curvature From Measured Strain

The directional strain values measured by the array of FBG

triplets inscribed in the fiber (e.g. [15], [24]) are the input

quantities of the reconstruction algorithm. The relationship that

has been used to retrieve the strain values εi from the measured

shifts in Bragg wavelengths of spectra, is:

1λi/λB,i
= Ci · ε

i
(1)

where i is the index of the grating, λB,i is the Bragg

wavelength in initial conditions (absence of bending-induced

strain), 1λi is the Bragg wavelength shift and Ci is the static

sensitivity of the sensing system to ε [15]. The chain of FBGs

within the central core experiences almost no bending-induced

strain, which results into 1λi ∼0. For this reason, the signals

measured by the FBGs within the fiber core were subtracted

from the wavelength shifts of the FBGs in the side cores, for

compensating the effect of longitudinal strain and temperature

on the calculated curvature. In order to achieve more accurate

results, the strain data is interpolated with the piecewise cubic

Hermite function; the interpolation coefficient (factor) m will

be used to denote the number of additional segments in which

every FBG-to-FBG portion is furtherly divided. For example,

an interpolation coefficient m = 2 for an array of 6 FBGs

implies a total number of evaluated points equal to (m − 1) ·

5 + 6 = 11. While spline interpolation is smoother and more

accurate if the data represents values of a smooth function,

piecewise cubic Hermite interpolation has no overshoots and

yields a result with less oscillations [25], [26].

The curvature vector κ is then calculated from the strain

values, according to [13], with the following formula:

κ i = −
2

Nrc

(

∑N

i=1
εi cos αi nx +

∑N

i=1
εi sin αi ny

)

(2)

where N is the number of cores, rc is the core distance from

the fiber center, nx and ny are the components of the two

arbitrarily decided vectors that define the plane where the FBG

triplet lies and αi is the angle between nx and the i -th core,

as shown in Fig. 1a. Curvature modulus and angle are retrieved

from the curvature vector κ . Here, the radius R is calculated

as the inverse of curvature modulus κ , whereas the angle ϑ

is defined as the phase of the two components of vector κ .

Starting from (2), the following sensing techniques can be

developed.

B. Homogeneous Transformation Matrices

The shape-reconstructing method utilizes homogenous

transformation matrices, useful to express the coordinates of

a point in a different frame, as described in (3):

p̃i
i+1 =

⎡

⎢

⎢

⎣

pi
i+1,x

pi
i+1,y

pi
i+1,z

1

⎤

⎥

⎥

⎦

= Ai
i+1 p̃i+1

i+1 =

[

Ri
i+1 oi

i+1

0
T
3 1

]

p̃i+1
i+1 (3)
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where p̃i
i+1 are the homogeneous coordinates of FBGi+1 with

respect to the reference frame located at FBGi , pi
i+1,k with

k = {x, y, z} is the kth component of position p̃i
i+1 Ai

i+1 is the

homogeneous transformation matrix from frame i +1 to frame

i and p̃i+1
i+1 are the homogeneous coordinates of FBGi+1 with

respect to the reference frame located at FBGi+1 itself, which

correspond to the origin [0001]T . Homogenous transformation

matrices always exhibit the same inner structure: Ri
i+1 is a

3 × 3 rotation matrix that aligns the orientation of the two

considered frames, oi
i+1 is the origin of frame i + 1 expressed

in frame i and 0
T
3 is a 1 × 3 null vector.

This change of coordinates will be adopted during the shape

reconstruction to express all the FBG positions in the starting

frame, with the aid of the property reported in the following

equation:

p̃0
i+1 = A0

1 A1
2 · · · Ai−1

i Ai
i+1 p̃i+1

i+1 = A0
i+1 p̃i+1

i+1 (4)

It is hereafter considered a cross-section of the fiber located

at the i th FBG location (Fig. 1b). The frame, represented by

the unitary triplet
{

xi , yi , zi

}

, is rotated around zi of an angle

ϑi (Fig. 1c) and around y′
i of an angle ϕi (Fig. 1d).

The corresponding rotation matrices used to align the i -th

frame with the (i+1)-th frame are reported in (5) and (6).

Rz i (ϑi ) =

⎡

⎣

cos (ϑi ) − sin (ϑi ) 0

sin (ϑi ) cos (ϑi ) 0

0 0 1

⎤

⎦ (5)

R
y
′

i

(ϕi ) =

⎡

⎣

cos (ϕi ) 0 sin (ϕi )

0 1 0

− sin (ϕi ) 0 cos (ϕi )

⎤

⎦ (6)

The origin of frame i +1 with respect to frame i is obtained

with the following trigonometric formula, as it is clearly shown

in Fig. 1e:

oi
i+1 =

⎡

⎣

Ri (1 − cos (ϕi )) cos (ϑi )

Ri (1 − cos (ϕi )) sin (ϑi )

Ri sin (ϕi )

⎤

⎦ (7)

Equation (3) can be rewritten by including the information

from (5), (6) and (7):

p̃i
i+1 = Ai

i+1 p̃i+1
i+1 =

[

Rz i (ϑi ) R
y
′

i

(ϕi ) oi
i+1

0
T
3 1

]

p̃i+1
i+1 (8)

The complete inner structure of the homogenous transfor-

mation matrix is the following:

Ai
i+1 =

⎡

⎢

⎢

⎣

cos (ϑi ) cos (ϕi ) − sin (ϑi )

sin (ϑi ) cos (ϕi ) cos (ϑi )

− sin (ϕi ) 0

0 0

cos (ϑi ) sin (ϕi ) Ri (1 − cos (ϕi )) cos (ϑi )

sin (ϑi ) sin (ϕi ) Ri (1 − cos (ϕi )) sin (ϑi )

cos (ϕi ) Ri sin (ϕi )

0 1

⎤

⎥

⎥

⎦

(9)

An approximation is introduced in this method: the curva-

ture radius Ri is assumed to be constant along the considered

arc, whereas Fig. 2 shows that at location i +1 the actual value

is Ri+1 Despite that, when the distance between two locations

Fig. 2. External view of the fiber. While the change of curvature is
continuous along the length of the fiber, the information is available only
at discrete points (FBG locations). The values of curvature between two
contiguous FBGs are obtained with data interpolation.

is small enough, the difference between Ri and Ri+1 becomes

negligible. An approach useful to reduce the potential error

deriving from this approximation is based on the interpolation

of the measured data on a larger number of virtual points along

the length of the fiber, simulating a distributed FBG-based

fiber.

C. Frenet-Serret Equations

The same result achieved with Frenet-Serret can be obtained

with the proposed algorithm, but with less virtual sensors

(related to the interpolation factor m), as it will be shown in

Section IV. As a reference for further discussion, the standard

Frenet-Serret equations are reported below for clarity [24]:

N (i) =
sτ (i) B (i − 1) − sκ (i) T (i − 1) + N (i − 1)

1 + s2τ 2 (i) + s2κ2 (i)
T (i) = sκ (i) N (i) + T (i − 1)

B (i) = −sτ (i) N (i) + B(i − 1)

r (i) = sT (i) + r(i − 1) (10)

where i is an integer representing the discrete location of

the curve we are considering, corresponding to distance s ∗ i

from the beginning, s represents the distance between two

consecutive FBGs (which are virtual if data interpolation was

performed), r (i) is the vector of the positions corresponding

to the i-th FBG. {T(i), N(i), B(i)} is a triplet of orthogonal

unitary vectors defined as the tangent (T), normal (N) and

binormal (B) vectors to the curve, abbreviated as TNB triplet.

The Frenet-Serret equations reported in (10) belong to the

discrete domain and are presented in a form that can be

accepted by a software that executes operations in a sequential

order (i.e. MATLAB).

The scalar functions τ (i) and κ (i) are the torsion and the

curvature of the shape; function κ (i) is the same reported

in (2) whereas the torsion function is defined as:

τ (i) = (ϑ (i) − ϑ(i − 1))/s (11)
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Fig. 3. Multicore fiber. Schematic representation of a 3D FBG array inscribed in the polyimide-coated 7-core optical fiber: a) 3D view and b)
transverse section.

The Frenet-Serret equations assume s to be infinitesimal

and the curve to always be well defined (curvature radius

R < ∞) so that the triplet TNB can be univocally defined.

An infinitesimal s can be achieved with a sufficiently large

interpolation factor m, which creates a wider set of virtual

FBGs with shorter distance between each other. On the other

hand, because the fiber can be straight in certain points or

segments, a curvature cannot be always guaranteed. Nonethe-

less, some techniques or variations can be implemented to

prevent this situation (e.g., parallel transport [27], negative

curvature [28]).

III. MULTICORE FIBER AND EXPERIMENTAL SETUP

In order to evaluate the performance of the above-described

algorithms, 3D FBG arrays contained in a polyimide-coated

7-core optical fiber manufactured by the Fiber Optics Research

Center (Moscow, Russia) were used. The fiber has seven

identical straight cores – the central one and six surrounding

side cores located in the corners of a regular hexagon. The

distance between the cores is 40.5 µm, the cladding diameter

is 125 µm, and the mode field diameter for each core is

5.7 µm at 1550 nm. The fiber is coated with a 15 µm

thick polyimide layer, thus giving the outer fiber diameter

of 154 µm. To couple optical signals into separate cores,

a matching fan-out device was used. The polyimide protective

coating of the fiber provides the high mechanical strength and

the high-temperature resistance (short term up to 400 ◦C and

continuous operation at 300 ◦C) in comparison with acrylate

one (up to 85 ◦C) [23], [29]. These properties make this sensor

well-suited for harsh environments or for some medical and

composite material applications.

To fabricate an FBG array the femtosecond plane-by-plane

method was used, which is based on focusing an astigmatic

femtosecond beam in the region of a fiber core [15]. In the

case under study the infrared femtosecond pulses are produced

by Light Conversion Pharos 6W l (wavelength λ = 1030 nm,

pulse duration tp = 232 fs, and pulse repetition rate f =

1 kHz). In order to focus femtosecond pulses into the fiber

it was used a Mitutoyo 50X Plan Apo NIR HR objective

(NA = 0.65) and an additional cylindrical lens with a focal

distance fc = −1000 mm, mounted before the objective.

A special glass ferrule with polished side faces makes it

possible to fix the transverse position of the multicore fiber

with respect to the focal point [30]. The longitudinal periodic

modulation of the refractive index is achieved by moving the

fiber with a predefined constant velocity νtr ≈ 1 mm/s (2nd

order of Bragg resonance), by using an Aerotech ABL1000

high-precision air-bearing linear stage. Thus, the FBG period

is determined by 3 = νtr/ f , and the resonant wavelength by

λB = 2ne f f νtr/(m f ), where m = 2 is the order in which

resonant reflection of the optical signal on the FBG structure

is realized. The end of the fiber, threaded through the ferrule,

is fixed on the linear stage with the help of a clamp with an

angular degree of freedom allowing to turn the fiber around

its axis. Inscription of FBGs in the multicore fiber was carried

out through the polyimide coating.

Two different multicore fibers were used in the experiments

in order to show the independency of the algorithm properties

from the specific fiber under test.

The first one (fiber #1) consists of 6 nodes along the fiber

with an interval between the centers of the adjacent nodes

1L1 = 14 mm, and the second one (fiber #2) consists of 9

nodes along the fiber with an interval between the centers of

the adjacent nodes 1L2 = 10 mm. In each node, uniform

FBGs with a constant length LFBG = 2 mm were inscribed in

the central core, and in three side cores located at the corners

of an equilateral triangle. Thereby the total length of fiber

#1 was L1 = 72 mm, and the total length of fiber #2 was

L2 = 82 mm. A schematic representation of the created fibers,

as well as the FBG numbering in the arrays, is shown in Fig. 3.

Uniform distribution of FBG resonant wavelengths along the

same core is ensured by sequential variation of FBG periods.

To interrogate the fabricated multicore fibers, the HBM

FS22-SI 8-channel interrogation unit (wavelength range from

1500 nm to 1600 nm, Fig. 4) was used. The processing of

the measured spectra, detection and tracking of the FBG

reflection peaks, was maintained with the BraggMONITOR

SI application. More information about the procedure of the

shape sensor calibration and relevant data can be found in [15].

When reconstructing the fiber shape, different curves were

analysed, including different 2D bow-like and s-like curves,

and a 3D spiral wound onto a surface of cylinder. In order

to diminish possible torsions, the straight section of the fiber

containing an FBG array was glued with adhesive tape and

then taped to a sheet of scale paper in the desired shape. To get

the ground truth data, a photo of a fiber laying on a paper was
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Fig. 4. Measurement system. Interrogation scheme used for FBG resonances detection and tracking.

taken and the shape digitized with a specialized software tool.

The 3D spiral had a diameter D = 25 mm and pitch h =

10 mm. The winding of the fiber was done under tension to

ensure a snug fit and by following the reference line drawn

onto a cylinder surface, whereas the ends of the sensor were

sealed with adhesive tape. In this case, as a ground truth data

we used the curve obtained from analytical formulas for a 3D

spiral.

IV. RESULTS AND DISCUSSION

The shape reconstruction is shown for three different setups,

namely a spiral, a bow and an S shape. A previous analysis

for similar spiral shapes can be found in [15]. The structure

chosen for presenting the results is the following:

1) The reconstruction is iterated for both methods for a

large number of increasing values of the interpolation

factor m, and the average error, i.e. the mean of the

Euclidean distances between the reconstructed points

and the ground truth, is plotted. By fixing a value for

the interpolation factor m it is possible to compare the

accuracy of the two algorithms. By choosing a value for

the average error it is possible to understand which is the

interpolation factor m that is required for the algorithms

to provide such result.

2) After selecting a value for the interpolation factor m,

the shape reconstruction is graphically presented. The

figure presents a clear view of the results that can be

achieved in the two cases.

3) The evolution of the curvature modulus and phase is

shown so that it is possible to analyse the properties of

the shape, such as inflection points, where the modulus

tends to zero and the phase exhibits a shift of 180◦.

4) The evolution of the norm of the three orthonormal ver-

sors calculated with the Frenet-Serret equations, i.e., T

N and B, is reported. The reconstruction is hindered if

the norm of these vectors strays from the unitary value,

which is very evident in the case of inflection points in

the shapes under study.

5) Lastly, a table reports the relevant data of the experi-

ment, such as the calculated strains and the accuracy

and performance of the algorithms. The performance is

evaluated, with the MATLAB tic toc function, in terms

of average computation time over 1000 instances of

the algorithms, and the average refresh rate (calculated

as the inverse of the average computation time) gives

an idea of the possible reconstruction capabilities in

a real-time application. The algorithms were executed

sequentially, no multi-thread was applied.

The relevant specifications of the terminal used for the

performance analysis are the following: Processor: Intel(R)

Core (TM) i7-8565U CPU @ 1.80GHz, 1992 MHz, 4 Core(s),

8 Logical Processor(s), RAM: 8 GB.

Results for the spiral shape with the multicore 6 FBG

fiber are reported in Fig. 5 and Table I. The reconstruction

is highly accurate since the obtained average errors are sub

millimetric, and both algorithms are viable for applications

like the medical ones (catheters, flexible endoscopes), where

the precision in the reconstructed shape is paramount for a

successful procedure [20]. The interpolation factor chosen in

Fig. 5b is m = 100; it is the smallest value that minimizes

the reconstruction error, and corresponds to 100 segments

with a length of 0.14 mm between two consecutive FBGs.

The best achievable average error is 0.28 mm; as shown

in Fig. 5c, the curvature is not perfectly constant, nor the

direction angle is perfectly linear. The evolution of the norms

of the TNB triplet is shown in Fig. 5d; although not being

unitary, the difference is small enough and the shape can be

properly reconstructed with the Frenet-Serret equations. The

average error obtained for the spiral shape is comparable with

the results obtained in a previous work for similar 3D shapes

and sizes, which reports a mean error ranging from 0.12 mm

to 0.23 mm [21].

Results for the bow shape with the multicore 6 FBG fiber

are reported in Fig. 6 and Table II. The presence of two

inflection points in the curve (Fig. 6c) causes the TNB triplet
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Fig. 5. Spiral–3D. a) Spiral reconstruction, average error - the average distance between the points calculated by the two different algorithms with the
same interpolation factor and the ground truth is presented. As the interpolation factor is increased, the difference becomes negligible. b) 3D spiral
reconstruction - ground truth (solid line), recovered shape with the proposed method (dashed black line) and recovered shape with Frenet-Serret
(dashed red line) are shown. The chosen interpolation factor is m = 100 as it provides a trade-off between accuracy and performance. c) Spiral
curvature and direction angle - the measured curvature [m−1] (solid line) and the measured curvature direction [◦] (dashed line) are presented. The
almost constant curvature is in accordance with the constant radius of the cylinder and the behavior of the direction angle θ is similar to the linear
one of a spiral pitch. d) Norms of the Frenet-Serret versors (spiral) - the evolution of the norms of the TNB triplet is presented. Although not being
unitary, the norm is preserved enough to yield a good result. By increasing the interpolation factor m, the decadence maintains its shape but is
decreased in amplitude, in accordance with Fig. 5a.

TABLE I

STRAIN VALUES MEASURED FOR SPIRAL SHAPE AND SENSING RESULTS OF THE ALGORITHMS

to noticeably lose the unitary norm (Fig. 6d) and compromises

the reconstruction (Fig. 6b). The interpolation factor chosen

for the reconstruction is m = 100, in accordance with the

choice made in the spiral experiment (and corresponding to

100 segments 0.14 mm-long between two successive FBGs

centers). The best achievable average error is 0.39 mm.
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Fig. 6. Bow–2D. a) Bow reconstruction, average error-the average distance between the points calculated by the two different algorithms with the
same interpolation factor and the ground truth is presented. Although the difference becomes negligible as the interpolation factor is increased, it is
noticeable for all interpolation factors m<5000. b) 3D bow reconstruction - ground truth (solid line), recovered shape with the proposed method
(dashed black line) and recovered shape with Frenet-Serret (dashed red line) are shown. The chosen interpolation factor is m = 100 to be consistent
with the choice previously made for the spiral. c) Bow curvature and direction angle - the measured curvature [m−1] (solid line) and the measured
curvature direction [◦] (dashed line) are presented. The evolution of the curvature direction reflects the double bend of the shape. d) Norms of the
Frenet-Serret versors (bow) - the evolution of the norms of the TNB triplet is presented. The double change in direction affects the norm of the TNB
triplet, but the algorithm still manages to yield acceptable results for very large interpolation factors, where the norm drop is mitigated in amplitude.

TABLE II

STRAIN VALUES MEASURED FOR THE BOW SHAPE AND SENSING RESULTS OF THE ALGORITHMS

For very large interpolation factors m, the discontinuity in

phase is divided in shorter intervals where the difference

between two sequential values of the angle becomes accept-

able and the Frenet-Serret reconstruction recovers accuracy.

As it can be seen in Fig. 6a, the reconstruction error for

Frenet-Serret tends to the same value of the transformation

matrices for increasing values of interpolation. In fact, the per-

turbation of the Frenet-Serret frame shown in Fig. 6d, although
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Fig. 7. S-shape–2D. a) S-shape reconstruction, average error-the average distance between the points calculated by the two different algorithms
with the same interpolation factor and the ground truth is presented. For increasing interpolation factors m, the error decreases and the Frenet-Serret
reconstruction reaches the same output of the presented algorithm. b) 3D s-shape reconstruction - ground truth (solid line), recovered shape with
the proposed method (dashed black line) and recovered shape with Frenet-Serret (dashed red line) are shown. The chosen interpolation factor is
m = 100 to be consistent with the choice previously made for the spiral. c) S-shape curvature and direction angle - the measured curvature [m−1]

(solid line) and the measured curvature direction in degrees (dashed line) are presented. The direction angle has been a posteriori modified to
prevent arctangent discontinuities from occurring. d) Norms of the Frenet-Serret versors (s-shape) - the evolution of the norms of the TNB triplet is
presented.

maintaining its shape, will be scaled down and become neg-

ligible. The downside is obviously the computational effort

needed to perform the satisfactory level of interpolation on the

data. On the other hand, the proposed algorithm is insensitive

to discontinuities in the phase and performs well even at low

values of interpolation.

Results for the s-shape with the multicore 9 FBG fiber

are reported in Fig. 7, as well as in Table III. The difference

in accuracy is noticeable, proving that even a single inflec-

tion point in the shape hinders the traditional Frenet-Serret

reconstruction. As already stated for the previous experiment,

a large effort in interpolation can mitigate the intensity of

the perturbation and yield results close to the ones obtained

with the homogeneous transformation matrices, at the cost

of the computational performance. The interpolation factor

chosen for the reconstruction is m = 100. In this case, being

the distance between nodes equal to 10 mm, the choice of

m corresponds to 100 segments (length of each segment is

0.1 mm) between two consecutive FBGs. The best achievable

average error with this interpolation factor is 1.00 mm. This

last result is comparable with previous data provided in [20],

where a average error of 1.15 mm is obtained on a 38 cm

catheter, after implementing curvature and angle correction.

The results of the experiments show that the accuracy of

the overall sensing system depends on three main factors: the

reconstruction algorithm, the multicore fiber under test and the

complexity of the forms. Once a fiber is selected, and a desired

average reconstruction error threshold is fixed, the choice of

the algorithm determines the performance in terms of exe-

cution time. The algorithm based on transformation matrices

scores better than the traditional Frenet-Serret equations in all

the presented cases.

Another important result is that the method based on

transformation matrices, with the available hardware, can run

at an average frequency of 435 Hz for the 6 FBG array

(spiral, bow) and 324 Hz for the 9 FBG array (s-shape).
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TABLE III

STRAIN VALUES MEASURED FOR THE S-SHAPE AND SENSING RESULTS OF THE ALGORITHMS

The Frenet-Serret algorithm, executed with an interpolation

factor that allows reaching the same average error obtained

with the transformation matrices, scores an average frequency

of 225 Hz (spiral, 6 FBG array), 6 Hz (bow, 6 FBG array)

and 20 Hz (s-shape, 9 FBG array).

Frenet-Serret equations have been largely investigated as

a method for shape reconstruction, and recently compared

to other approaches and improved versions, such as Bishop

frame [20], [31]. Among the alternative approaches, transfor-

mation matrices have demonstrated good performances for 3D

shape sensing. A kinematics-based model based on homoge-

neous transformation was introduced and assessed also in [32],

aimed at calculating the deflection of a needle embedding three

separated optical fibers. In accordance with the preliminary

reports by [20], [22], the method based on transformation

matrices has shown better performances than Frenet-Serret

equations in 3D shape sensing performed also with the pro-

posed multicore fiber. The present work further investigates the

influence of parameters of the algorithms on the performances

of the two methods for the shape reconstruction; the results

are given for every choice of the interpolation factor and the

selected shapes are characterized by high curvatures, while

the aforementioned work only focuses on shapes with mild

curvatures and for a single choice of parameters. A detailed

comparison with the state of the art in terms of both evolution

of the accuracy depending on the interpolation factor and

computational efforts is given in the present work. Further-

more, the results are shown for two different custom-made

multicore fibers in order to prove the uncorrelation between

the algorithm properties and the specific fiber under

test.

V. CONCLUSION

This work presents a comparison between two different

three-dimensional reconstruction algorithms for the estimation

of the shape of a multicore fiber optic-based sensing system.

The designed multicore fibers allow an accurate measurement

of their shape, which makes them suitable for those appli-

cations where accuracy is paramount. A non-exhaustive list

of potential fields of interest for the application is: medical

and industrial robotics, mining industry and aerospace. The

algorithm based on transformation matrices is characterized

by a better performance in respect to the traditional Frenet-

Serret equations, proving to be suitable for applications where

fast real-time feedback is needed; in fact, it is able to provide

the same accuracy with lower computational effort, while

also being more stable against discontinuities in the measured

curvature angle values. Future works will involve developing

a real-time application of the algorithm.
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