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Abstract: The paper presents the study of non-uniform temperature distributions in a flip 

chip electronic assembly, and the use of these temperature distributions to analyse the 

thermal stresses in lead-free solder joints in surface mount devices. The thermal stresses 

in the solder joints are mainly due to the mismatch in the coefficients of thermal 

expansions between the component and substrate materials, and temperature gradient in 

the electronic assembly. The thermo-elasto-visco-plastic finite element analysis is carried 

out to investigate the extent of thermal stresses induced in solder joints between a surface 

mount component and a FR4 circuit board (substrate) under conditions of thermal cycling 

with the chip resistor operating at its full power condition. Three different cases of spatial 

temperature distributions are considered including one with an experimentally obtained 

non-uniform temperature distribution. A comparative study of thermal stresses is 

performed using a near-eutectic SnAgCu solder material for three different thermal cases. 
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INTRODUCTION  

Solder joints are commonly used in electronic packaging for mechanical support and 

electrical connection of components. Various technologies are used to create solder joints 

in electronic packaging depending on the type of electronic products being manufactured. 

Driven by a desire for miniaturization and increased circuit speed, a surface mount 

technology (SMT) has been widely adopted in electronic packaging. However, 

introduction of SMT also brought with it a new era of joints’ failures. A major finding of 

electronic package failures is that the joint material does not demonstrate an adequate 

ability to sustain deformations due to cyclic variation of temperature during operation [1, 

2].  

The applications of electronic packages vary from entertainment to aerospace industries. 

In these applications, solder joints operate under severe temperature conditions compared 

to their melting temperature - the temperature can change between 218 K to 398 K. This 

cyclic variation of temperature makes solder joints prone to thermal stresses that can be 

caused by various reasons. For instance, a body, restricted from its free expansion due to 

uniform change in temperature experiences thermal stresses as well as a component under 

a non-uniform change in temperature. Thermal stresses can also be induced due to the 

mismatch in the coefficient of thermal expansion (CTE) between different components of 

an assembly [3]. However, in electronic packaging, solder joints experience thermal 

stresses due to a combined effect of non-uniform temperature distributions in the package 

when it is powered and the mismatch in CTE between the component and substrate 

material. The thermal strains in the electronic packaging are cyclic in nature due to the 

variation in the operating conditions such as powering on and off of the assembly, and 
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cycling variations in the ambient temperature. Therefore, thermal fatigue is one of the 

major failures in the surface mount solder joints. The problem of fatigue in solder joints 

is linked to an intermittent character of heat generation during power cycling in the 

electronic components. The generated heat is dissipated by radiation, convection and 

conduction. The last mechanism results in the heat flow through the solder joint to the 

substrate, heating up both. Since the component and substrate materials have different 

CTEs they experience relative displacement due to expansion. Both the component and 

substrate are significantly stiffer than the solder joint, so the repeated relative 

displacements produce a cyclic stress in it and its eventual fatigue failure [1]. This 

problem has been worsened considerably by the introduction of leadless surface mount 

devices since the size of the solder joint is very small and there is less compliance 

between the component and substrate. For instance, leadless devices such as chip 

capacitors and resistors, as well as ceramic chip carriers, have only a solder fillet to 

relieve any induced thermal strains. Figure 1 demonstrates the solder joint’s crack in the 

surface mount capacitor due to thermal cycling between 218 K to 398 K [4].  

Solder joints are also prone to creep due to high operating homologous temperatures (Th, 

the ratio of operating and melting temperature in absolute scale). For most of the solder 

materials Th is about 0.6 at the room temperature (RT). Working at such high Th, the 

solder usually exhibits very complicated rate- and temperature- dependent mechanical 

behaviours such as viscous creep, stress relaxation, and plasticity [2, 4, 5]. This results in 

accumulation of creep damage alongside with thermo-mechanical damage. Predicting the 

reliability of solder joints under such conditions is complicated since they are at complex 

states of stress and strain [1, 3]. In addition, an exchange of lead-containing solder 
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materials with lead-free ones added more concerns for the electronic industries with 

regard to manufacturing of reliable products. Eutectic or near-eutectic SnAgCu alloy used 

as possible replacement for well-established SnPb solder alloys are considerably less 

studied. However, the use of experimental techniques such as accelerated tests, for 

obtaining test data to assess the reliability of solder joints is both time-consuming and 

difficult to extrapolate to predict operational reliability. Recently, numerical simulations 

based on finite element analysis became a tool to investigate the reliability of solder 

joints subjected to thermal cycling. Most simulations deal with reliability for conditions 

of thermal cycling and power cycling, usually, uniform temperature distributions in the 

assembly are considered linked to the variation in ambient operating conditions. Thermo-

mechanical analysis of a chip-scale package (CSP), assembled using both lead-free and 

lead-containing solder materials [6], and thermal cycling analysis of flip-chip solder joint 

reliability [7] are typical examples. However, research into the effect of non-uniform 

temperature distributions in assemblies due to continuous heat dissipation by the chip 

resistor along with cyclic variation in the ambient temperature is insufficient. Hence, this 

paper focuses on effect of actual temperature distributions in the powered flip-chip 

electronic assembly and finite-element simulations using these temperature distributions 

for varying ambient temperature. The finite-element model accounts for both plasticity 

and the creep behaviour of a new lead-free SnAgCu solder alloy. A comparison of 3D 

evolution of thermal stresses in the solder joint is performed for three different thermal 

cases including the experimentally measured temperature distribution for powercycling. 

 

EXPERIMENTAL ANALYSIS 
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In order to obtain the temperature distribution in an electronic assembly, experiments 

were carried out with a flip-chip electronic assembly for power cycling condition, using 

an infrared (IR) Thermosensorik camera. An IR technique is a contactless temperature 

measurement technique where radiation emitted from a surface is captured by a thermal 

camera and processed for obtaining temperature distribution over that surface. Although 

the flip-chip assembly used in experiments is different from the component (chip resistor) 

modelled, the general size and joint distribution make both flip-chip and chip resistor 

assemblies comparable, allowing the flip-chip experimental results to provide an 

indication of the temperature gradients in the chip resistor.  

 

Specimen preparation 

The flip-chip specimens were silicon-on-silicon multi-chip modules (MCMs) that 

matched the description of those used in a previous experiment [8]. Both MCMs 

consisted of a 3 mm × 3 mm × 0.5 mm “heater” chip that bore a large central resistive 

element (the heater) in addition to small aluminium tracks and 36 connection pads. The 

“carrier” chip was larger at 6 mm × 6 mm × 0.5 mm and included larger ball grid array 

pads for external connections, as well as the corresponding pads to match those on the 

heater chip. The latter was attached to the carrier chip so that a standoff height of 35 μm 

(without underfill) was achieved. The MCMs were subsequently attached to the substrate 

by a thermally conductive adhesive pad. A schematic of the assembled specimen is shown 

in Fig. 2.  

The specimens were attached to either a copper or FR4 substrate and sprayed with matt 
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black paint to achieve uniform emmissivity over the surface. The specimens were 

mounted vertically, powered at 1.2 W, and cooled by free convection. The camera, fitted 

with the micro lens, was mounted on the tripod, the specimen was powered on for few 

minutes to stabilize the temperature distribution in the specimen, then micro lens was 

focused on the specimen and the temperature distribution was captured.   

 

Experimental results and discussion 

Experiments were carried out for two power dissipation conditions (0.44 W and 1.2 W) 

for two specimens, one with FR4 and another with copper as substrate materials [4]. 

These power dissipation conditions are selected to establish a relation between 

temperatures of the chip and substrate. The captured temperature distribution for 

continuous power dissipation of 1.2 W over a chip surface is given in Fig. 3, along with 

the path used for temperature distribution analysis over the chip. Figure 4 shows the 

temperature distributions across the width of the chip for both substrates. The effect of 

the substrate material on the temperature distribution over the chip surface is very clear 

from the comparison of these temperature distributions. Since copper is a better heat 

conductor than FR4, more heat is dissipated from the flip-chip assembly to the 

atmosphere, resulting in lower temperature magnitudes. For both specimens the 

maximum temperature is observed at the centre of the chip, where a heat-generating 

resistive element is situated. The distribution of the temperature over the chip surface is 

nearly symmetric for the chip mounted on copper substrate while that for the chip with a 

FR4 substrate is asymmetric. This may be due to the manufacturing deficiency with a 

skewed resistive element. The patches appearing cool in the image may be attributed to 



7 

non-uniform application of black paint. From the variation of chip and substrate 

temperature with power dissipation, following relation is deduced, 

4.29918.0 chipsub += TT ,                   (1) 

where chipT  is chip temperature and subT  is substrate temperature. 

This experimental study confirms that, as expected, FR4 substrate induces a higher level 

of temperature in the flip-chip assembly. Also the average temperature gradient, which is 

a difference between maximum and minimum temperature in the assembly, is higher for 

specimen with FR4 as a substrate material. Therefore, the temperature distribution 

obtained for flip-chip assembly with FR4 substrate is used as temperature boundary 

conditions for thermal analysis, which is later used in structural analysis.  

THERMAL ANALYSIS 

Finite element analysis is broadly used to study various engineering problems such as 

new product design, improving the existing products, their reliability, in studies of new 

materials etc. Due to the legislation introduced across the world to remove the lead 

content from electronic products, reliability of the new generation of lead-free solders 

should be thoroughly tested before introduction into products. The finite element 

technique enables a researcher to simulate the various operating conditions of solder 

joints and study the structural behaviour such as thermo-mechanical, creep, and low cycle 

fatigue damage. In finite element analysis the structural problem is represented in terms 

of a mathematical model that is solved for field variables. In the present work finite 

element analysis has been used to obtain the temperature distribution in the chip resistor 
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assembly and study the structural response of solder joint for three different thermal 

cases. 

Finite element model 

The finite element analysis, both thermal and structural, of a chip standard Panasonic 

1206 resistor was implemented with commercial software ANSYS. The geometric 

dimensions of different components of this resistor assembly are shown in Fig. 5. Due to 

the construction of the chip resistor assembly, which is symmetric, only one half of its 

geometry is shown for a side view (Fig. 5a) and considered for finite element modelling. 

A 3D finite element model is considered for the thermal stress study to capture the entire 

3-dimensional distribution of the temperature and its effect on the thermal stress integrity 

of the solder joint. 

Figure 6 shows the meshing used in the assembly as well as the critical region. Since the 

solder joint is our area of interest, a finer mesh pattern has been used there. The finite 

element model is built with 8-noded hexahedral elements. ANSYS employs an error 

approximation technique based on the Zienkiewicz-Zhu scheme. In this scheme, an initial 

stress error contributed by each element at each node is calculated as follow [9]: 

{ } { } { }i a i
n n nσ σ σΔ = −                 (2) 

where { }inσΔ  is the stress error vector at node n  for element i , { }a
nσ  is the averaged 

stress vector at node n , { }inσ  is the stress vector of node n  of element i . 

Then, the stress bounds are estimated considering the above error: 
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( ),minmnb a
j j n nσ σ σ= −Δ ,               (3) 

( ),maxmxb a
j j n nσ σ σ= + Δ ;               (4) 

where mnb
jσ  is the nodal minimum of stress quantity (SMNB), mxb

jσ  is the nodal 

maximum of stress quantity (SMXB). 

An error estimation study was carried out at the fillet region of the solder joint to assess 

the mesh quality for the creep analysis. In this study a linear static analysis was 

conducted for different mesh patterns and related element dimensions, and the maximum 

nodal stress (SMX) in the fillet of solder joint was assessed together with its bound 

SMXB. The mesh was considered to be suitable with regard to convergence when the 

difference between the magnitudes of the ratio of SMXB and SMX for two consecutive 

iterations for the mesh pattern achieved the prescribed level. There are two main regimes 

of heat transfer in electronics packages with respective types of variations of thermal 

stresses – transient (power on/off) and steady-state (during operation). In both cases, for 

the theory of isotropic thermal stresses and strains, the temperature distribution 

( )tzyxT ,,,  in the package is calculated by solving the heat conduction equation (with 

prescribed initial and boundary conditions that are described below [10]):  

2 vC T WT
k t k
ρ ∂∇ = −

∂
                (5) 

where 
2 2 2

2
2 2 2x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

; ( )tzyxTT ,,,≡  is instantaneous absolute temperature; vC  

is heat capacity per unit mass; ρ  is mass density; k  is the heat conduction coefficient; 
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W  is heat generation per unit time per unit volume.  

 

Result and discussions 

Thermal stresses are the major cause of concern in the reliability of solder joints, as they 

operate in high temperature conditions compared to their melting temperature. Hence it is 

important to model the exact thermal field corresponding to the in-field conditions for the 

structural analysis. The discussed experimental work gives only the surface temperature 

of the chip assembly. In order to obtain the internal temperature distribution in the chip 

resistor assembly a simple thermal analysis is carried out considering only a conduction 

heat transfer. For this thermal analysis surface temperatures obtained from the experiment 

are used as boundary conditions. The chip resistor can operate in the temperature range 

between 398 K and 218 K. Therefore, the maximum temperature a chip can achieve is 

398 K when it is operating at its maximum power. Considering this chip temperature 

(Tchip), the substrate temperature (Tsub) was calculated using Eq. (1). The difference 

between temperatures of the substrate and chip gives the temperature gradient on the 

assembly when chip is operating at its maximum power condition. The thermal analysis 

was carried out for two extreme ambient temperatures 398 K and 218 K with maintaining 

the same temperature gradient in the assembly due to the fact that the chip resistor is 

continuously dissipating heat at its maximum power.  

Figure 7 shows the thermal zones used for the application of boundary conditions based 

on the experimental measurements. Table 1 gives the temperature levels used for different 

zones of the resistor assembly for the ambient temperature 398 K and 218 K. For 
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example, to apply the temperature boundary condition due to heat generated by resistive 

element, an area covered by it (zone I in Fig. 7) on the top surface of the component is 

selected. Similarly temperature zones are selected based on the temperature data collected 

from the experimental work and respective temperature distributions are applied. A 

linearly varying temperature is applied on the bottom surface of the substrate, which is 

between zone H and I to replicate the reality when chip resistor is powered on. The 

obtained temperature distributions after thermal analysis are shown in Figs. 8 (a) and (b) 

for ambient temperature 398 K and 218 K, respectively. These two temperature profiles 

are used in the subsequent structural analysis as parts of the thermal history.    

  

THERMAL STRESS ANALYSIS 

Material properties 

The chip resistor assembly consists of a chip component made of alumina, a solder joint, 

a copper pad and a FR4 substrate. Since the material properties of the solder alloy greatly 

varies with the temperature, temperature-dependent elasto-plastic material properties of 

Sn3.8Ag0.7Cu (SAC) alloy [11,12] has been used for solder joint, which is given in Table 

2. In this finite-element simulation, the solder material is modelled with the bilinear 

kinematic hardening (BKIN) material model. The model’s name is derived from the way 

a stress-strain curve is modelled and the type of hardening rule used for the plastic flow. 

In the model, both elastic and plastic regions are represented by two straight lines with 

different slopes. The slope of the plastic part is linked to the tangent modulus, which is 

given in Table 2. The kinematic strain hardening is used to include the Bauschinger effect 
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due to cyclically varying thermal loads. The material properties of 96% alumina (Al2O3) 

were used for the chip component body, whilst high-conductivity copper and FR4 

material properties were used for pad and substrate respectively.  

There is a significant amount of research regarding the constitutive equations for creep 

deformation in both lead and lead-free solder materials. For instance, Wiese et al. [13] 

studied the creep behaviour of Sn4.0Ag0.5Cu for both bulk solder and flip chip solder 

joints. Their study identified two types of creep mechanisms for steady-state deformation 

linked to the climb-controlled (at low stresses) and combined glide/climb (at high 

stresses) dislocation behaviour. Similar studies were carried out by Schubert et al. [14] 

and Zhang et al. [15], and both identified two regimes of the stress-strain rate behaviour. 

Both modelled the steady-state creep rate with a classical hyperbolic sine creep law: 

( )cr 1 sinh exp
n QA

RT
ε ασ ⎛ ⎞= −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
&                  (6) 

where constant 1A = 277984 s-1, a multiplier to equivalent stress α = 0.02447 MPa-1, a 

stress exponent =n 6.41, the activation energy Q = 54041 J/(K·mole), the gas 

constant R = 8.314 J/mol, crε&  is a steady state creep strain rate, σ  is the equivalent stress. 

This law reduces to a power law in the low stress area ( 8.0<ασ ) and to an exponential 

model in the high stress area ( 2.1>ασ ) [16-18]. The hyperbolic sine creep model is 

adequate for most lead and lead-free solder materials, and it is used in the present study 

to simulate the viscous behaviour of the solder joint due to its high operating 

temperatures. The creep parameters, obtained by Schubert et al. for Sn3.8Ag0.7Cu solder 

material, are used in the creep analysis [14, 16].  
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Thermal loading and boundary conditions 

To properly estimate the effect of the real spatially non-uniform temperature distributions 

on evolution of thermal stresses, three cases of thermal boundary conditions are applied 

to the resistor assembly in the finite element elasto-plastic and creep analysis. Each case 

represents a various type of accounting for thermal conditions within the same thermal 

history consisting of the reflow process and dwell at room temperature before thermal 

cycling. The reflow simulation in terms of cooling from the melting point gives an 

amount of residual stress induced in the solder joint when the temperature of the 

assembly brought down from 490 K to the room temperature. A typical thermal history 

used in thermal stress analysis is given in Fig. 9, with duration of the total temperature 

cycle (DEFGH) 1320 sec. Point H in Fig. 9 denotes the end of the first thermal cycle and 

the begin of the next one. All the subsequent cycles have the same thermal history as 

DEFGH. Following are the three different cases used in the finite element analysis of 

continuously heat dissipating chip with a varying ambient temperature during thermal 

cycles after reflow and the dwell at the room temperature. 

Case A: In this case, spatially uniform temperature distributions are assumed the entire 

resistor assembly, e.g. during hot dwell (DE) the entire assembly is at 398 K, while 

during the cold dwell (FG) it is at 218 K.   

Case B: In this case, Eq. (1) is used to obtain the temperature of the substrate in 

dependence of that on the component. For instance during hot the dwell (DE) a uniform 

temperature of 398 K is applied to the chip component, solder joint and copper pad, while 
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the substrate’s temperature is 321.5 K. During the cold dwell (FG) the chip component, 

solder joint and copper pad are at 294 K and the substrate temperature is 218 K. It is 

assumed that the assembly has the same temperature gradient as for the hot dwell due to 

continuous heat dissipation at its maximum power.  

Case C: In Case C, the actual temperature gradient based on the thermal FE analysis for 

the chip resistor operating at its full load and the varying ambient temperature is 

considered. Hence, the temperature profile shown in Fig. 8(a) is used for the hot dwell 

(DE) and the one in Fig. 8(b) is used for the cold dwell (FG).  

A symmetry boundary condition is applied on the symmetry faces (Fig. 6) of the 

assembly to represent the structural symmetry and to prevent a rigid body motion. The 

bottom nodes on the symmetry plane are also constrained to prevent the rigid body 

motion in the Y-direction. 

Results and discussions 

In our finite element analysis, the chip resistor is subjected to 5 temperature cycles (see 

Fig. 9). The results of simulations are presented only for the solder joint, since it is our 

area of interest. The reflow process is commonly used in surface mount devices to create 

solder joints. In this process the whole assembly passes through an oven where the 

maximum temperature is above the melting point of the lead-free solder alloy. Hence, it is 

important to know the stress induced in the solder joint due to cooling of the assembly in 

the reflow process from 390 K to room temperature. Different components of the thermal 

stresses in the solder joint are studied after the reflow and shown in Fig. 10. The 

distributions of the thermal stresses show that the fillet of the solder joint is the area of 
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stress concentration and the magnitude of the residual stress induced in the solder joint is 

above the yield stress of the SAC solder alloy at room temperature - 38 MPa. As 

expected, xxσ  is the dominant stress component due to the contraction of the assembly 

with decrease in temperature, which also results in shear stress xyσ . The variation of the 

component stress xxσ , at location of stresses with maximum magnitude (compressive in 

this case) in the fillet (point ‘O’ in Fig. 10a), over the dwell at room temperature and 

temperature cycles was studied and is shown in Fig. 11(a). The room-temperature dwell 

results in a relatively quick decrease of residual stresses during the first 10 min. due to 

the relaxation process. The latter decelerates after this initial stage of the dwell, resulting 

in 62% decline after first hour. The stress variation is presented only for 3 cycles due to a 

transition to a quasi-stable configuration after first four thermal cycles. The evolution of 

the component stress demonstrates the effect of three different thermal boundary 

conditions. The magnitudes of stress are similar for Cases B and C; however Case A 

induces compressive stresses of higher magnitude than in B and C. Another important 

observation is that in the case of the uniform temperature distribution (Case A) the 

relaxation of stress at cold dwell is absent due to a lower homologous temperature 

( =hT 0.44).  But at hot dwell all three cases show comparable extents of relaxation due to 

higher hT . As temperature cycling progresses the stress levels at hot dwell practically 

coincide for all three cases. The evolution of shear stresses in the solder joint is also 

studied for the maximum stress location in the fillet (point ‘P’ in Fig. 10d). The Fig. 11(b) 

demonstrates the variation of shear stresses for reflow, relaxation at room temperature 

and 3 temperature cycles. The general character and main features of the shear stress 

evolution are similar to those for the stress component xxσ , with Case A exhibiting higher 
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stress levels and Case C lower stress levels.  Here also no relaxation of stress at cold 

dwell is observed in case of Case A, and stress levels converge for all three cases at hot 

dwell as the cycle progresses. 

Since the stress levels induced in the solder joint are in plastic region, they cause an 

irreversible strain in it. At the same time, deformation in the solder joint due to creep also 

contributes to the permanent strain. Therefore inelastic strain, caused by a combined 

effect of plasticity and creep, was calculated for the solder joint at point ‘P’ in the fillet. 

Figure 12 shows the evolution of inelastic strain for Cases A, B and C. All three cases 

correspond to thermal ratcheting after the reflow and dwell at room temperature: each 

thermal cycle results in the incremental increase in the levels of inelastic strains.  As 

expected, the accumulated inelastic strain (permanent) strain at the end of 5 temperature 

cycles is maximum for Case A, while that in Case C is minimum. The inelastic strain 

accumulation after five thermal cycles is 33% and 40% lower for Cases B and C, 

respectively, than that in Case A.  In the latter case, there is no inelastic strain 

accumulation at cold dwell due to low homologous temperature, resulting in the absence 

of stress relaxation. In contrast the inelastic strain accumulation takes place for both hot 

and cold dwells in Cases B and C. However, the amount of accumulation is greater for 

cold dwell than that of hot dwell due to higher level of stress in the solder joint during 

cold dwell.  

Conclusions 

In this paper, the experimental work is aimed at determination of the temperature profiles 

in the working flip-chip assembly. It is demonstrated that the real spatial temperature 

distributions are not uniform, resulting in thermal gradients in the assembly. Finite 
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element simulations are used to study the effect of non-uniformity as opposed to the 

standard assumption of uniform temperature distributions in microelectrinics components 

when they are powered. This is implemented in terms of three variants of thermal 

boundary conditions, linked to experimental results. Their effect on thermal stresses and 

inelastic strain accumulation in the surface-mount solder joint is studied. From the three 

cases considered, the non-uniform temperature distribution (Case C) in the resistor 

assembly demonstrates the lowest stress levels as well as inelastic strain accumulation 

while the uniform temperature distribution (Case A) demonstrates the highest ones. 

Obviously, the common assumption of the uniform temperature field in powered 

component overestimates thermal ratcheting for the studied loading history. Therefore, it 

is very important to consider the actual temperature distribution rather than a uniform one 

in the finite-element simulation to study stress and strain conditions in the solder joint. 
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Figure captions 
 

Figure 1: Solder fillet cracking in thermal cycling test between 218 K to 398 K on 1812 

size ceramic capacitors [4] 

Figure 2: Schematic of specimens used in experiments 

Figure 3: Temperature distribution (in K) in a chip mounted on FR4 substrate at 1.2 W 

Figure 4: Effect of substrate on temperature distribution in the chip for free convection 

Figure 5: Geometrical details of chip resistor assembly: side view (a) and front view (b) 

Figure 6: Meshing of chip resistor assembly 

Figure 7: Zones of thermal boundary conditions: side view (a) and top view (b) 

Figure 8: 3D temperature distributions (in K) in chip resistor assembly at ambient 

temperature 398 K (a) and 218 K (b) 

Fig 9: A typical thermal history used in thermal stress analysis: Cooling from 490 K 

(AB) - 48 sec; dwell at room temperature (BC) - 3600 sec; ramp CD - 300 sec; hot & 

cold dwell (DE, FG) - 300 sec; ramps EF & GH - 360 sec 

Figure 10: Distribution of thermal stresses in solder joint after reflow: (a) xxσ ; (b) yyσ ; 

(c) zzσ ; (d) xyσ  

Figure 11: Evolution of component stress xxσ  (a) and shear stress xyσ  (b) 

Figure 12: Accumulation of inelastic strain   
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Table 1: Temperature levels at different zones for two extreme ambient 

temperatures 

Thermal 

Zone 

Boundary conditions 

at ambient temperature 

398 K  

Boundary conditions 

at ambient temperature 

218 K  

I 398 294.5 

J 386 282.5 

K 382 278.5 

L 384 280.5 

M 379 275.5 

N 376 272.5 

O 328 224.5 

P 343 239.5 

Q 321.5 218 
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Table 2: Material properties for SAC solder [11, 12, 19] 
 

Temperature 
(K) 

Young’s 
modulus 
(MPa) 

CTE 
(ppm/K) 

Yield stress 
(MPa) 

Tangent 
modulus 
(MPa) 

298 44400 21.2 38 154 

348 30700 21.7 30 134 

423 18800 23.0 17 132 
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Figure 1 
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Figure 2 

 Substrate (FR4 
or copper) 

Carrier Chip 

Heater  
Chip 

Adhesive 
pad 

X

Z

 Substrate (FR4 
or copper) 

Carrier Chip 

Heater  
Chip 

Adhesive 
pad 

X

Z6 mm

0.
53

5 
m

m Substrate (FR4 
or copper) 

Carrier Chip 

Heater  
Chip 

Adhesive 
pad 

X

Z

 Substrate (FR4 
or copper) 

Carrier Chip 

Heater  
Chip 

Adhesive 
pad 

X

Z6 mm

0.
53

5 
m

m

 
 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Line 1Line 1

K

Line 1Line 1

K

 



27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 
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Figure 5 
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Figure 6 
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Figure 8 
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Figure 9 
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            Figure 10 
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Point ‘P’ used for stress 
evolution study
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Figure 11 
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Figure 12 
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