
3D Structure and Motion Estimation

from 2D Image Sequences^

T. N. Tan, K. D. Baker and G. D. Sullivan
Intelligent Systems Group

Department of Computer Science

University of Reading, ENGLAND

Abstract

Two novel algorithms are presented in this paper for depth estimation using

point correspondences and the ground plane constraint. One is a direct non-

iterative method, and the other a simple well-behaved iterative technique

where the choice of initial value is straightforward. The algorithms are

capable of handling any number of points and frames as well as points which

become occluded. Once the point depths are determined, motion parameters

can be obtained by a linear least squares technique. Extensive test results are

included which show that the proposed algorithms are robust to noise, and

perform satisfactorily using real outdoor image sequences.

1 Introduction

In previous work [16-17], we have shown that the ground plane constraint (the fact that

objects, such as road vehicles, are often confined to move on the ground surface) can be

used to develop simple and robust structure from motion (SFM) algorithms using point

correspondences from pairs of image frames. In this paper, we discuss the use of multiple

(more than two) image frames. We call SFM algorithms that use multiple frames the

Multiple Frame SFM or simply MFSFM algorithms. A MFSFM algorithm can be either

recursive or batch in nature depending on whether it processes one frame at a time or all

frames simultaneously. In general, batch approaches have been shown to be both more

accurate and stable [7]. The algorithms presented in this paper belong to the batch group.

Many MFSFM algorithms have been reported [1,2-12]. These algorithms, however,

have a number of limitations: unrealistic assumptions about object and/or camera motion

[3-5, 7, 9-11]; requirement of good initial guesses to initialise the iteration process; high

computational complexity [2, 7, 9, 11-12]; failure to handle feature occlusion; and

unknown performance in real image data [3-4, 6,8, 11]. These difficulties are mostly due

to the scale of the task of solving the six degrees of freedom non-linear problem allowed

by the existing MFSFM algorithms.

Many practical tasks in vision need be concerned with fewer degrees of freedom,

and object motion is often subjected to physical constraints, such as the commonly

occurring ground plane constraint. We show in this paper that the ground plane

constraint can be used to develop simple and robust MFSFM algorithms which avoid the
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above problems. The work presented in this paper has mainly been motivated by the

desire to apply machine vision in automatic monitoring and surveillance in airport and

road traffic, but is also applicable to a wide range of potential industrial applications.

With autonomous vehicles, for example, the ground plane constraint is equivalent to

assuming that the camera is at a known fixed height, tilt and roll. This is frequently the

case, at least for brief periods. The algorithms therefore provide robust and efficient

methods for the recovery of unknown obstacles for robots moving on a flat surface.

The ground plane constraint is defined in the next section. Section 3 describes two

different techniques for recovering point depths using multiple frames and the ground

plane constraint. Section 4 outlines an algorithm for optimal 3D motion parameter

estimation. Experimental results are presented in Section 5.

2 The ground plane constraint

The scenes considered in this paper concern airport or road traffic, where objects (e.g.,

aeroplanes, vehicles, etc.) are confined to move on the ground surface, which is, at least

in the local region of our interest, approximately planar. We represent the ground surface

by the X-Y plane of a WCS whose Z-axis points upwards. The movement of an object

only has three degrees of freedom: translations (Tx and T ) along the X and Y axes on

the ground plane, and rotation (0) about the vertical Z axis. The other three motion

parameters, i.e., the rotations (a and P) about the X and Y axes, and the vertical

translation (7,), are all zero:

a, P, Tz = 0 (1)

We call this the ground plane constraint (GPC). We observe that when object motion is

expressed in the camera-centred frame (as is usually the case in the existing SFM

algorithms), then the number of unknown motion parameters under the GPC cannot, in

general, be reduced to less than four (although the unknowns have to satisfy one or more

equation computable from the GPC). This simply means that the GPC can be used most

effectively only by SFM algorithms (such as those presented in this paper) that are

defined in the WCS.

The GPC ensures that points on the object are constrained to move in planes parallel

to the ground plane. With known camera parameters, there is a one to one

correspondence between any such plane and the image. Hence if we know the depth

from the camera of a point in one frame, then the plane on which the point is confined to

move is uniquely determined, and the depth of the same point in any other frame can

easily be computed. In fact it can be shown that under the GPC, the depth X. of a point in

the jth frame is related to its depth Xi in the ith frame by [18]

X.= (wi/wj)Xi (2)

where w i and W • are terms computable from known camera parameters and image

coordinates.

In the subsequent discussions, we assume that the motion of an image sequence of

an object is described by the motions of the object w.r.t. its pose in an arbitrarily chosen

frame (we call it the reference frame). Further discussions on the GPC and its use in
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model-based object pose recovery are described in a companion paper [20].

3 Depth estimation

We now discuss the estimation of point depths (structure parameters) from given point

correspondences. We define the following symbols:

SF = {FQ,F rF2, ...,FM_ {,FM} : the set of M + 1 frames in which points have

been detected and matched, and FQ is used as

the reference frame;

Sp = {PX,P2, ...,PN_\,PN) : thesetof points appearing in SF;

S
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We do not require SPm = SPn, m*n, thus point occlusions are allowed. For

convenience, we assume all points are present in the reference frame, i.e., Spo = Sp.

Let the 3D structure of an object be defined by the depths X^ X2 XN of N points in

the reference frame. The problem to be solved is: Given SF and

SPm, m 6 {0 ,1 ,2 , . . . , M } , determine X , X X^. Two solutions to this problem are

given.

3.1 The direct non-iterative solution

We first consider two points Pl and P2 in two frames FQ and Fm (Fm€. SFn).

According to the distance invariance property [14] of the rigidity constraint [15], the

distance between P, and P 2 in Fo is the same as the distance between the two points in

Fm. From (2), this gives the following second-order polynomial equation on the depths

X{ and X2 (both associated withfg) of />, and P2 [16-17]:

where subscript m signifies Fm, and Aml,Bml2 and Am2 are terms computable from

known parameters such as image coordinates and extrinsic camera parameters. Their

expressions can be found in [16-17]. By considering the two points in FQ and each of the

other frames in SFl2, one at a time, a set of second-order polynomial equations on X^

and X can be obtained:

(4)

The number of equations in (4) equals to the number of frames in SF, 2 or # SFl 2. Since

all constraint equations in (4) are homogeneous in X and X2, depth can only be solved

from (4) up to a global scale. We therefore arbitrarily choose X = l, and (4) becomes a

set of quadratic equations in X :
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which can easily be solved for each equation separately using the standard formula. Let

L2 denote the set of all positive roots obtained from (5) (note: according to definition, X2

must be positive). Then the task is to derive a suitable solution for X2 from L2. Each

equation in (5) produces up to two positive depth solutions. If an equation in (5) does

have two distinct positive roots, then one is valid, and the other is due to the reflection

caused by the use of the distance invariance property in deriving the depth constraint

equations. Therefore L2 can be divided into two subsets L2T and L2f . , with LlT

representing the set of physically valid solutions, and LlF the false solutions. We thus

first detect LlT from L2 (for a simple technique, see [18]), and then define the median of

L2 j- as the final solution for X2:

A.2
(l) = median (L 2 r ) (6)

where superscript (1) indicates that the depth solution was obtained by using P t as the

reference point (i.e., the point whose depth was initially set to 1). By maintaining

Aj = l , we can compute depths of all other points in Sp in a similar way. We write all

these solutions collectively as (A., ( l\ A.,(l) A ( l ) A* 0 .A-f,1*) with
/ i \ 1 2 I / V * ~ l / V

These solutions have been obtained by treating the point P, as a reference point. If

this point is disturbed by noise, then the resulting depths of points P2,P v ...,PN will be

in error. To avoid this bias towards P,, we repeat the above process using each P i as the

reference point independently. This generates N sets of depths for the given N points in

SP:

{^l
n
\l

i
2
n
\...,XJ

n
\...,X

{
N

n)
_i,X^): n=l,2,...,N} (7)

where A/ = 1, n = 1,2, ...,N, and the superscript n indicates the depths computed

under reference point Pn. The depths of each set in (7) may be normalised with respect

to (say) the first depth of the set to give

. (n) . (n) . (n) . n . (n)

{ ( A j ,X2 ,...,Xi ,...,XN_VXN ) : n = l , 2 N} (8)

- (n)
where Xl - \,n = 1,2, ...,N. Then the final solution for the depths of the N points

in the reference frame FQ is defined as

- («)
A.(. = median {Xt ,n = 1,2,...^}, i = 1,2 N (9)

(9) is justified by the fact that all sets of normalized depths in (8) describe the same

relative structure of the given N points.

3.2 The non-linear minimization solution

Given an initial value for X , the depth constraint equations in (5) may also be solved

simultaneously using the standard non-linear least squares technique. Then the steps



73

described in (7)-(9) can be followed to get the final depth solutions. For detailed

descriptions, the reader is referred to [18].

Several remarks can be made at this point. Under normal viewing conditions, the

depth range within an object (i.e., the maximum depth difference of points on the object)

is much smaller than the nominal depth of the object. Therefore, the depth value assigned

to the reference point provides a good initial guess for the depths of all other points. This

makes the choice of initial guesses in this non-linear minimization approach a trivial

matter indeed. Since the iteration process involves only one unknown and is provided

with a good initial guess, its convergence to the correct solution is extremely fast. The

total number of iterations required is typically three and rarely exceeds five.

Once the point depths in the reference frame are determined, those in other frames

can easily be obtained using (2). If required, the 3D world coordinates may be computed

from known image coordinates and the determined depths [18].

4 Estimation of 3D motion parameters

The motion parameters to be determined consist of the translational and rotational

parameters of all frames w.r.t. the reference frame. Under the GPC, the motion between

the reference frame FQ and frame F m is characterized by three independent motion

parameters (expressed in the WCS): the translations Txm and T on the ground plane,

and the rotation angle 0 about the Z-axis. It can be shown that using the 3D world

coordinates of the points in the reference frame computed in the preceding section and

the given 2D image coordinates in frame F m of the Nm points in Fm , a set of 2Nm

constraint equations on Txm, T and 0m can be derived [18]:
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where D,E,F,G and H are terms computable from known image and world

coordinates. By regarding cos 0m and sin Qm as two independent unknowns, (10) can be

solved using the standard linear least squares technique to get cos 6 , sin9 , T and
I ffl fit A ill

T . Qm is then computed as Qm = tan" (sindml cos6 ) . The correct quadrant of 0^

is determined from the senses of cos dm and sin 0^. Motion parameters of other frames in

Sp can be obtained similarly.

5 Experimental results

The two proposed algorithms have been tested using both synthetic and real outdoor

image sequences.With the synthetic data, Monte Carlo simulations were conducted as

follows. An object was specified by N points randomly chosen from within a cuboid. A

sequence of frames was then generated by moving the object on the ground plane. The

ideal image coordinates of the points in each frame were perturbed by noise. Relative

estimation errors were recorded during simulation. The relative error in a motion

parameter was obtained by computing the average absolute relative error in the

parameter over all frames in a trial, and then calculating the mean of this over all trials.

The accuracy of the recovered 3D structure was measured by the standard scene error
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(SSE) defined as the average Euclidean distance in the reference frame between the

original and the reconstructed points. The SSE was computed at each trial, and its mean

over all trials was divided by the diameter of the synthetic cuboid model to yield the

relative SSE measure.

5.1 Robustness against image data noise

Noise was simulated by adding zero-mean, uniformly distributed random values to the

ideal image coordinates of all points in all frames, the level of noise given by A£ (in

pixels) defining a uniform distribution interval [-A£, + A£]. Monte Carlo simulations

were performed to investigate the noise robustness of the proposed algorithms using a

fixed number of points (=10) in a fixed number of frames (=10). The results are

summarized in Fig.l. It can be seen [18] that the overall performances of the two
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Figure 1. Robustness of the non-iterative (dark

curves) and the non-linear minimization

(grey curves) approaches against image

data noise.

Noise Level (in pixels)

approaches are very similar, with the non-linear minimization approach performing

slightly better than the direct technique. Both algorithms are very robust against image

data noise. The relative errors in the motion parameters rarely exceed 60%, and the

relative SSE is always less than 18% even using unrealistically high noise levels of ±20

pixels.

5.2 Effectiveness of using more frames in noise reduction

Monte Carlo simulations were also carried out to study the benefits of using longer

image sequences (i.e., more frames) in noise reduction. The number of points used was

fixed at 10, and the noise level was maintained at A£ = 5 pixels. The results are given

in Fig.2. The robustness of the two algorithms is consistently improved by using longer

image sequences, with most improvement when the number of frames increases from 3

to 6. Further increase in the number of frames beyond 15 results in barely noticeable

improvement.
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Figure 2. Effectiveness of using longer image

sequences in improving the robustness of

the non-iterative (dark) and the non-linear

minimization approaches.
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53 Effectiveness of using more points in noise reduction

In a further experiment, we kept unchanged the number of frames used (=10) and the

level of noise involved (A£ = 5.0 pixels), and varied the number of points used to

examine the effect of the number of points in combating noise. Monte Carlo simulation

results are summarized in the plots in Fig.3. The results show that the robustness of the
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Figure 3. Effectiveness of using more points in

improving the robustness of the non-

iterative (dark) and the non-linear

minimization approaches.

Number of Points

two algorithms is consistently improved by using more points. The improvement is most,

dramatic when the number of points is increased from 2 to 4, and is only marginal for

additional points.
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5.4 Performance using real outdoor image sequences

The proposed algorithms have also been tested using outdoor image sequences. The

Plessey corner finder [19] was applied to detect corner points on a slowly moving

(reversing) van (see Fig.4). The image plane trajectories of 14 detected corners over 10

frames were then used as the input to the MFSFM algorithms. Because of the smoothly

curved body of the van, the physical corners are not well defined, as well as the limited

accuracy of the comer finder, the corner trajectories are subject to significant

measurement errors. Table 1 lists the heights (in meters) of the 14 points recovered by

Table 1. Recovered heights of 14 van points

Point Pi P2 P3 P4 P5

Height 0.74 1.08 1.85 1.10 1.10

Point P6 P7 P8 P9 P10

Height 0.45 0.57 0.40 0.59 1.73

Point

Height

Pll

1.67

Pl2

1.72

Pl3

1.03

Pl4

0.42

the non-linear minimization algorithm, where the global scale has been set by assuming

P % to be 0.4m high. Since the ground truth is not available, the quantitative measures

used for synthetic data cannot be calculated. Qualitatively, however, the figures in Table

1 as a whole are consistent with our perception (e.g., relative heights) of the object. The

results from the non-iterative approach are very close to those given in Table 1.

The performance of the algorithms using the outdoor image sequence can be further

appreciated from Fig.4. The figure shows the originally detected (marked by x) and the

reconstructed (marked by +) corner points overlaid on four consecutive frames of the van

sequence. If no x is shown near a +, then the corner point marked by the + was not

detected in the corresponding frame by the corner finder, but was "predicted" by the

algorithm based on the recovered structure and motion. It can be seen that both the

detected and the "missing" corners were reconstructed fairly accurately.

6 Conclusions

Novel algorithms have been presented in this paper for 3D structure and motion

estimation from 2D image sequences using the ground plane constraint. It has been

shown that the depth parameters can be computed using either a non-iterative direct

approach or a simple well-behaved non-linear minimization approach, and that the

motion parameters can be estimated using the standard linear least squares technique.

The algorithms possess a number of desirable characteristics. They are very robust

and perform satisfactorily with real outdoor image sequences. They do not require

excessively large numbers of points and/or frames for satisfactory performance and are
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Figure 4. Originally detected (marked by x) and reconstructed

(marked by +) corners overlaid on four frames of a van

sequence.

capable of handling any number of points and/or frames as well as point occlusions. The

algorithms are computationally very simple and highly parallel in nature. All these make

the algorithms very desirable where applicable. They may be used for a wide range of

potential industrial applications.
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