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Abstract

We present a convolutional network that is equivariant to rigid body motions.
The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to
represent data, and equivariant convolutions to map between such representations.
These SE(3)-equivariant convolutions utilize kernels which are parameterized
as a linear combination of a complete steerable kernel basis, which is derived
analytically in this paper. We prove that equivariant convolutions are the most
general equivariant linear maps between fields over R3. Our experimental results
confirm the effectiveness of 3D Steerable CNNs for the problem of amino acid
propensity prediction and protein structure classification, both of which have
inherent SE(3) symmetry.

1 Introduction

Increasingly, machine learning techniques are being applied in the natural sciences. Many problems
in this domain, such as the analysis of protein structure, exhibit exact or approximate symmetries.
It has long been understood that the equations that define a model or natural law should respect
the symmetries of the system under study, and that knowledge of symmetries provides a powerful
constraint on the space of admissible models. Indeed, in theoretical physics, this idea is enshrined
as a fundamental principle, known as Einstein’s principle of general covariance. Machine learning,
which is, like physics, concerned with the induction of predictive models, is no different: our models
must respect known symmetries in order to produce physically meaningful results.

A lot of recent work, reviewed in Sec. 2, has focused on the problem of developing equivariant
networks, which respect some known symmetry. In this paper, we develop the theory of SE(3)-
equivariant networks. This is far from trivial, because SE(3) is both non-commutative and non-
compact. Nevertheless, at run-time, all that is required to make a 3D convolution equivariant using our
method, is to parameterize the convolution kernel as a linear combination of pre-computed steerable
basis kernels. Hence, the 3D Steerable CNN incorporates equivariance to symmetry transformations
without deviating far from current engineering best practices.

The architectures presented here fall within the framework of Steerable G-CNNs [8, 10, 40, 45],
which represent their input as fields over a homogeneous space (R3 in this case), and use steerable
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filters [15, 37] to map between such representations. In this paper, the convolution kernel is modeled
as a tensor field satisfying an equivariance constraint, from which steerable filters arise automatically.

We evaluate the 3D Steerable CNN on two challenging problems: prediction of amino acid preferences
from atomic environments, and classification of protein structure. We show that a 3D Steerable CNN
improves upon state of the art performance on the former task. For the latter task, we introduce a
new and challenging dataset, and show that the 3D Steerable CNN consistently outperforms a strong
CNN baseline over a wide range of trainingset sizes.

2 Related Work

There is a rapidly growing body of work on neural networks that are equivariant to some group
of symmetries [3, 9, 10, 12, 19, 20, 28, 30–32, 36, 42, 46]. At a high level, these models can
be categorized along two axes: the group of symmetries they are equivariant to, and the type of
geometrical features they use [8]. The class of regular G-CNNs represents the input signal in terms of
scalar fields on a group G (e.g. SE(3)) or homogeneous space G/H (e.g. R3 = SE(3)/ SO(3)) and
maps between feature spaces of consecutive layers via group convolutions [9, 29]. Regular G-CNNs
can be seen as a special case of steerable (or induced) G-CNNs which represent features in terms
of more general fields over a homogeneous space [8, 10, 27, 30, 40]. The models described in this
paper are of the steerable kind, since they use general fields over R3. These fields typically consist of
multiple independently transforming geometrical quantities (vectors, tensors, etc.), and can thus be
seen as a formalization of the idea of convolutional capsules [18, 34].

Regular 3D G-CNNs operating on voxelized data via group convolutions were proposed in [43, 44].
These architectures were shown to achieve superior data efficiency over conventional 3D CNNs
in tasks like medical imaging and 3D model recognition. In contrast to 3D Steerable CNNs, both
networks are equivariant to certain discrete rotations only.

The most closely related works achieving full SE(3) equivariance are the Tensor Field Network
(TFN) [40] and the N-Body networks (NBNs) [26]. The main difference between 3D Steerable
CNNs and both TFN and NBN is that the latter work on irregular point clouds, whereas our model
operates on regular 3D grids. Point clouds are more general, but regular grids can be processed
more efficiently on current hardware. The second difference is that whereas the TFN and NBN use
Clebsch-Gordan coefficients to parameterize the network, we simply parameterize the convolution
kernel as a linear combination of steerable basis filters. Clebsch-Gordan coefficient tensors have 6
indices, and depend on various phase and normalization conventions, making them tricky to work
with. Our implementation requires only a very minimal change from the conventional 3D CNN.
Specifically, we compute conventional 3D convolutions with filters that are a linear combination of
pre-computed basis filters. Further, in contrast to TFN, we derive this filter basis directly from an
equivariance constraint and can therefore prove its completeness.

The two dimensional analog of our work is the SE(2) equivariant harmonic network [45]. The
harmonic network and 3D steerable CNN use features that transform under irreducible representations
of SO(2) resp. SO(3), and use filters related to the circular resp. spherical harmonics.

SE(3) equivariant models were already investigated in classical computer vision and signal processing.
In [33, 38], a spherical tensor algebra was utilized to expand signals in terms of spherical tensor
fields. In contrast to 3D Steerable CNNs, this expansion is fixed and not learned. Similar approaches
were used for detection and crossing preserving enhancement of fibrous structures in volumetric
biomedical images [13, 21, 22].

3 Convolutional feature spaces as fields

A convolutional network produces a stack of Kn feature maps fk in each layer n. In 3D, we can
model the feature maps as (well-behaved) functions fk : R3 → R. Written another way, we have a
map f : R3 → R

Kn that assigns to each position x a feature vector f(x) that lives in what we call
the fiber RKn at x. In practice f will have compact support, meaning that f(x) = 0 outside of some
compact domain Ω ∈ R

3. We thus define the feature space Fn as the vector space of continuous
maps from R

3 to R
Kn with compact support.

In this paper, we impose additional structure on the fibers. Specifically, we assume the fiber consists
of a number of geometrical quantities, such as scalars, vectors, and tensors, stacked into a single
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Kn-dimensional vector. The assignment of such a geometrical quantity to each point in space is
called a field. Thus, the feature spaces consist of a number of fields, each of which consists of a
number of channels (dimensions).

Before deriving SE(3)-equivariant networks in Sec. 4 we discuss the transformation properties of
fields and the kinds of fields we use in 3D Steerable CNNs.

3.1 Fields, Transformations and Disentangling

What makes a geometrical quantity (e.g. a vector) anything more than an arbitrary grouping of feature
channels? The answer is that under rigid body motions, information flows within the channels of
a single geometrical quantity, but not between different quantities. This idea is known as Weyl’s
principle, and has been proposed as a way of formalizing the notion of disentangling [6, 23].

Figure 1: To transform a vector field (L) by a 90◦

rotation g, first move each arrow to its new position (C),
keeping its orientation the same, then rotate the vector
itself (R). This is described by the induced representation

π = Ind
SE(2)

SO(3) ρ, where ρ(g) is a 3× 3 rotation matrix

that mixes the three coordinate channels.

As an example, consider the three-dimensional
vector field over R3, shown in Figure 1. At each
point x ∈ R

3 there is a vector f(x) of dimension
K = 3. If the field is translated by t, each vector
x− t would simply move to a new (translated)
position x. When the field is rotated, however,
two things happen: the vector at r−1x is moved
to a new (rotated) position x, and each vector
is itself rotated by a 3× 3 rotation matrix ρ(r).
Thus, the rotation operator π(r) for vector fields
is defined as [π(r)f ](x) := ρ(r)f(r−1x). No-
tice that in order to rotate this field, we need all
three channels: we cannot rotate each channel
independently, because ρ introduces a functional
dependency between them. For contrast, con-
sider the common situation where in the input

space we have an RGB image with K = 3 channels. Then f(x) ∈ R
3, and the rotation can be

described using the same formula ρ(r)f(r−1x) if we choose ρ(r) = I3 to be the 3×3 identity matrix
for all r. Since ρ(r) is diagonal for all r, the channels do not get mixed, and so in geometrical terms,
we would describe this feature space as consisting of three scalar fields, not a 3D vector field. The
RGB channels each have an independent physical meaning, while the x and y coordinate channels of
a vector do not.

The RGB and 3D-vector cases constitute two examples of fields, each one determined by a different
choice of ρ. As one might guess, there is a one-to-one correspondence between the type of field and
the type of transformation law (group representation) ρ. Hence, we can speak of a ρ-field.

So far, we have concentrated on the behaviour of a field under rotations and translations separately.
A 3D rigid body motion g ∈ SE(3) can always be decomposed into a rotation r ∈ SO(3) and a
translation t ∈ R

3, written as g = tr. So the transformation law for a ρ-field is given by the formula

[π(tr)f ](x) := ρ(r)f(r−1(x− t)). (1)

The map π is known as the representation of SE(3) induced by the representation ρ of SO(3), which

is denoted by π = Ind
SE(3)
SO(3) ρ. For more information on induced representations, see [5, 8, 17].

3.2 Irreducible SO(3) features

We have seen that there is a correspondence between the type of field and the type of inducing
representation ρ, which describes the rotation behaviour of a single fiber. To get a better understanding
of the space of possible fields, we will now define precisely what it means to be a representation of
SO(3), and explain how any such representation can be constructed from elementary building blocks
called irreducible representations.

A group representation ρ assigns to each element in the group an invertible n× n matrix. Here n is
the dimension of the representation, which can be any positive integer (or even infinite). For ρ to be
called a representation of G, it has to satisfy ρ(gg′) = ρ(g)ρ(g′), where gg′ denotes the composition
of two transformations g, g′ ∈ G, and ρ(g)ρ(g′) denotes matrix multiplication.
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To make this more concrete, and to introduce the concept of an irreducible representation, we consider
the classical example of a rank-2 tensor (i.e. matrix). A 3× 3 matrix A transforms under rotations
as A 7→ R(r)AR(r)T , where R(r) is the 3× 3 rotation matrix representation of the abstract group
element r ∈ SO(3). This can be written in matrix-vector form using the Kronecker / tensor product:
vec(A) 7→ [R(r)⊗R(r)] vec(A) ≡ ρ(r) vec(A). This is a 9-dimensional representation of SO(3).

One can easily verify that the symmetric and anti-symmetric parts of A remain symmetric respectively
anti-symmetric under rotations. This splits R3×3 into 6- and 3-dimensional linear subspaces that
transform independently. According to Weyl’s principle, these may be considered as distinct quanti-
ties, even if it is not immediately visible by looking at the coordinates Aij . The 6-dimensional space
can be further broken down, because scalar matrices Aij = αδij (which are invariant under rotation)
and traceless symmetric matrices also transform independently. Thus a rank-2 tensor decomposes
into representations of dimension 1 (trace), 3 (anti-symmetric part), and 5 (traceless symmetric part).
In representation-theoretic terms, we have reduced the 9-dimensional representation ρ into irreducible
representations of dimension 1, 3 and 5. We can write this as

ρ(r) = Q−1

[

2
⊕

l=0

Dl(r)

]

Q, (2)

where we use
⊕

to denote the construction of a block-diagonal matrix with blocks Dl(r), and Q is a
change of basis matrix that extracts the trace, symmetric-traceless and anti-symmetric parts of A.

More generally, it can be shown that any representation of SO(3) can be decomposed into irreducible
representations of dimension 2l + 1, for l = 0, 1, 2, . . . ,∞. The irreducible representation acting on
this 2l + 1 dimensional space is known as the Wigner-D matrix of order l, denoted Dl(r). Note that
the Wigner-D matrix of order 4 is a representation of dimension 9, it has the same dimension as the
representation ρ acting on A but these are two different representations.

Since any SO(3) representation can be decomposed into irreducibles, we only use irreducible features
in our networks. This means that the feature vector f(x) in layer n is a stack of Fn features

f i(x) ∈ R
2li+1, so that Kn =

∑Fn

i=1 2lin + 1.

4 SE(3)-Equivariant Networks

Our general approach to building SE(3)-equivariant networks will be as follows: First, we will
specify for each layer n a linear transformation law πn(g) : Fn → Fn, which describes how the
feature space Fn transforms under transformations of the input by g ∈ SE(3). Then, we will study
the vector space HomSE(3)(Fn,Fn+1) of equivariant linear maps (intertwiners) Φ between adjacent
feature spaces:

HomSE(3)(Fn,Fn+1) = {Φ ∈ Hom(Fn,Fn+1) |Φπn(g) = πn+1(g)Φ, ∀g ∈ SE(3)} (3)

Here Hom(Fn,Fn+1) is the space of linear (not necessarily equivariant) maps from Fn to Fn+1.

By finding a basis for the space of intertwiners and parameterizing Φn as a linear combination of
basis maps, we can make sure that layer n+ 1 transforms according to πn+1 if layer n transforms
according to πn, thus guaranteeing equivariance of the whole network by induction.

As explained in the previous section, fields transform according to induced representations [5, 8, 10,
17]. In this section we show that equivariant maps between induced representations of SE(3) can
always be expressed as convolutions with equivariant / steerable filter banks. The space of equivariant
filter banks turns out to be a linear subspace of the space of filter banks of a conventional 3D CNN.
The filter banks of our network are expanded in terms of a basis of this subspace with parameters
corresponding to expansion coefficients.

Sec. 4.1 derives the linear constraint on the kernel space for arbitrary induced representations. From
Sec. 4.2 on we specialize to representations induced from irreducible representations of SO(3) and
derive a basis of the equivariant kernel space for this choice analytically. Subsequent sections discuss
choices of equivariant nonlinearities and the actual discretized implementation.

4



4.1 The Subspace of Equivariant Kernels

A continuous linear map between Fn and Fn+1 can be written using a continuous kernel κ with
signature κ : R3 × R

3 → R
Kn+1×Kn , as follows:

[κ · f ](x) =

∫

R3

κ(x, y)f(y)dy (4)

Lemma 1. The map f 7→ κ · f is equivariant if and only if for all g ∈ SE(3),

κ(gx, gy) = ρ2(r)κ(x, y)ρ1(r)
−1, (5)

Proof. For this map to be equivariant, it must satisfy κ · [π1(g)f ] = π2(g)[κ · f ]. Expanding the left
hand side of this constraint, using g = tr, and the substitution y 7→ gy, we find:

κ · [π1(g)f ](x) =

∫

R3

κ(x, gy)ρ1(r)f(y)dy (6)

For the right hand side,

π2(g)[κ · f ](x) = ρ2(r)

∫

R3

κ(g−1x, y)f(y)dy. (7)

Equating these, and using that the equality has to hold for arbitrary f ∈ Fn, we conclude:

ρ2(r)κ(g
−1x, y) = κ(x, gy)ρ1(r). (8)

Substitution of x 7→ gx and right-multiplication by ρ1(r)
−1 yields the result.

Theorem 2. A linear map from Fn to Fn+1 is equivariant if and only if it is a cross-correlation with
a rotation-steerable kernel.

Proof. Lemma 1 implies that we can write κ in terms of a one-argument kernel, since for g = −x :

κ(x, y) = κ(0, y − x) ≡ κ(y − x). (9)

Substituting this into Equation 4, we find

[κ · f ](x) =

∫

R3

κ(x, y)f(y)dy =

∫

R3

κ(y − x)f(y)dy = [κ ⋆ f ](x). (10)

Cross-correlation is always translation-equivariant, but Eq. 5 still constrains κ rotationally:

κ(rx) = ρ2(r)κ(x)ρ1(r)
−1. (11)

A kernel satisfying this constraint is called rotation-steerable.

We note that κ ⋆ f (Eq. 10) is exactly the operation used in a conventional convolutional network, just
written in an unconventional form, using a matrix-valued kernel (“propagator”) κ : R3 → R

Kn+1×Kn .

Since Eq. 11 is a linear constraint on the correlation kernel κ, the space of equivariant kernels (i.e.
those satisfying Eq. 11) forms a vector space. We will now proceed to compute a basis for this space,
so that we can parameterize the kernel as a linear combination of basis kernels.

4.2 Solving for the Equivariant Kernel Basis

As mentioned before, we assume that the Kn-dimensional feature vectors f(x) = ⊕if
i(x) consist of

irreducible features f i(x) of dimension 2 lin + 1. In other words, the representation ρn(r) that acts

on fibers in layer n is block-diagonal, with irreducible representation Dlin(r) as the i-th block. This

implies that the kernel κ : R3 → R
Kn+1×Kn splits into blocks1 κjl : R3 → R

(2j+1)×(2l+1) mapping
between irreducible features. The blocks themselves are by Eq. 11 constrained to transform as

κjl(rx) = Dj(r)κjl(x)Dl(r)−1. (12)

1For more details on the block structure see Sec. 2.7 of [10]
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Figure 2: Angular part of the basis for the space of steerable kernels κjl (for j = l = 1, i.e. 3D vector fields as
input and output). From left to right we plot three 3× 3 matrices, for j − l ≤ J ≤ j + l i.e. J = 0, 1, 2. Each
3× 3 matrix corresponds to one learnable parameter per radial basis function ϕm. A seasoned eye will see the
identity, the curl (∇∧) and the gradient of the divergence (∇∇·).

To bring this constraint into a more manageable form, we vectorize these kernel blocks to vec(κjl(x)),
so that we can rewrite the constraint as a matrix-vector equation2

vec(κjl(rx)) = [Dj ⊗Dl](r) vec(κjl(x)), (13)

where we used the orthogonality of Dl. The tensor product of representations is itself a representation,
and hence can be decomposed into irreducible representations. For irreducible SO(3) representations

Dj and Dl of order j and l it is well known [17] that Dj ⊗ Dl can be decomposed in terms of
2min(j, l) + 1 irreducible representations of order3 |j − l| ≤ J ≤ j + l. That is, we can find a
change of basis matrix4 Q of shape (2l+ 1)(2j + 1)× (2l+ 1)(2j + 1) such that the representation
becomes block diagonal:

[Dj ⊗Dl](r) = QT

[

⊕j+l

J=|j−l|
DJ(r)

]

Q (14)

Thus, we can change the basis to ηjl(x) := Q vec(κjl(x)) such that constraint 12 becomes

ηjl(rx) =

[

⊕j+l

J=|j−l|
DJ(r)

]

ηjl(x). (15)

The block diagonal form of the representation in this basis reveals that ηjl decomposes into
2min(j, l) + 1 invariant subspaces of dimension 2J + 1 with separated constraints:

ηjl(x) =
⊕j+l

J=|j−l|
ηjl,J(x) , ηjl,J(rx) = DJ(r)ηjl,J(x) (16)

This is a famous equation for which the unique and complete solution is well-known to be given
by the spherical harmonics Y J(x) = (Y J

−J(x), . . . , Y
J
J (x)) ∈ R

2J+1. More specifically, since x

lives in R
3 instead of the sphere, the constraint only restricts the angular part of ηjl but leaves its

radial part free. Therefore, the solutions are given by spherical harmonics modulated by an arbitrary
continuous radial function ϕ : R+ → R as ηjl,J(x) = ϕ(‖x‖)Y J(x/‖x‖).

To obtain a complete basis, we can choose a set of radial basis functions ϕm : R+ → R, and define
kernel basis functions ηjl,Jm(x) = ϕm(‖x‖)Y J(x/‖x‖). Following [42], we choose a Gaussian
radial shell ϕm(‖x‖) = exp (− 1

2 (‖x‖ −m)2/σ2) in our implementation. The angular dependency
at a fixed radius of the basis for j = l = 1 is shown in Figure 2.

By mapping each ηjl,Jm back to the original basis via QT and unvectorizing, we obtain a basis
κjl,Jm for the space of equivariant kernels between features of order j and l. This basis is indexed by
the radial index m and frequency index J . In the forward pass, we linearly combine the basis kernels
as κjl =

∑

Jm wjl,Jmκjl,Jm using learnable weights w, and stack them into a complete kernel κ,
which is passed to a standard 3D convolution routine.

4.3 Equivariant Nonlinearities

In order for the whole network to be equivariant, every layer, including the nonlinearities, must
be equivariant. In a regular G-CNN, any elementwise nonlinearity will be equivariant because the
regular representation acts by permuting the activations. In a steerable G-CNN however, special
equivariant nonlinearities are required.

2vectorize correspond to flatten it in numpy and the tensor product correspond to np.kron
3There is a fascinating analogy with the quantum states of a two particle system for which the angular

momentum states decompose in a similar fashion.
4Q can be expressed in terms of Clebsch-Gordan coefficients, but here we only need to know it exists.
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Trivial irreducible features, corresponding to scalar fields, do not transform under rotations. So for
these features we use conventional nonlinearities like ReLUs or sigmoids. For higher order features
we considered tensor product nonlinearities [26] and norm nonlinearities [45], but settled on a novel
gated nonlinearity. For each non-scalar irreducible feature κi

n ⋆ fn−1(x) = f i
n(x) ∈ R

2lin+1 in
layer n, we produce a scalar gate σ(γi

n ⋆ fn−1(x)), where σ denotes the sigmoid function and γi
n

is another learnable rotation-steerable kernel. Then, we multiply the feature (a non-scalar field) by
the gate (a scalar field): f i

n(x)σ(γ
i
n ⋆ fn−1(x)). Since γi

n ⋆ fn−1 is a scalar field, σ(γi
n ⋆ fn−1) is a

scalar field, and multiplying any feature by a scalar is equivariant. See Section 1.3 and Figure 1 in the
Supplementary Material for details.

4.4 Discretized Implementation

In a computer implementation of SE(3) equivariant networks, we need to sample both the fields /
feature maps and the kernel on a discrete sampling grid in Z

3. Since this could introduce aliasing
artifacts, care is required to make sure that high-frequency filters, corresponding to large values of J ,
are not sampled on a grid of low spatial resolution. This is particularly important for small radii since
near the origin only a small number of pixels is covered per solid angle. In order to prevent aliasing
we hence introduce a radially dependent angular frequency cutoff. Aliasing effect originating from
the radial part of the kernel basis are counteracted by choosing a smooth Gaussian radial profile as
described above. Below we describe how our implementation works in detail.

4.4.1 Kernel space precomputation

Before training, we compute basis kernels κjl,Jm(xi) sampled on a s× s× s cubic grid of points
xi ∈ Z

3, as follows. For each pair of output and input orders j and l we first sample spherical
harmonics Y J , |j − l| ≤ J ≤ j + l in a radially independent manner in an array of shape (2J +1)×
s × s × s. Then, we transform the spherical harmonics back to the original basis by multiplying

by QJ ∈ R
(2j+1)(2l+1)×(2J+1), consisting of 2J + 1 adjacent columns of Q, and unvectorize the

resulting array to unvec(QJY J(xi)) which has shape (2j + 1)× (2l + 1)× s× s× s.

The matrix Q itself could be expressed in terms of Clebsch-Gordan coefficients [17], but we find it
easier to compute it by numerically solving Eq. 14.

The radial dependence is introduced by multiplying the cubes with each windowing function ϕm. We
use integer means m = 0, . . . , ⌊s/2⌋ and a fixed width of σ = 0.6 for the radial Gaussian windows.

Sampling high-order spherical harmonics will introduce aliasing effects, particularly near the origin.
Hence, we introduce a radius-dependent bandlimit Jm

max, and create basis functions only for |j − l| ≤
J ≤ Jm

max. Each basis kernel is scaled to unit norm for effective signal propagation [42]. In total we

get B =
∑⌊s/2⌋

m=0

∑Jm

max

|j−l| 1 ≤ (⌊s/2⌋+ 1)(2min(j, l) + 1) basis kernels mapping between fields of

order j and l, and thus a basis array of shape B × (2j + 1)× (2l + 1)× s× s× s.

4.4.2 Spatial dimension reduction

We found that the performance of the Steerable CNN models depends critically on the way of down-
sampling the fields. In particular, the standard procedure of downsampling via strided convolutions
performed poorly compared to smoothing features maps before subsampling. We followed [1] and
experiment with applying a low pass filtering before performing the downsampling step which can be
implemented either via an additional strided convolution with a Gaussian kernel or via an average
pooling. We observed significant improvements of the rotational equivariance by doing so. See
Table 2 in the Supplementary Material for a comparison between performances with and without low
pass filtering.

4.4.3 Forward pass

At training time, we linearly combine the basis kernels using learned weights, and stack them together
into a full filter bank of shape Kn+1 × Kn × s × s × s, which is used in a standard convolution
routine. Once the network is trained, we can convert the network to a standard 3D CNN by linearly
combining the basis kernels with the learned weights, and storing only the resulting filter bank.
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5 Experiments

We performed several experiments to gauge the performance and data efficiency of our model.

5.1 Tetris

In order to confirm the equivariance of our model, we performed a variant of the Tetris experiments re-
ported by [40]. We constructed a 4-layer 3D Steerable CNN and trained it to classify 8 kinds of Tetris
blocks, stored as voxel grids, in a fixed orientation. Then we test on Tetris blocks rotated by random ro-
tations in SO(3). As expected, the 3D Steerable CNN generalizes over rotations and achieves 99±2%
accuracy on the test set. In contrast, a conventional CNN is not able to generalize over larger unseen
rotations and gets a result of only 27±7%. For both networks we repeated the experiment over 17 runs.
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Figure 3: Shrec17 results[2, 7, 14, 16, 24,
35, 39]. Comparison of different architec-
tures by number of parameters and score. See
Table 4 in the Supplementary Material for all
the details.

5.2 3D model classification

Moving beyond the simple Tetris blocks, we next con-
sidered classification of more complex 3D objects. The
SHREC17 task [35], which contains 51300 models of 3D
shapes belonging to 55 classes (chair, table, light, oven,
keyboard, etc), has a ‘perturbed’ category where images
are arbitrarily rotated, making it a well-suited test case
for our model. We converted the input into voxel grids
of size 64x64x64, and used an architecture similar to the
Tetris case, but with an increased number of layers (see
Table 3 in the Supplementary Material). Although we have
not done extensive fine-tuning on this dataset, we find our
model to perform comparably to the current state of the art,
see Figure 3 and Table 4 in the Supplementary Material.

5.3 Visualization of the equivariance property

We made a movie to show the action of rotating the input on the internal fields. We found that the
action are remarkably stable. A visualization is provided in https://youtu.be/ENLJACPHSEA.

5.4 Amino acid environments

Next, we considered the task of predicting amino acid preferences from the atomic environments, a
problem which has been studied by several groups in the last year [4, 41]. Since physical forces are
primarily a function of distance, one of the previous studies argued for the use of a concentric grid,
investigated strategies for conducting convolutions on such grids, and reported substantial gains when
using such convolutions over a standard 3D convolution in a regular grid (0.56 vs 0.50 accuracy) [4].

Since the classification of molecular environments involves the recognition of particular interactions
between atoms (e.g. hydrogen bonds), one would expect rotational equivariant convolutions to be
more suitable for the extraction of relevant features. We tested this hypothesis by constructing the
exact same network as used in the original study, merely replacing the conventional convolutional
layers with equivalent 3D steerable convolutional layers. Since the latter use substantially fewer
parameters per channel, we chose to use the same number of fields as the number of channels in the
original model, which still only corresponds to roughly half the number of parameters (32.6M vs
61.1M (regular grid), and 75.3M (concentric representation)). Without any alterations to the model
and using the same training procedure (apart from adjustment of learning rate and regularization
factor), we obtained a test accuracy of 0.58, substantially outperforming the conventional CNN on
this task, and also providing an improvement over the state-of-the-art on this problem.

5.5 CATH: Protein structure classification

The molecular environments considered in the task above are oriented based on the protein backbone.
Similar to standard images, this implies that the images have a natural orientation. For the final
experiment, we wished to investigate the performance of our Steerable 3D convolutions on a problem
domain with full rotational invariance, i.e. where the images have no inherent orientation. For this
purpose, we consider the task of classifying the overall shape of protein structures.
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We constructed a new data set, based on the CATH protein structure classification database [11],
version 4.2 (see http://cathdb.info/browse/tree). The database is a classification hierarchy
containing millions of experimentally determined protein domains at different levels of structural
detail. For this experiment, we considered the CATH classification-level of "architecture", which
splits proteins based on how protein secondary structure elements are organized in three dimensional
space. Predicting the architecture from the raw protein structure thus poses a particularly challenging
task for the model, which is required to not only detect the secondary structure elements at any
orientation in the 3D volume, but also detect how these secondary structures orient themselves relative
to one another. We limited ourselves to architectures with at least 500 proteins, which left us with
10 categories. For each of these, we balanced the data set so that all categories are represented by
the same number of structures (711), also ensuring that no two proteins within the set have more
than 40% sequence identity. See Supplementary Material for details. The new dataset is available at
https://github.com/wouterboomsma/cath_datasets.

We first established a state-of-the-art baseline consisting of a conventional 3D CNN, by conducting a
range of experiments with various architectures. We converged on a ResNet34-inspired architecture
with half as many channels as the original, and global pooling at the end. The final model consists of
15, 878, 764 parameters. For details on the experiments done to obtain the baseline, see Supplementary
Material.

Following the same ResNet template, we then constructed a 3D Steerable network by replacing each
layer by an equivariant version, keeping the number of 3D channels fixed. The channels are allocated
such that there is an equal number of fields of order l = 0, 1, 2, 3 in each layer except the last, where
we only used scalar fields (l = 0). This network contains only 143, 560 parameters, more than a
factor hundred less than the baseline.

We used the first seven of the ten splits for training, the eighth for validation and the last two for
testing. The data set was augmented by randomly rotating the input proteins whenever they were
presented to the model during training. Note that due to their rotational equivariance, 3D Steerable
CNNs benefit only marginally from rotational data augmentation compared to the baseline CNN. We
train the models for 100 epochs using the Adam optimizer [25], with an exponential learning rate
decay of 0.94 per epoch starting after an initial burn-in phase of 40 epochs.
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Figure 4: Accuracy on the CATH test set as a function
of increasing reduction in training set size.

Despite having 100 times fewer parame-
ters, a comparison between the accuracy
on the test set shows a clear benefit to the
3D Steerable CNN on this dataset (Figure 4,
leftmost value). We proceeded with an in-
vestigation of the dependency of this perfor-
mance on the size of the dataset by consid-
ering reductions of the size of each training
split in the dataset by increasing powers of
two, maintaining the same network archi-
tecture but re-optimizing the regularization
parameters of the networks. We found that
the proposed model outperforms the base-
line even when trained on a fraction of the
training set size. The results further demon-
strate the accuracy improvements across
these reductions to be robust (Figure 4).

6 Conclusion

In this paper we have presented 3D Steerable CNNs, a class of SE(3)-equivariant networks which
represents data in terms of various kinds of fields over R3. We have presented a comprehensive
theory of 3D Steerable CNNs, and have proven that convolutions with SO(3)-steerable filters provide
the most general way of mapping between fields in an equivariant manner, thus establishing SE(3)-
equivariant networks as a universal class of architectures. 3D Steerable CNNs require only a minor
adaptation to the code of a 3D CNN, and can be converted to a conventional 3D CNN after training.
Our results show that 3D Steerable CNNs are indeed equivariant, and that they show excellent
accuracy and data efficiency in amino acid propensity prediction and protein structure classification.
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