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Abstract

In this two-part article we present a collection of numerical methods combined into

a single framework, which has the potential for a successful application to wind

turbine rotor modeling and simulation. In Part 1 of this article we focus on: 1.

The basics of geometry modeling and analysis-suitable geometry construction for

wind turbine rotors; 2. The fluid mechanics formulation and its suitability and

accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating

rigid body. In Part 2 we focus on the structural discretization for wind turbine

blades and the details of the fluid–structure interaction computational procedures.

The methods developed are applied to the simulation of the NREL 5MW offshore

baseline wind turbine rotor. The simulations are performed at realistic wind velocity

and rotor speed conditions and at full spatial scale. Validation against published data

is presented and possibilities of the newly developed computational framework are

illustrated on several examples.

Keywords: wind turbine rotor, wind turbine blades, fluid–structure interaction,

Kirchhoff-Love shells, composite materials, isogeometric analysis, NURBS,

aerodynamic torque

1. Introduction

Coupled fluid-structure interaction (FSI) simulations at full scale are essential

for accurate modeling of wind turbines. The motion and deformation of the wind

turbine blades depend on the wind speed and air flow, and the air flow patterns

depend on the motion and deformation of the blades. In recent years, standalone

3D fluid mechanics simulations with simplified wind turbine configurations were

reported in [1–4], some at reduced scale and some with limitations in terms of the
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representation of the exact geometry and prediction of the FSI involved. Structural

analyses of the individual turbine blades under assumed load conditions or loads

coming from separate computational fluid dynamics simulations were also reported

(see, e.g. [5–8]). To the best of our knowledge, no coupled fluid-structure simula-

tions of the full-scale wind turbine blades were attempted. This problem presents a

significant computational challenge because of the high wind speeds, complex and

sharp geometric features, and sizes of the wind turbines under consideration. This

in part explains the current, modest nature of the state-of-the-art in wind turbine

simulation. In order to simulate the coupled problem, the equations governing the

air flow and the blade motions and deformations need to be solved simultaneously,

with proper kinematic and dynamic conditions coupling the two physical systems.

Without that the modeling cannot be realistic.

In this work, we use isogeometric analysis based on Non-Uniform Rational B-

Splines (NURBS) [9] for FSI modeling of wind turbine rotors. In Part 1 [10] of

this article the wind turbine geometry modeling and aerodynamics simulation pro-

cedures were described in detail and the validation results were presented. In this

work, we focus on the details of structural and FSI modeling.

The blade structure is governed by the isogeometric rotation-free shell formu-

lation with the aid of the bending strip method [11]. The method is appropriate for

thin shell structures comprised of multiple C1- or higher-order continuous surface

patches that are joined or merged with continuity no greater than C0. The Kirchhoff-

Love shell theory that relies on higher-order continuity of the basis functions is

employed in the patch interior as in [12]. Strips of fictitious material with unidi-

rectional bending stiffness and with zero mass and membrane stiffness are added

at patch interfaces in the overlapping fashion. The direction of bending stiffness is

chosen to be transverse to the patch interface. This choice leads to an approximate

satisfaction of the appropriate kinematic constraints at patch interfaces without in-

troducing additional stiffness to the shell structure. Furthermore, as the functional

representation of the structural patches is enriched, the thickness of the overlap re-

gion goes to zero. Although NURBS-based isogeometric analysis is employed in

this work, other discretizations such as T-Splines [13, 14] or Subdivision surfaces

[15–17] are perfectly suited for the proposed structural modeling methodology.

The FSI formulation presented in this paper assumes matching discretization

at the fluid-structure interface. We adopt a strongly-coupled solution strategy and

employ Newton linearization to solve the nonlinear coupled equations for the fluid,

structure and fluid mesh motion. However, the fluid, structure, and mesh linear

solves are decoupled at the Newton iteration level, leading to a block-iterative FSI

procedure [18]. The approach is robust due to the relatively large rotor mass. We

note that the lack of rotational degrees of freedom in the structural discretization

facilitates the strong FSI coupling.

The paper is outlined as follows. In Section 2 we describe the individual con-

stituents of the FSI problem. We recall the air modeling approach from Part 1 of

this paper. We give details of the structural formulation for wind turbine blades that

2



is based on the bending strip method. We also briefly describe our composite ma-

terial modeling procedures for wind turbine blades. We then focus on the problem

of the fluid domain motion. We develop a formulation in which the rotating part of

the fluid domain motion is handled exactly, while the rest is computed using elas-

tostatics. We conclude the section with a statement of a fully-coupled FSI problem.

In Section 3 we present our discrete solution procedures for the coupled FSI prob-

lem. We also introduce a new class of time integration procedures for structures

dominated by large rotational motions. In Section 4 we simulate the NREL 5MW

offshore baseline wind turbine rotor [19] and present the computational results. In

Section 5 we draw conclusions and outline future research directions.

2. Fluid-structure interaction modeling

In this section we present the coupled fluid-structure interaction (FSI) formula-

tion with an emphasis on wind turbine rotors.

2.1. Air flow modeling

Air flow modeling, governed by the Navier-Stokes equations of incompressible

flow in the arbitrary Lagrangian-Eulerian (ALE) form, is described in detail in Part

1 [10] of this article. Here we restate the weak formulation of the Navier-Stokes

equations for completeness. We introduced a slight change in the notation to facili-

tate the presentation of the FSI problem.

LetV f andW f be the standard solution and weighting function spaces for the

fluid problem. We seek the velocity-pressure pair {v, p} ∈ V f , such that for all

weighting functions {w f , q f } ∈ W f ,

B f
(

{w f , q f }, {v, p}; vm
)

− F f
(

{w f , q f }
)

= 0, (1)

where

B f
(

{w f , q f }, {v, p}; vm
)

=

(

w f , ρ f ∂v

∂t

)

Ω
f
t

+
(

w f , ρ f (v − vm) · ∇xv
)

Ω
f
t

+
(

q f , ∇x · v
)

Ω
f
t

−
(

∇x · w
f , p

)

Ω
f
t

+
(

∇s
xw

f , 2µ f∇s
xv

)

Ω
f
t

, (2)

and

F f
(

{w f , q f }
)

=
(

w f , ρ f f f
)

Ω
f
t

+
(

w f , h f
)

Γ
f ,N
t

. (3)

In the above equations, vm is the fluid domain velocity, µ f is the dynamic viscos-

ity, ρ f is the density, h f is the boundary traction vector, and f f is the body force

per unit mass. Ω
f
t is the fluid domain in the current configuration, Γ

f ,N
t is the Neu-

mann part of the fluid domain boundary, ∇x is the gradient operator on Ω
f
t , ∇s

x is its

symmetrization, and (·, ·)D denotes the usual L2-inner product over D. The varia-

tional equations (1)-(3) represent the balance of mass and linear momentum for the

incompressible fluid.
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2.2. Structural modeling of the wind turbine blades

The bending strip method is used for rotation-free thin shell analysis of the

wind turbine blades. The method was first proposed and applied to the solution

of elastostatic problems in [11]. In this work, the bending strip methodology is

extended to simulate dynamic phenomena. To present the variational equations

governing the motion of the structure, we first define

Ωs
0 =

Nsp
⋃

i=1

Ωs
0 i, (4)

Ωs =

Nsp
⋃

i=1

Ωs
i , (5)

Ωb
0 =

Nbp
⋃

i=1

Ωb
0 i, (6)

Ωb =

Nbp
⋃

i=1

Ωb
i . (7)

Ωs
0

and Ωs denote the structure midsurface in the reference and deformed config-

uration, respectively. Ωs
0 i

and Ωs
i
, i = 1, 2, . . . ,Nsp, are the structural patches or

subdomains in the reference and deformed configuration, respectively, and Nsp is

their number. Ωb
0 i

and Ωb
i
, i = 1, 2, . . . ,Nbp, are the bending strip patches in the

reference and deformed configuration, respectively, and Nbp is their number.

We define the following inner products of arbitrary functions f and g, taken

patch-wise, as

( f , g)Ωs
0
=

Nsp
∑

i=1

∫

Ωs
0 i

f g dΩs
0, (8)

( f , g)Ωs =

Nsp
∑

i=1

∫

Ωs
i

f g dΩs, (9)

( f , g)Ωb
0
=

Nbp
∑

i=1

∫

Ωb
0 i

f g dΩb
0, (10)

( f , g)Ωb =

Nbp
∑

i=1

∫

Ωb
i

f g dΩb. (11)

Let Vs andWs denote the trial solution and weighting function spaces for the

structural problem. We seek the displacement of the shell midsurface u ∈ Vs, such

that for all weighting functions ws ∈ Ws,

Bs (ws,u) − F s (ws) = 0, (12)
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where

Bs (ws,u) =

(

ws, ρs
0h
∂2u

∂t2

)

Ωs
0

+
(

δε(u)[ws], A(h)ε(u) + B(h)κ(u)
)

Ωs
0

+
(

δκ(u)[ws], B(h)ε(u) + D(h)κ(u)
)

Ωs
0

+

(

δκ(u)[ws],
h3

12
Cb
κ(u)

)

Ωb
0

, (13)

and

F s (ws) = (ws, ρsh f s)Ωs + (ws, hs)Ωs . (14)

In the above, ρs
0

and ρs are the structural mass densities in the reference and de-

formed configuration, respectively, h is the shell thickness, f s is the body force

(e.g. gravity), and hs is the prescribed surface traction. A, B and D are the exten-

sional (membrane), coupling and bending material stiffness tensors, respectively,

pre-integrated through the shell thickness, and ε and κ are the membrane strains

and changes in curvature, respectively (see [12] for details). Their first variations,

δε(u)[ws] and δκ(u)[ws], are given by

δε(u)[ws] =
d

dǫ
ε(u + ǫws)

∣

∣

∣

∣

∣

ǫ=0

, (15)

δκ(u)[ws] =
d

dǫ
κ(u + ǫws)

∣

∣

∣

∣

∣

ǫ=0

, (16)

where ǫ is a real number. Equations (12)-(14) represent the balance of linear mo-

mentum for the structure. It is assumed in Eq. (13) that the linear stress-strain

relationship for the structure holds (i.e. the St.Venant-Kirchhoff model). Despite

the linear stress-strain relationship, the structural formulation is objective and thus

applicable to large deformation problems.

In Eq. (13), Cb is the constitutive material matrix for the bending strip patches.

In the local Cartesian coordinate system oriented on the tangent vector orthogonal

to the patch interface, Cb may be expressed in Voigt notation as

Cb =





















Es 0 0

0 0 0

0 0 0





















, (17)

where Es is the bending strip modulus of elasticity. The bending strip constitutive

matrix is designed to ensure that no extra stiffness is added to the structure and

the bending moment is appropriately transferred between the structural patches. Es

scales linearly with the structural stiffness and, provided it is large enough, has little

influence on the structural response (see [11]).
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Figure 1: Schematic of a composite laminate.

2.2.1. Composite shell modeling

Composite materials are used in modern wind turbine blade designs to reduce

the rotor mass (and production costs) and at the same time give it the necessary

stiffness to withstand operational loads. In what follows, we present our composite

modeling procedures for wind turbine blades.

We use the classical laminated plate theory [20] and homogenize the material

through-thickness constitutive behavior for a given composite ply layout. Let k

denotes the kth ply (or lamina) and let n be the total number of plies (see Figure

1). We assume each ply has the same thickness h/n. Pre-integrating through the

thickness, the extensional stiffness A, coupling stiffness B and bending stiffness D

in Eq. (13) are given by

A(h) =

∫ h
2

− h
2

C(z)dz =
h

n

n
∑

k=1

Ck, (18)

B(h) =

∫ h
2

− h
2

C(z)zdz =
h2

n2

n
∑

k=1

Ck

(

k −
n

2
−

1

2

)

, (19)

D(h) =

∫ h
2

− h
2

C(z)z2dz =
h3

n3

n
∑

k=1

Ck













(

k −
n

2
−

1

2

)2

+
1

12













, (20)

where

Ck = TT (φk) C T(φk), (21)

C =















































E1

(1 − ν12ν21)

ν21E1

(1 − ν12ν21)
0

ν12E2

(1 − ν12ν21)

E2

(1 − ν12ν21)
0

0 0 G12















































, (22)
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T(φ) =





















cos2 φ sin2 φ sin φ cos φ

sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ − sin2 φ





















. (23)

In the above equations, φ is the fiber orientation angle in each ply, E1 and E2

are the Young’s moduli of the unidirectional lamina, ν’s are the Poisson ratios,

G12 is the shear modulus, and ν21E1 = ν12E2 to ensure the symmetry of the

constitutive material matrix C. Equation (21) transforms C from the principal

material coordinates to the laminate coordinates (i.e. the local Cartesian basis

defined in [11]) for each ply and Ck is constant within each ply.

Remark: Setting n = 1 and Ck = C in Eqs. (18)-(20), we get B(h) = 0 and

A(h) = hC, (24)

D(h) =
h3

12
C, (25)

which are the classical membrane and bending stiffnesses for the orthotropic shell.

2.2.2. Decomposition of the structural displacement into rotation and deflection

In the case of wind turbine rotors, the structural motions are dominated by the

rotation. As a result, it is useful to decompose the structural displacement u into its

rotation and deflection components as

u = uθ + ud. (26)

The rotational component of the displacement may be computed as

uθ = (R(θ) − I) (X − X0) , (27)

where X are the coordinates of the structure reference configuration, X0 is a fixed

point, θ is the time-dependent angle of rotation, R(θ) is the rotation matrix and I is

the identity. We specialize to the case of rotation about the z-axis, which gives

R(θ) =





















cos θ − sin θ 0

sin θ cos θ 0

0 0 1





















. (28)

The total structural velocities and accelerations may be computed as

∂u

∂t
= u̇ = u̇θ + u̇d = Ṙ(θ)(X − X0) + u̇d, (29)

∂2u

∂t2
= ü = üθ + üd = R̈(θ)(X − X0) + üd, (30)
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where

Ṙ(θ) =





















− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0





















θ̇, (31)

R̈(θ) =





















− cos θ sin θ 0

− sin θ − cos θ 0

0 0 0





















θ̇2 +





















− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0





















θ̈. (32)

In what follows, this decomposition of the structural displacement will be em-

ployed to define the motion of the fluid domain and to modify time integration

procedures for the structural equations of motion.

2.3. Motion of the fluid domain

In the ALE framework the fluid domain moves to accommodate the structural

motion. To ensure a smooth evolution of the fluid domain, we employ equations of

linear elasticity to compute the fluid domain displacement [21–25]. The linear elas-

tic equations are driven by the time-dependent displacement of the fluid-structure

interface. In the discrete setting this procedure is referred to as mesh motion.

The present application is dominated by the rotation. However, large rotations

are not in the kernel of the linear elasticity operator (i.e. large rotations generate

stresses in the linear elastic framework). As a result, the direct application of lin-

ear elastostatics to compute the fluid domain motion may lead to undesired fluid

mesh distortion, especially for long time integration. To circumvent this potential

difficulty, we propose to decompose the fluid domain motion into rotation and de-

flection to handle the rotation exactly, and to employ linear elastostatics only for the

deflection.

We introduce the total fluid domain displacement, um,

um = um
θ + um

d , (33)

where

um
θ = (R(θ) − I) (X − X0) (34)

is the fluid domain displacement associated with rotation about a fixed point X0.

The fluid domain deflection may be computed from the following variational prob-

lem: Find um
d

(t) ∈ Vm, such that ∀wm ∈ Wm,

Bm (

wm,um
d (t)

)

− Fm (wm) = 0, (35)

where the argument t is used to denote deflection at the current time. In Eq. (35)

Bm (w,u) = (∇s
x̃w, 2µ

m∇s
x̃u + λ

m∇x̃ · uI)
Ω

f

t̃

(36)
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is the linear elasticity operator defined on the “nearby configuration” Ω
f

t̃
taken at

time t̃ < t, and

Fm (wm) = Bm (

wm,um
d (t̃)

)

, (37)

where um
d

(t̃) is considered known. The configuration Ω
f

t̃
is obtained by rotating the

fluid domain to current time t and deflecting to t̃, namely,

Ω
f

t̃
=

{

x̃ | x̃ = X + um
θ (t) + um

d (t̃)
}

. (38)

In practice, t̃ = tn, that is, in the definition of Ω
f

t̃
, the deflection is taken at the

previous time step.

The total fluid domain displacement at time t is now computed as

um(t) = um
θ (t) + um

d (t), (39)

and the fluid domain configuration at t becomes

Ω
f
t = {x | x = X + um(t)} . (40)

Remark: The pure rotation case is recovered by setting um
d
= 0. Likewise, the pure

deflection case is recovered by setting um
θ
= 0.

Remark: As an alternative to the proposed approach, nonlinear elasticity with an

objective measure of strain may be used to compute the fluid domain motion. This,

however, introduces an additional level of nonlinearity into the problem.

Remark: If the thin boundary-layer elements become even thinner during the

computation or as a result of mesh refinement, it might be advantageous to stiffen

those elements in a more direct way, such as by using the Solid-Extension Mesh

Moving Technique (SEMMT), which was introduced in [26] and tested in [27]

and [18].

2.4. Coupled problem

Given the individual subproblems, the weak formulation for the coupled FSI

problem is stated as follows: Find {v, p} ∈ V f , u ∈ Vs and um
d
∈ Vm such that

∀{w f , q f } ∈ W f , ∀ws ∈ Ws and ∀wm ∈ Wm,

B f
(

{w f , q f }, {v, p}; vm
)

− F f
(

{w f , q f }
)

+ Bs (ws,u) − F s (ws) (41)

+ Bm (

wm,um
d

)

− Fm (wm) = 0.

In the above weak formulation the solution fields and weighting functions are cho-

sen to ensure strong kinematic and weak traction coupling at the fluid-structure

interface (see [25] for details).
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3. Discrete solution procedures

In this section we briefly summarize our space discretization approach of the

coupled FSI problem given by Eq. (41). We also present an adaptation of a class of

time integration procedures for structures dominated by large rotational motions.

The solid and fluid mesh motion equations are discretized using the Galerkin

approach. The fluid formulation makes use of the residual-based variational

multiscale method [28, 29], which was presented in detail for moving domain

problems in Part 1 of this paper. The coupled FSI equations are advanced in

time using the Generalized-alpha method (see [25, 30, 31]). Within each time

step, the coupled equations are solved using an inexact Newton approach. For

every Newton iteration the following steps are performed: 1. We obtain the

fluid solution increment holding the structure and mesh fixed; 2. We update the

fluid solution, compute the aerodynamic force on the structure and compute the

structural solution increment. The aerodynamic force at control points or nodes

is computed using the conservative definition given in Part 1 of this paper; 3.

We update the structural solution and use elastic mesh motion to update the fluid

domain velocity and position. We recall that only the deflection part of the mesh

motion is computed using linear elastostatics, while the rotation part is computed

exactly. This three-step iteration is repeated until convergence to an appropriately

coupled discrete solution is achieved. The proposed approach, also referred to as

“block-iterative” (see [18] for the terminology), is stable because the wind turbine

blades are relatively heavy structures.

Remark: Because the structural nonlinearity is stronger than that of the fluid, it

may be beneficial to take additional inner iterations on the structure to improve its

convergence.

In the proposed FSI framework the fluid and structural solves are decoupled.

This gives us the flexibility of adjusting the structure time integration procedures

to better capture the important features of the solution. In particular, we note that

the bulk of the structural displacement comes from rotation of the blades about

the horizontal axis. To better approximate rotation we separate the structure nodal

or control point degrees of freedom into rotation and deflection as follows. Let

U, U̇ and Ü be the vectors of nodal or control point displacements, velocities and

accelerations, respectively. We set

U = Uθ + Ud, (42)

U̇ = U̇θ + U̇d, (43)

Ü = Üθ + Üd, (44)

where Uθ, U̇θ and Üθ are given by

Uθ = (R(θ) − I) (X − X0), (45)
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U̇θ = Ṙ(θ)(X − X0), (46)

Üθ = R̈(θ)(X − X0). (47)

The above Eqs. (45)-(47) present an exact relationship between the nodal or control

point displacements, velocities and accelerations corresponding to the rotation. To

relate the deflection degrees of freedom between time levels tn and tn+1, we make

use of the standard Newmark formulas [32]

U̇
n+1

d = U̇
n

d + ∆t
(

(1 − γ)Ü
n

d + γÜ
n+1

d

)

, (48)

Un+1
d = Un

d + ∆tU̇
n

d +
∆t2

2

(

(1 − 2β)Ü
n

d + 2βÜ
n+1

d

)

, (49)

where γ and β are the time integration parameters chosen to maintain second-order

accuracy and unconditional stability of the method, and ∆t = tn+1 − tn is the time

step size.

Combining exact rotations given by Eqs. (45)-(47) and time-discrete deflections

given by Eqs. (48)-(49), we obtain the following modified Newmark formulas for

the total discrete solution:

U̇
n+1
=

{

Ṙ
n+1
−

[

Ṙ
n
+ ∆t

(

(1 − γ)R̈
n
+ γR̈

n+1
)]}

(X − X0)

+ U̇
n
+ ∆t

(

(1 − γ)Ü
n
+ γÜ

n+1
)

, (50)

Un+1 =

{

Rn+1 −

[

Rn + ∆tṘ
n
+
∆t2

2

(

(1 − 2β)R̈
n
+ 2βR̈

n+1
)

]}

(X − X0)

+ Un + ∆tU̇
n
+
∆t2

2

(

(1 − 2β)Ü
n
+ 2βÜ

n+1
)

. (51)

We employ Eqs. (50)-(51), in conjunction with the Generalized-alpha method, for

the time discretization of the structure.

Remark: In the case of no rotation, for which R is an identity tensor, Eqs. (50) and

(51) reduce to the standard Newmark formulas. In the case of no deflection, pure

rotation is likewise recovered.

4. Simulation of the NREL 5MW offshore baseline wind turbine rotor

The wind turbine rotor is simulated at prescribed steady inlet wind velocity of

11.4 m/s and rotor angular velocity of 12.1 rpm. This setup corresponds to one

of the cases reported in [19]. The problem setup is illustrated in Figure 2. The

dimensions of the problem domain and the NURBS mesh employed are the same

as in Part 1 of this paper. The air density and viscosity are set to 1.2 kg/m3 and

2.0 × 10−5 kg/(m·s), respectively. The time step is chosen to be ∆t = 0.0003 s.

As in Part 1, rotationally-periodic boundary conditions for the fluid are imposed

in order to reduce computational cost. However, because the rotor blades are sub-

ject to gravity forces, a fully rotationally-periodic structural solution is not expected
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Figure 2: Problem setup.

in this case. Nevertheless, we feel that the use of rotationally-periodic boundary

conditions for the fluid domain is justified due to the fact that the fluid periodic

boundaries are located sufficiently far away from the structure and are not expected

to affect the structural response. We note that rotationally periodic boundary condi-

tions were employed earlier in [33, 34] for parachute simulations.

A symmetric fiberglass/epoxy composite with [±45/0/902/03]s lay-up, which

enhances flap-wise and edge-wise stiffness is considered for the rotor blade mate-

rial. The 0◦ fiber points in the direction of a tangent vector to the airfoil cross-section

curve. The orthotropic elastic moduli for each ply are given in Table 1. For sim-

plicity, the entire blade is assumed to have the same lay-up. The resulting A, B and

D matrices from Eqs. (18)-(20) are

A = h





















26.315 4.221 0

4.221 18.581 0

0 0 5.571





















× 109 (N/m) , (52)

B = 0, (53)

D = h3





















1.727 0.545 0.053

0.545 1.627 0.053

0.053 0.053 0.658





















× 109 (N·m) . (54)

The total laminate thickness distribution is shown in Figure 3a. The blade shell

model together with the bending strips covering the regions of C0-continuity is

shown in Figure 3b.

The computations are advanced in time until a statistically-stationary value of

the aerodynamic torque is obtained. The rigid rotor under the same wind and ro-
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(a) Blade thickness

(b) Bending strips

Figure 3: NREL 5MW offshore baseline wind turbine rotor blade model.

E1 (GPa) E2 (GPa) G12 (GPa) ν12 (–) ρ (g/cm3)

39 8.6 3.8 0.28 2.1

Table 1: Material properties of a unidirectional E-glass/epoxy composite taken from [35].

tor speed conditions is simulated for comparison. Contours of the pressure on the

flexible blade in the current configuration are shown in Figure 4. The large nega-

tive pressure on the suction side creates a lift force vector with a component in the

direction of the blade rotation, which generates a favorable aerodynamic torque.

The aerodynamic torque (for a single blade) is plotted in Figure 5 for both rigid

and flexible blade simulations. Both cases compare favorably to the data reported

in [19] for this setup obtained using FAST [36], which is a widely used software in

wind turbine aerodynamics simulation. Computational modeling in FAST makes

use of look-up tables to obtain steady-state lift and drag data for airfoil cross-

sections and incorporates empirical modeling to account for the rotor hub, blade

tips, and trailing-edge turbulence. In our simulations we are able to capture this

13



Figure 4: Pressure contours at several blade cross-sections at t = 0.7 s viewed from the back of the

blade plotted on the deformed configuration. The large negative pressure at the suction side of the

airfoil creates a favorable aerodynamic torque.
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Figure 5: Time history of the aerodynamic torque. Both rigid and flexible rotor results are plotted.

The reference steady-state result from [19] is also shown for comparison.

important quantity of interest using 3D FSI procedures, which do not rely on em-

piricism and are 100% predictive.

Rotor blade deflected shape at the point of maximum tip displacement is shown
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Figure 6: Rotor blade deflected shape at the point of maximum tip displacement. Front, side and top

views are shown to better illustrate blade deflection characteristics.
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Figure 7: Time histories of the blade tip flap-wise (front-to-back) and edge-wise (side-to-side) de-

flection.

in Figure 6. As expected, the blade mostly displaces in the flap-wise direction,

although some edge-wise deflection is also present. Time histories of the flap-wise

and edge-wise displacements are shown in Figure 7. The maximum flap-wise tip

deflection reaches nearly 6 m, which is significant, and is consistent with the data

reported in [19]. There is a sudden decrease in the edge-wise deflection around
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(a) t = 0.7 s (b) t = 1.2 s (c) t = 2.0 s (d) t = 5.0 s

Figure 8: Merged domain of the rotor configuration as several time instants during the simulation.

The actual computational domain of the wind turbine rotor is highlighted using a darker shade.

Figure 9: Definition of the blade cross-section twist angle.
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Figure 10: Time histories of the twist angle at four cross-sections along the blade axis.

t = 1.2 s. At that time the blade tip passes its lowest vertical position (see Figure 8

for blade location at different time instances) and the direction of the gravity force
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Figure 11: Distribution of the cross-section twist angle along the length of the blade at different time

instances.

vector reverses with respect to the direction of the lift force vector.

Note that the aerodynamic torque for the flexible blade exhibits low-magnitude,

high-frequency oscillations, while the rigid blade torque is smooth (see Figure 5).

To better understand this behavior, we examine the twisting motion of the wind

turbine blade about its axis. Figure 9 provides a definition of the twist angle for

a given blade cross-section. Time histories of the twist angle at four different

cross-sections are shown in Figure 10. The twist angle increases with distance from

the root and reaches almost 2◦ near the tip in the early stages of the simulation.

However, starting at t = 1.2 s, when the blade tip reaches its lowest vertical

position, the magnitude of the twist angle is reduced significantly. The reversal

of the gravity vector with respect to the lift direction clearly affects the edge-wise

bending and twisting behavior of the blade. The blade twist angle undergoes high

frequency oscillations, which are driven by the trailing-edge vortex shedding and

turbulence. Local oscillations of the twist angle lead to the temporal fluctuations in

the aerodynamic torque.

Remark: We note that in the computations presented here the structure is modeled

as a shell with a smooth thickness variation. Structural members, such as spar

caps and shear webs, which provide additional bending and torsional stiffness for

improved blade response, are not considered here and will be added to the blade

structural model in the future.

Figure 11 shows the blade cross-section twist angle as a function of cross-

section distance from the root at different time instances. After the blade passes
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(a) t = 0.7 s (b) t = 1.2 s

(c) t = 2.0 s (d) t = 5.0 s

Figure 12: Isosurfaces of air speed at several instants in the simulation. The flow exhibits complex

behavior. The vortical feature generated at the blade tip is convected downstream of the rotor with

very little decay.

its lowest point, the distribution of the twist angle changes drastically.

Isosurfaces of the air speed at different time instances are shown in Figure 12.

Note that, for visualization purposes the rotationally-periodic 120◦ domain was

merged into a full 360◦ domain. Fine-grained turbulent structures are generated

at the trailing edge of the blade along its entire length. The vortex forming at the tip

of the blades is convected downstream of the rotor with little decay.

Figure 13 shows the isocontours of air speed at a planar cut superposed on the

spinning rotor. Note the high-intensity turbulence in the blade aerodynamic zone,
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(a) t = 0.7 s (b) t = 1.2 s

(c) t = 2.0 s (d) t = 5.0 s

Figure 13: Isocontours of air speed at a planar cut superposed with the wind turbine rotor in the

deformed configuration. Rotor blade deflection is clearly visible.

which is a segment of the blade where the cylindrical root rapidly transitions to a

thin airfoil shape. This suggests that the blade trailing edge in this location is sub-

jected to high-frequency loads that are fatiguing the blade. The blade displacement

under the action of wind forces is also clearly visible.

Figure 14 shows the isocontours of relative wind speed at a 30 m radial cut at

different time instances. For every snapshot the blade is rotated to the reference con-
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(a) t = 0.7 s (b) t = 1.2 s

(c) t = 2.0 s (d) t = 5.0 s

Figure 14: Isocontours of relative wind speed at a 30 m radial cut at different time instances su-

perposed on a moving blade. The air flow is fully attached on the pressure side of the blade and

separates on the suction side. The flow separation point varies as the blade moves under the action

of wind, inertial, and gravitational forces.

figuration to better illustrate the deflection part of the motion. On the pressure side,

the air flow boundary layer is attached to the blade for the entire cord length. On the

suction side, the flow detaches near the trailing edge and transitions to turbulence.

At t = 0.7 s the composite blade experienced the maximum flap-wise tip de-

flection. We found the magnitudes of the stress components (in the basis corre-

sponding to the material axes) for every ply are below the composite strength. The

most critical stress component of the entire blade is σ22 in ply number 14 (0◦ fiber

orientation). The maximum value of σ22 reaches 22.63 MPa, while the correspond-

ing failure strength is 39 MPa [35]. This indicates the proposed blade design can

withstand the simulated operating conditions. The isocontours of σ22 are plotted in

Figure 15, and show strong tension on the front and compression on the back of the
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(a) (b)

Figure 15: Isocontours of stress component σ22 (in the direction transverse to the fiber) in the 14th

ply (0◦ fiber orientation) of the composite blade at t = 0.7 s view from the (a) front and (b) back of

the blade. Strong tension on the front and compression on the back of the blade are found.

blade.

5. Conclusions

In this paper we presented our computational FSI procedures for the simulation

of wind turbine rotors at full scale. The air flow is modeled using the residual-based

variational multiscale formulation of turbulent flow and the structure is governed

by the rotation-free Kirchhoff-Love shell theory with the aid of the bending strip

method. NURBS-based isogeometric analysis is employed for spatial discretiza-

tion. The fluid and solid are strongly coupled at their interface. The strong coupling

is in part facilitated by the fact that the structure has only displacement degrees of

freedom. The coupled system is solved in a block-iterative fashion, which is a ro-

bust procedure for the present application due to the relatively high structural mass

of the wind turbine blades.

For wind turbine rotors the structural motion is dominated by rotation about the

horizontal axis. For this we found it advantageous for overall accuracy of the com-

putations to separate the structural displacement into rotation and deflection parts.

With this decomposition, we modified the Newmark formulas to treat the rotation

part of the structural motion exactly. In addition, only the deflection part of the

mesh motion makes use of the partial differential equations of linear elastostatics,

while the mesh rotation is computed exactly.

We applied our computational framework to the simulation of the NREL 5MW

offshore baseline wind turbine rotor. The rotor blades are modeled as symmetric

composite laminates homogenized in the through-thickness direction. The compu-

tational results give good prediction of the aerodynamic torque and blade tip deflec-

tion. To our knowledge, this is the first application of fully coupled FSI procedures

to wind turbine rotor simulation at full scale.

This work is only a first step in the direction of FSI modeling of wind turbines.

In the future, we plan to enhance our blade structural modeling to include spar caps,
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shear webs, and other structural components not considered in this work.

We also feel the effect of the wind turbine tower is important. The presence

of the tower will affect the aerodynamics and, consequently, wind loading on the

blades. As a result, the rotor-tower interaction needs to be taken into account. For

this, we plan to adopt procedures developed in [37] for the coupling of rotating and

stationary domains that are particularly well suited for isogeometric discretizations.

In the long run, we plan to combine FSI and structural optimization to devise

better blade designs and understand the sensitivity of power generation to changes

in wind conditions, blade geometry and material properties.
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