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1 Introduction

3D gravity has no propagating degrees of freedom. Remarkably, despite being topological

and admitting a Chern-Simons formulation [1, 2], the theory is rich enough in AdS3 to have

black hole solutions [3]. Moreover, a large class of higher-dimensional black holes possess

near-horizons with AdS3 factors and it is striking that the geometrical Bekenstein-Hawking

entropy is encoded in the central charge of a 2D conformal field theory (CFT) [4, 5].

In fact, a decade prior to the AdS/CFT conjecture [6], it was already established that

the asymptotic symmetry group of AdS3 was generated by two copies of the Virasoro

algebra [7]. Thus, gravity in AdS3 can be said to define a CFT.

In special settings, for example, M5-branes wrapped on Calabi-Yau (CY3) four-cycles,

it is possible to go beyond the leading Bekenstein-Hawking entropy and compare one-loop

corrections [8, 9]. For AdS3 geometries with arbitrary higher-derivative terms, the central

charge may be determined by extremising the on-shell action [10], thereby generalising the

Brown-Henneaux result. A considerable advantage of this approach is that it does not

assume supersymmetry.

For supersymmetric AdS3 near-horizons, there is a recognisable redundancy in extrem-

ising the on-shell action. In fact, given sufficient knowledge of the effective 3D supergravity,

one can simply extremise the superpotential T to localise the action on supersymmetric

configurations. In fact, for holographic RG flows interpolating between AdS3 vacua, it is

well-known [11, 12] that the inverse of T plays the rôle of the monotonically decreasing

Zamolodchikov c-function [13]. Furthermore, for 2D QFTs with N = (0, 2) supersymme-

try, a setting where the U(1) R symmetry is ambiguous — it is free to mix with other U(1)
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flavour symmetries — there is a well-defined procedure, c-extremization [14, 15]1 to deter-

mine the central charge and R symmetry at superconformal fixed-points exactly.2 Since T

shares the same components as the Maxwell Chern-Simons (CS) terms, which in turn are

fixed by anomalies, T also knows about the R symmetry in the large N limit [16, 17]. So

for two-derivative supergravity, it makes sense to study T . It remains to be seen if a coun-

terpart exists with higher-derivatives, one that would potentially provide a repackaging of

a recent tour de force calculation involving 5D supergravity with four-derivative terms [24].

In this paper we continue a program [16, 17, 23] of identifying 3D N = 2 gauged super-

gravities [25] corresponding to wrapped-brane geometries. We recall that AdS3 geometries

— alternatively, the vacua of 3D gauged supergravities — based on wrapped-branes were

initially constructed in lower-dimensional supergravity, e. g. [26–28, 30, 31], before being

uplifted to higher dimensions using consistent Kaluza-Klein (KK) sphere reductions [32–

34].3 In this work, we consider 7D U(1)2 gauged supergravity [33], which we twist and

KK reduce on a product of constant curvature genus gi Riemann surfaces, Σg1 × Σg2 , and

recast the 3D effective theory in the natural language of 3D gauged supergravity. While

our work here does not exhaust the possibilities for M5-branes wrapped on four-cycles —

we have omitted Kähler four-cycles in Hyper-Kähler manifolds and co-associative cycles

in G2-holonomy manifolds — the ansatz is rich enough to include Kähler-Einstein (KE4)

compactifications as a special case and still allow for mixing of the R symmetry.

Given the existence of the 3D theory, it is reasonable to enquire into its solutions, par-

ticularly the supersymmetric solutions where powerful techniques exist [37] to find closed

expressions. Similar studies have appeared recently for ungauged [38–40], gauged [41] and

massive gravity [42, 43] in 3D. As we will show for our 3D gauged supergravity, supersym-

metric spacetimes are characterised by a 2D Riemann surface and differential equations for

the warp factor, D, and the canonical scalars WI . As it turns out, the superpotential T also

determines all timelike supersymmetric solutions to the 3D gauged supergravity; the field

strengths are given in terms of the scalars WI and derivatives of the superpotential ∂WI
T ,

while the supersymmetry equations are expressed in terms of T and ∂WI
T . At no point

does the explicit expression for T appear, suggesting that this is a universal result. There-

fore, for any 3D N = 2 gauged where the U(1) R symmetry is gauged, once one determines

T , one can simply write down the equations for all timelike supersymmetric solution.4 To

the extent of our knowledge, no classification of the supersymmeric solutions of 7D U(1)2

gauged supergravity exists,5 in contrast to 5D U(1)3 supergravity [45]. It is expected that

our results in section 3 will serve as a consistency check for any future classification.

One interesting feature of the solutions we find is that, depending on where one is in

parameter space, AdS3 may not be the only supersymmetric critical point, i.e. solution

with constant WI . Indeed, the theory typically admits new flux-supported geometries,

1We now have both black hole [10] and CFT c-extremization. Settings can be found, e.g. black string

solutions [18], where these procedures agree.
2See [19–22] for related recent work.
3Further Kaluza-Klein embeddings of the same theories include [35, 36].
4See [41] for results on null solutions.
5See [44] for a classification of minimal gauged supergravity in 7D.
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corresponding to warped AdS3 (Gödel) [46, 47] and warped dS3, with characteristic closed

timelike curves (CTCs). It is noteworthy that the warped and unwarped solutions appear

at different values of the scalars, so that the one-to-one map between charges in AdS3 and

warped AdS3 identified in [48], providing the basis for two copies of the Virasoro algebra in

warped AdS3, cannot apply, since the scalars are now dynamical. It would be interesting

to extend the analysis of ref. [48] (also ref. [49]) to 3D theories with scalar potentials to see

whether the inverse of T , as suggested in [50], also encodes the central charge for warped

AdS3 solutions.

The structure of this paper is as follows. In section 2 we present the details of the

twisted compactification from 7D supergravity and the rewriting of the bosonic action in

terms of the canonical form for a 3D supergravity [25], namely a non-linear sigma-model

coupled to gravity. We identify the superpotential T for the theory and the four complex

scalars filling out the Kähler target space, [SU(1, 1)/U(1)]4, noting that this is, up to

factors, the same target space that arises from KK reductions from IIB supergravity on both

S1×Σg×KE4 [17] and M-theory on S2×CY3 [23]. In section 3, we present closed expressions

for all timelike supersymmetric solutions to the 3D supergravity through reduction of the

supersymmetry variations from 7D [51], thus mirroring the analysis of ref. [41]. We next

employ standard Killing spinor bilinear techniques to derive the differential conditions

on the spacetime. In section 4 we review c-extremization for M5-branes wrapped on a

product of Riemann surfaces [15]. From the extremal value of T , we show that one can

read off the central charge and R symmetry in the large N limit. Finally, in section 5, we

uplift the supersymmetric AdS3 vacua to 11D and show that it fits into a known class of

supersymmetric solutions [52].

2 3D gauged supergravity

In this section we identify the bosonic sector of the Abelian 3D N = 2 gauged supergravity

that arises when one truncates and consistently reduces 7D SO(5) gauged supergravity [51]

on a product of Riemann surfaces. To support the claim that the effective 3D action is

indeed a supergravity, we will demonstrate that the structure of the theory corresponds to

the expected form of an N = 2 gauged supergravity [25]. To do this, we rewrite the action

as a non-linear sigma-model with a Kähler target space. Combining our reduction ansatz

with those of refs. [53, 54], this provides an embedding of the 3D theory directly in 11D

supergravity.

We begin by recalling the bosonic sector of maximally supersymmetric SO(5) gauged

supergravity in 7D [51]; the theory comprises a metric, SO(5) Yang-Mills fields Aij , i, j =

1, . . . , 5, five three-forms, Si, transforming in the 5 of SO(5) and 14 scalars parametrising

the coset SL(5,R)/SO(5) through the unimodular symmetric matrix Tij . The bosonic

action for this theory may be expressed as

L7 = R ∗ 1− 1

4
T−1
ij ∗DTjk ∧ T−1

kl DTli −
1

4
T−1
ik T

−1
jl ∗ F

ij ∧ F kl − 1

2
Tij ∗ Si ∧ Sj

+
1

2g7
Si ∧DSi − 1

8g7
εj1...j5S

j1 ∧ F j3j4 ∧ F j4j5 − V ∗ 1 +
1

8g7
(2Ω5[A]− Ω3[A]),
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where Ω5[A] and Ω3[A] denote Chern-Simons forms for the gauge fields Aij ,6 and we

have defined

DTij ≡ dTij + g7A
ikTkj + gAjkTik,

DSi ≡ dSi + g7A
ij ∧ Sj ,

F ij ≡ dAij + g7A
ik ∧Akj . (2.2)

The potential is given by

V =
g2

7

2

(
2TijTij − (Tii)

2
)
, (2.3)

where g7 is the gauge coupling.

Given the full SO(5) theory, we can perform a group-theoretic truncation to 7D U(1)2

gauged supergravity [33] (see also [55]) by retaining two scalars, λI ,
7

Tij = diag(e2λ1 , e2λ1 , e2λ2 , e2λ2 , e−4λ1−4λ2), (2.4)

two gauge fields F 12 = 2F̃ 1, F 34 = 2F̃ 2 and a three-form, S5 = 2
√

3g7C,8 with all other

fields set to zero. This leads to the simpler bosonic action [33]

L7 = R ∗ 1− 5 ∗ d(λ1 + λ2) ∧ d(λ1 + λ2)− ∗d(λ1 − λ2) ∧ d(λ1 − λ2)

−
2∑
i=1

2e−4λi ∗ F i ∧ F i − 6g2
7e
−4λ1−4λ2 ∗ C ∧ C + 6g7C ∧ dC − V ∗ 1

−8
√

3C ∧ F 1 ∧ F 2 +
4

g7

(
A1 ∧ F 1 ∧ F 2 ∧ F 2 +A2 ∧ F 2 ∧ F 1 ∧ F 1

)
, (2.5)

where we have dropped tildes on AI , since there is hopefully now no confusion regarding

the origin of the truncated gauge fields. The potential also simplifies accordingly,

V =
g2

7

2

(
−8e2λ1+2λ2 − 4e−2λ1−4λ2 − 4e−4λ1−2λ2 + e−8λ1−8λ2

)
. (2.6)

To perform a reduction to 3D we now have options. Firstly, if we consider a reduction

on the product of two genus gi Riemann surfaces, Σg1 × Σg2 , we could firstly reduce on

one Riemann surface, thus making contact with the results of ref. [24, 57] in 5D. However,

experience suggests [16] that the reduction is suitably simple that it can be performed at

6Taking into account the rescaling Aijhere = 2Aijthere, they may be written in our notation as [51]

Ω3[A] =
1

16
εαβγδεηζTr

(
AαFβγ −

1

3
AαAβAγ

)
Tr(FδεFηζ),

Ω5[A] =
1

16
εαβγδεηζTr

(
AαFβγFδεFηζ −

2

5
AαAβAγFδεFηζ −

1

5
AαAβFγδAεFηζ

+
1

5
AαAβAγAδAεFηζ −

1

35
AαAβAγAδAεAηAζ

)
. (2.1)

7This theory is a further truncation of the SO(4) ' SU(2)× SU(2) theory with topological mass [56].
8Note we are now using the scalings for the fields as they originally appeared in [51]. The gauge couplings

are now simply related through g7 = m.
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the level of the action, so we opt to plough ahead and focus on the 3D theory. We have

independently checked that the reduction may be performed at the level of the equations of

motion (EOMs), so it is by definition consistent. Furthermore, by choosing the curvatures

of the Riemann surfaces to be the same, one can replace Σg1 ×Σg2 with a more general 4D

Kähler-Einstein manifold, KE4. Therefore, our analysis is expected to cover dimensional

reduction on KE4, simply through further truncation. This will be evident when we come

to compare with the results in c-extremization [15] in a later section.

To perform the reduction on Σg1 × Σg2 , we employ the spacetime ansatz

ds2
7 = e−4(λ3+λ4)gµνdxµdxν + e2λ3ds2(Σg1) + e2λ4ds2(Σg2), (2.7)

where λI , I = 3, 4 are scalar warp-factors for Riemann surfaces with constant curvature

κi, i = 1, 2 and gµν is the 3D metric in Einstein frame. The warp factors conspire to bring

us to Einstein frame upon reduction. We also adopt an accompanying ansatz for the fluxes

F 1 =
1

2
G1 − a1

4
vol(Σg1)− a2

4
vol(Σg2),

F 2 =
1

2
G2 − b1

4
vol(Σg1)− b2

4
vol(Σg2),

C =
ρ

3!

√
−gεµνρdxµνρ +

1

2
c1 ∧ vol(Σg1) +

1

2
c2 ∧ vol(Σg2). (2.8)

This introduces additional gauge fields, BI , with field strengths GI = dBI , and one-

forms cI , which will be rewritten as field strengths later so that they conform to the

canonical structure of 3D gauged supergravity [25]. The normalisation of the constant

twist parameters, ai, bi, has been chosen to facilitate direct comparison with [15] and the

factor ρ is fixed by the equation of motion for C to be

ρ =
1

8
√

3g2
7

(a1b2 + b1a2)e4(λ1+λ2)−8(λ3+λ4). (2.9)

Performing the reduction either at the level of the action or the EOMs, we arrive at

the 3D action:

L3 = R ∗3 1−
2∑
I=1

[
5 ∗3 d(λ2I−1+λ2I) ∧ d(λ2I−1+λ2I)+ ∗3d(λ2I−1−λ2I) ∧ d(λ2I−1−λ2I)

]

−3

2
g2

7e
−4(λ1+λ2)

2∑
I=1

e−4λ2+I ∗3 cI ∧ cI

−1

2
e4(λ3+λ4)

2∑
I=1

e−4λI ∗3 GI ∧GI − V3 ∗3 1 + LCS,

where the 3D potential is now

V3 =
1

2
g2

7e
−4(λ3+λ4)

[
−8e2λ1+2λ2 − 4e−2λ1−4λ2 − 4e−4λ1−2λ2 + e−8λ1−8λ2

]
+

1

8
e−8λ3−4λ4

(
a2

1e
−4λ1 + b21e

−4λ2
)

+
1

8
e−4λ3−8λ4

(
a2

2e
−4λ1 + b22e

−4λ2
)

−2e−4(λ3+λ4)
(
κ1e
−2λ3 + κ2e

−2λ4
)

+
1

32g2
7

(a1b2 + b1a2)2e4(λ1+λ2)e−8(λ3+λ4),

– 5 –
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and the CS term becomes

LCS =
1

4g7

[
b1b2B

1 ∧G1 + (a1b2 + a2b1)B1 ∧G2 + a1a2B
2 ∧G2

+(a2b1 + a1b2)B2 ∧G1
]

+
3

2
g7(c1 ∧ dc2 + c2 ∧ dc1)

+

√
3

2

[
c1 ∧

(
b2G

1 + a2G
2
)

+ c2 ∧
(
b1G

1 + a1G
2
)]
. (2.10)

To recast the action in the accustomed form of a non-linear sigma-model coupled to su-

pergravity, we normalise and diagonalise the scalar kinetic terms through the redefinitions:

W1 = − 2(λ1 − λ3 − λ4), W2 = − 2(λ2 − λ3 − λ4), (2.11)

W3 = 2(λ1 + λ2 + λ4), W4 = 2(λ1 + λ2 + λ3). (2.12)

With these redefintions, the potential may be written as

V3 = −8T 2 + 8
4∑
I=1

(∂WI
T )2, (2.13)

where we have introduced the superpotential T :

T =
g7

4

(
2e−W1 + 2e−W2 + e−W3−W4

)
− 1

16g7
(a1b2 + b1a2)e−W1−W2

−1

8

(
a1e
−W2−W4 + b1e

−W1−W4 + a2e
−W2−W3 + b2e

−W1−W3
)
. (2.14)

It can be checked that T recovers the correct potential provided the curvature of the

Riemann surfaces is related to the twist parameters through the following supersymme-

try condition

κi = −g7

2
(ai + bi). (2.15)

From (2.13) it is clear that the critical points of V3 correspond to ∂WI
T = 0. As we show

in the appendix, the same expression for T also appears in the dimensional reduction of

the fermionic supersymmetry conditions from 7D, thus providing further confirmation that

we have reduced the theory correctly. Using the results in the appendix, it is easy to show

that solving the Killing spinor equation to find AdS3 vacua is equivalent to extremising

the superpotential.

The condition (2.15) guarantees that the lower-dimensional theory is indeed a gauged

supergravity, one with N = 2 supersymmetry. Choosing g7 = 2, which leads to the

canonical normalisation for AdS7 × S4 so that the radius of the original AdS7 vacuum is

unity, (2.15) corresponds with the supersymmetry conditions presented in [15].

To back up our claim that the theory corresponds to an N = 2 gauged supergravity,

we need to demonstrate that there is a Kähler scalar manifold. To show this is indeed the

– 6 –
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case, we record the following equations of motion that follow from the 3D action

dc1 = g7 e
−2W3 ∗3 c2 −

1

2
√

3g7

(b1G
1 + a1G

2), (2.16)

dc2 = g7 e
−2W4 ∗3 c1 −

1

2
√

3g7

(b2G
1 + a2G

2), (2.17)

d
(
e2W1 ∗3 G1

)
=

√
3

2
(b1dc2 + b2dc1) +

1

2g7

[
b1b2G

1 + (a1b2 + a2b1)G2
]
, (2.18)

d
(
e2W2 ∗3 G2

)
=

√
3

2
(a1dc2 + a2dc1) +

1

2g7

[
a1a2G

2 + (a1b2 + a2b1)G1
]
. (2.19)

An observation that we can make at this point is that one cannot truncate out cI without

setting GI = 0 for generic twists, in which case one recovers the ansatz of [15]. So, if we

plan on retaining GI , then we are forced to also incorporate cI . We now introduce scalars

YI through the following covariant derivatives

e2W1 ∗3 G1 = DY1 ≡ dY1 +
1

2
(b2A

1 + b1A
2) +

1

4g7
(a1b2 + a2b1)B2, (2.20)

e2W2 ∗3 G2 = DY2 ≡ dY2 +
1

2
(a2A

1 + a1A
2) +

1

4g7
(a1b2 + a2b1)B1, (2.21)

−
√

3g7c2 = DY3 = dY3 +
1

2
(b2B

1 + a2B
2)− g7A

2, (2.22)

−
√

3g7c1 = DY4 = dY4 +
1

2
(b1B

1 + a1B
2)− g7A

1. (2.23)

This ensures that (2.16)–(2.19) are trivially satisfied. It is worth recording that the deriva-

tive (2.16) and (2.17) imply that e−2W3 ∗ c2 = dA, where A is an arbitrary one-form. The

precise relationship can be fixed by comparing with (2.22) and (2.23), resulting in

e−2W4 ∗3 c1 =
1√
3g7

F 2, e−2W3 ∗3 c2 =
1√
3g7

F 1, (2.24)

where F I = dAI .

Once the scalars YI are introduced, we can rewrite the kinetic terms as

Lscalar = −1

2

4∑
I=1

[
∗3dWI ∧ dWI + e−2WI ∗3 DYI ∧DYI

]
. (2.25)

The CS terms consistent with (2.20)–(2.23) are

LCS = g7A
1 ∧ F 2 − 1

4g7
(a1b2 + a2b1)B1 ∧G2

−1

2
A1 ∧ (b2G

1 + a2G
2)− 1

2
A2 ∧ (b1G

1 + a1G
2). (2.26)

We are free to then introduce complex coordinates zI = eWI + iYI so that the Kähler

potential for the manifold is

K = −
4∑
I=1

log[<(zI)], (2.27)

– 7 –
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thus demonstrating that the Kähler manifold is [SU(1, 1)/U(1)]4. This confirms that the

bosonic action is consistent with N = 2 gauged supergravity [25].

Extrema of T correspond to supersymmetric AdS3 vacua. In our notation, these may

be expressed explicitly as

e−W1 =
4 (a1b2 + a2b1 − a1a2) g2

7

a2
2b

2
1 + a2

1b
2
2 + a1a2b1b2

, e−W2 =
4 (a1b2 + a2b1 − b1b2) g2

7

a2
2b

2
1 + a2

1b
2
2 + a1a2b1b2

,

e−W3 =
2
(
a2

1b2 + a2b
2
1

)
g7

a2
2b

2
1 + a2

1b
2
2 + a1a2b1b2

, e−W4 =
2
(
a2

2b1 + a1b
2
2

)
g7

a2
2b

2
1 + a2

1b
2
2 + a1a2b1b2

. (2.28)

Using the redefinitions zi = ai − bi, (2.11) with g7 = 2, it can be checked that these agree

with the critical points of [15] once a flip in the sign of the scalars λ1 and λ2 is taken into

account. We recall that these vacua were originally found by solving the Killing spinor

equations [15], whereas here we have simply identified and extremised the superpotential

of the effective 3D theory. We stress that the above expressions for supersymmetric AdS3

critical points hold for generic ai, bi with N = (0, 2) supersymmetry. Special points in

parameter space exist where supersymmetry is enhanced to N = (0, 4) supersymmetry,9

where a1 = a2 = 0 or b1 = b2 = 0, however it can be verified from the superpotential that

no extremum exists for these values. Similarly, when a1 = b1 = 0, or a2 = b2 = 0, there is

no flux to support an AdS3 vacuum and as a consequence there is no solution.

There is one special case with an AdS3 vacuum and enhanced supersymmetry, which

may be found by setting a1 = b2 = 0, or a2 = b1 = 0. Here supersymmetry is enhanced to

N = (2, 2), a feature that can be seen from (A.4), since we need only impose two projection

conditions, γ12Γ12ε = ε, γ34Γ34ε = ε, resulting in eight supersymmetries. Extremising the

potential, we note that

W1 = W2 = log

(
a2b1
4g2

7

)
, W3 = log

(
a2

2g7

)
, W4 = log

(
b1
2g7

)
, (2.29)

where we have assumed a2 and b1 are non-zero. Indeed, for WI ∈ R, we further infer that

a2 > 0 and b1 > 0, which implies through (2.15), with positive g7, that in order to preserve

supersymmetry we must consider compactification on a product of hyperbolic spaces.

Setting g7 = 2, one can quickly identify the compactifications leading to real AdS3

vacua. One notes that solutions only exist for H2 × Σg, or put differently, one of the

Riemann surfaces should be hyperbolic. Choosing κ1 = −1 and κ2 ∈ {0,±1}, we note the

following constraints on the parameters:

H2 × T 2

{
a2 > 0, a1 <

1

3

}
∪
{
a2 < 0, a1 >

2

3

}
,

H2 × S2

{
a2 > 0,

a2

3a2 + 1
> a1 > −

a2
2

2a2 + 1

}
∪
{
a2 < −1,

2a2 + 1

3a2 + 2
< a1 < −

a2
2

2a2 + 1

}
,

H2 ×H2

{
3(a1 + a2)− 6a1a2 − 1 > |a1 + a2 − 1|

}
, (2.30)

9This corresponds to setting either F 12 = 0 or F 34 = 0 in 7D notation, so we only need to impose half

the projection conditions given in (A.4).
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where we have eliminated bi through (2.15). We have checked that these agree with the

parameter constraints given in [15]. Identifying a1 = a2 = a, b1 = b2 = b, one can

show similarly that twisted compactifications on KE4 only lead to real AdS3 vacua when

κ = −(a+ b) < 0, so the space is negatively curved.

We have also checked that our results at leading order are consistent with the 5D

analysis presented in [24], where subleading corrections to the geometry are considered.

More precisely, one can check that eW3 corresponds to the lone 5D hyperscalar, which

appears upon reduction from 7D, and that the scalars in the three vector multiplets are

X1 = e−
2
3
λ4+2λ1 , X2 = e−

2
3
λ4+2λ2 , X3 = e

4
3
λ4−2λ1−2λ2 . (2.31)

In terms of the remaining WI , we have

e−W1 =
A1

a2a3
, e−W2 =

A2

a1a3
, e−W4 =

A3

a1a2
, (2.32)

where A1 = (g5/2)(−a1P1 + a2P2 + a3P3) is expressed in terms of the 5D gauge coupling,

g5, the 5D twist parameters ai and the moment maps [24]:

g5P1 = 2m− p2

2
e−W3 , g5P2 = 2m− p1

2
e−W3 , g5P3 = me−W3 , (2.33)

with 7D gauge coupling m. Similar expressions can be found for A2, A3. To make the nota-

tion of ref. [24] consistent with our notation, one should employ the following redefinitions:

a1 →
a1

2
, a2 →

b1
2
, p1 → a2, p2 → b2,

a3 →
1

4m
(a1b2 + a2b1), m→ g7. (2.34)

One can also check that one of the conditions arising from the vanishing of the 5D hyper-

ino variation

kXI XI = 0 , (2.35)

where kXI denote Killing vector parameters associated to a quaternionic submanifold of

the hyperkähler manifold corresponding to the hypermultiplets, is recast in 3D into the

condition that the 3D superpotential is independent of the hyperscalar ∂W3T = 0.

With an eye on the analysis in section 4, we record the value of T at the extremum,

T =
(2a1b2 + 2a2b1 − a1a2 − b1b2) g3

7

a2
1b

2
2 + a2

2b
2
1 + a1a2b1b2

. (2.36)

This in turn sets the AdS3 radius, `, through ` = 1/(2T ), as can be seen from the

scalar potential.

2.1 Further truncations

It is clear from the earlier analysis that one can further consistently truncate our theory. For

example, for the choice of parameters a1 = a2 = a and b1 = b2 = b, which implies κ1 = κ2,

one may consider the simplification W3 = W4, A1 = A2 and this gauged supergravity
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with [SU(1, 1)/U(1)]3 Kähler target space contains information about reductions on KE4.

More precisely, in addition to the complex scalars z1, z2, which are unaffected, we retain

z3 = eW3 + iY3 and the Kähler potential for the target becomes

K = − log[<(z1)]− log[<(z2)]− 2 log[<(z3)]. (2.37)

and the scalar potential may be expressed as

V3 = −8T 2 + 8[(∂W1T )2 + (∂W2T )2 +
1

2
(∂W3T )2], (2.38)

where the superpotential is now

T =
g

4

(
2e−W1 + 2e−W2 + e−2W3

)
− ab

8g
e−W1−W2 − 1

4
e−W3

(
ae−W2 + be−W1

)
. (2.39)

Solving ∂WI
T = 0, I = 1, 2, 3, one recovers the supersymmetric AdS3 values (2.28) with the

constrained parameters, as expected. It is a simple exercise to consider further truncations

to [SU(1, 1)/U(1)]2 target manifolds by identifying W1 = W2, etc.

3 All timelike solutions

In this section, noting that the 3D gauged supergravity in section 2 is structurally the same

as the U(1)3 theory presented in [41], we derive the general solution to all timelike super-

symmetric solutions. In both cases, the respective 3D gauged supergravities possess Kähler

target space [SU(1, 1)/U(1)]n, n ∈ {3, 4}, so it may be anticipated that supersymmetric ge-

ometries are the same. We remark that it is straightorward to generalise our results to

arbitary n ∈ N in analogy with known 5D classifications [45]. While our interest here is

gauged supergravity with scalar potentials, we also note that ungauged supergravities in

3D were classified in [38–40].

Following ref. [41], supersymmetric timelike solutions for the 3D gauged supergravity

presented in section 2 take the form

ds2
3 = −(dτ + ρ)2 + e2D−K(dx2

1 + dx2
2),

GI = e−WI
[
−4∂WI

T e2D−Kdx1 ∧ dx2 + (dτ + ρ) ∧ dWI

]
,

F I = e−WI+2
[
−4∂WI+2

T e2D−Kdx1 ∧ dx2 + (dτ + ρ) ∧ dWI+2

]
, I = 1, 2, (3.1)

where repeated I indices in F I , GI are not summed, (x1, x2) parametrise a Riemann surface,

ρ is a one-form connection on the Riemann surface satisfying

dρ = 4Te2D−Kdx1 ∧ dx2, (3.2)

D is the breathing mode for the Riemann surface and K is the Kähler potential (2.27).

We observe that the expression for the field strengths ensures that the algebraic 3D Killing

spinor equations presented in the appendix (A.7) are satisfied. When the gauge fields

are zero we have full supersymmetry, so it is hopefully clear that non-zero field strengths
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imply the projection condition γ12ξ = iξ, thus breaking supersymmetry by one-half, leaving

generically two supersymmetries.

To see that the one-form connection must satisfy (3.2), as in [41], we can introduce

the vector spinor bilinear P 0
a ≡ ξ̄γaξ and make use of the Killing spinor equation (A.8),[

Da + Tγa +
i

8

2∑
i=1

(
eWiγ bc

a Gibc + eWi+2γ bc
a F ibc

)]
ξ = 0, (3.3)

to determine that dP 0 = 4T ∗3 P 0. Further defining the complex vector bilinear (P 1 +

iP 2)a ≡ ξ̄cγaξ, we can use the same technique to find the differential condition:

e−
1
2
Kd
[
e

1
2
K(P 1 + iP 2)

]
= g7 (e−W1 + e−W2) ∗3 (P 1 + iP 2)

+i g7(B1 +B2) ∧ (P 1 + iP 2). (3.4)

In this equation we note that the l.h.s. does not depend on the timelike Killing direc-

tion, while the r.h.s. does. As a result, since BI generically have electric components, for

consistency we require that BI takes the form

BI = e−WI (dτ + ρ) + B̃I , I = 1, 2, (3.5)

where B̃I is a one-form depending only on the coordinates of the Riemann surface, x1, x2.

Furthermore, with this choice for gauge potential, BI is now consistent with the field

strength GI (3.1). From the same equation, we can determine the equation for the warp

factor D. We note that the form of the metric in (3.1) is consistent with the choice

P 1 + iP 2 = eD−
1
2
K(dx1 + idx2). Inserting this expression for the complex vector into the

above differential condition, we find that g7 (B̃1 +B̃2) = ∗2dD. Taking a further derivative,

we find a second order equation:

∇2D = 4 g7

2∑
I=1

(
e−WI∂WI

T + e−WIT
)
e2D−K , (3.6)

which is exactly the same as in the U(1)3 theory [41], modulo a different expression for

the superpotential T and an overall factor of the coupling g7. This is in line with our

expectations. At fixed WI , this equation is nothing more than the Liouville equation

∇2D = −Ke2D, where K is the Gaussian curvature of the Riemann surface. As discussed

further in [41, 50], at extrema of the superpotential, the Gaussian curvature is related to

the AdS3 radius, ` and the extremal value of T in the following fashion,

4

eK K
|ext = `2 =

1

4T 2
|ext. (3.7)

To extract supersymmetry conditions for the scalars we can use the expressions for the

field strengths (3.1) in the flux EOMs:

e−WI∇2eWI = 16

[∑
J 6=I

∂WJ
T ∂2

WIWJ
T − T ∂WI

T

]
e2D−K . (3.8)
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We clearly note the presence of the supersymmetric critical point, ∂WI
T = 0, where WI

becomes constant. It is interesting that the explicit expression for the superpotential does

not appear, so this is presumably a general result for all 3D gauged supergravities with

target space [SU(1, 1)/U(1)]n, n ∈ N.

One can show that these conditions along with (3.1) imply the scalar EOMs and the

Einstein equations. As explicitly shown in [41], the Einstein equation along the temporal

direction is trivially satisfied, whereas the Einstein equation along the Riemann surface

reduces to the equation[
16T 2 − 8(∂WI

T )2
]
e2D−K −∇2D − 1

2

4∑
I=1

e−WI∇2eWI = 0. (3.9)

Using (3.6) and (3.8) one can show that this equation is satisfied, thus providing us with

a valuable consistency check.

3.1 Warped geometries

We now have closed expressions for all timelike supersymmetric solutions to the 3D gauged

supergravity that arise through a compactification from 7D on a product of Riemann

surfaces or a Kähler-Einstein four-manifold. As we have shown, the task of finding new

solutions reduces to solving (3.6) and (3.8). In this subsection, we will focus on the simplest

class of solutions with constant WI and leave more involved, potentially numeric solutions,

to future work. This will lead to new solutions and, as a further consistency check, the

recovery of supersymmetric AdS3 vacua highlighted in section 2.

Our strategy is then to consider fixed-points where dWI = 0. As a consequence, the

r.h.s. of (3.8) must vanish. In contrast to the simpler gauged supergravity of wrapped

D3-brane geometries [41], here it is difficult to find analytic expressions for the scalars

in terms of our parameters, ai, bi. As a result, we adopt different means; we impose the

quantisation condition (5.8) from the outset, thereby imposing a grid of discrete solutions,

before sampling various points. Throughout, we use the coupling g7 = 2.

We recall that when WI is constant, (3.6) reduces to the Liouville equation, ∇2D =

−Ke2D on the Riemann surface. A simple single-centered solution takes the form

eD =
2
√
|K|

|K|+Kr2
, (3.10)

leading to the 3D solution

ds2 = −`21
(

dτ +
r2

(1 + sgn(K)r2)
dϕ

)2

+ `22
(dr2 + r2dϕ2)

(1 + sgn(K)r2)2
(3.11)

where

`21 =
64T 2

e2K |K|2
, `22 =

4

eK |K|
. (3.12)

When `1 = `2 and K < 0, we recover unwarped AdS3.10

10It is well-known that the BTZ black hole [3] is a quotient of AdS3. While locally BTZ possesses as

many supersymmetries as AdS3, globally the number of supersymmetries depends on the mass, M , and

angular momentum, J . For extremal black holes, J = M`, one supersymmetry is preserved, for M = 0

two, and M = −1 (AdS3) four [58].
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(a1, a2) (g1, g2) (eW1 , eW2 , eW3 , eW4) K `2/`1

(0, 1) (n+ 1, 1) (0.0625, 0.0313, 0.2500, 0.2500) -1.1250 1

(0.25, 1) (2n+ 1, 1) (0.1094, 0.0219, 0.2188, 0.1094) -0.6891 1

(0.0046, 0.0044, 0.2310, 0.0326) 0.0743 0.1575

(-0.5, 1) (n+ 1, 1) (0.0813, 0.0580, 0.4063, 0.8125) -5.4321 1

(0.1182, 0.0251, 0.1748, 0.0285) -0.4781 0.3285

. . . . . . . . . . . . . . .

(0, 1) (n+ 1, 0) (0.0625, 0.0208, 0.2500, 0.2500) -1.3333 1

(0, 0.2) (5n+ 1, 0) (0.1500, 0.0150, 0.2143, 0.0750) -0.7779 1

(0.00067, 0.0027, 0.2490, 0.0325) 0.0735 0.0657

. . . . . . . . . . . . . . .

(0.5, 0.5) (n+ 1, n+ 1) (0.0469, 0.0469, 0.1875, 0.1875) -0.5625 1

(0.0078, 0.0078, 0.1875, 0.0313) 0.0625 0.2041

(0.0078, 0.0078, 0.0313, 0.1875) 0.0625 0.2041

. . . . . . . . . . . . . . .

(1,0 ) (n+ 1, n+ 1) (0.0625, 0.0625, 0.2500, 0.2500) -1 1

(0.0680, 0.0680, 0.1946, 0.1946) -0.7608 0.9711

Table 1. Critical points for given parameters ai and Riemann surface genera gi with n ∈ Z. K
denotes the Gaussian curvature of the Riemann surface and `2/`1 the degree to which the radius of

the Riemann surface is squashed relative to the timelike direction. Expressions have been rounded

to four decimal places, but can be found numerically to greater accuracy. Dots separate points

corresponding to reductions on H2 × T 2, H2 × S2 and H2 × H2, respectively. The final entry

corresponds to a point where supersymmetry of the AdS3 vacuum is enhanced to N = (2, 2).

When K < 0, the Riemann surface is hyperbolic, whereas for K > 0, we encounter

a sphere. This can be easily seen by employing the coordinate transformations, r =

tanh(ρ/2), and r = tan(θ/2), respectively. As a consequence, we see that for K < 0,

we have 0 ≤ r ≤ 1, whereas for K > 0, the radial direction is simply bounded below by

zero, 0 ≤ r. Regardless of the sign of the Gaussian curvature, we recognise that CTCs

appear where the signature of the gϕϕ term in the metric changes sign from positive to

negative. The geometry is therefore CTC-free in the range

r ≤ `2
`1
. (3.13)

For unwarped AdS3 this range coincides with the range of r, so there are no CTCs. To

see that uplifting the warped vacua will make no difference to the presence of CTCs, we

remark that when α = 0 in the uplifted geometry (5.3), Aα makes no contribution and the

problem reduces to analysing the presence of CTCs in the 3D metric, which we have done

above. It should be clear that 3D CTCs will persist in 11D.
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Our findings mirror the results for 3D gauged supergravities based on wrapped D3-

brane geometries presented in [41]. For parameters in the allowed ranges where good AdS3

vacua exist, we either recover the unwarped AdS3 vacuum, or in addition we find extra

fixed-points. Solutions for sample points in parameter space are given in table 1. For

these new fixed-points, the geometry is supported by fluxes and the timelike direction is

stretched, `1 > `2 leading to CTCs. For all points in parameter space we have studied, we

find that `1 does not change, whereas `2 decreases as we warp the geometry. Depending

on the Gaussian curvature of the Riemann surface, the new solutions are either R × H2

(K < 0), which we know as Gödel solutions [46, 47], or R × S2 (K > 0), which may be

referred to as warped de Sitter [59].

To find these new warped solutions, we have solved (3.8) for WI , i.e. given (a1, a2) four

equations for four unknowns. One can also attempt to find points where K = 0, where

the spacetime would be topologically, R × T 2, but in all the points we have studied, we

have found no real solutions. This mirrors the wrapped D3-brane case [41], where such an

outcome was shown not to arise.

However, in contrast to our expectations based on the analysis of ref. [41], for points

in parameter space where the AdS3 supersymmetry is enhanced to N = (2, 2), for example

(a1, a2) ∈ {(0, 1), (1, 0)}, (g1 > 0, g2 > 0), we find new fixed-points. This is hopefully

evident from the last two entries of table 1.

4 Supergravity dual of c-extremization

In this section we review the results of c-extremization [14, 15], a procedure to identify

the exact R symmetry and central charge of a 2D theory with N = (0, 2) supersymmetry.

We recall that N = (0, 2) SCFTs, like their N = 1 counterparts in 4D, possess a U(1) R

symmetry, which is associated with the right-movers in 2D. If there are additional Abelian

flavour symmetries in the theory, it is well-known that there is an ambiguity in the R

symmetry, since it is free to mix with other symmetries. The achievement of ref. [14, 15]

is that the exact superconformal R symmetry is uniquely determined by extremising the

trial c-function,

cR trial(tI) = 3

(
kRR + 2

∑
I

tIk
IR +

∑
IJ

tItJk
IJ

)
, (4.1)

where kRR denotes the coefficient in the two-point function of the right-moving R current

and kIJ are the coefficients of the flavour current two-point functions. Note that since cR trial

is quadratic, it has a unique extremisation, leading to a procedure called c-extremization.

One setting where c-extremization plays a rôle is in the dimensional reduction of the

6D N = (2, 0) theory associated to M5-branes on a product of Riemann surfaces, Σg1×Σg2

to 2D, where it serves to identify the exact R symmetry and central charge. We here sketch

the calculation, while referring the reader to ref. [15] for further details.

The 6D N = (2, 0) theory has an SO(5) R symmetry, so to preserve supersymmetry in

the reduction, one twists the theory by turning on background gauge fields coupled to the
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SO(2)2 Cartan subgroup of SO(5). In the compactification, the trial R symmetry becomes

a linear combination of the generators of SO(2)2, TA,B

TR = (1 + ε)TA + (1− ε)TB, ε ∈ R, (4.2)

normalised so that a complex supercharge has R charge one. To determine the trial central

charge (4.1), in the absence of a weakly-coupled Lagrangian formulation for 6D N = (2, 0)

theories, one can exploit the M5-brane anomaly polynomial [9, 60, 61]

I8 =
rG
48

[
p2(N)− p2(T ) +

1

4
(p1(T )− p1(N))2

]
+
rGhG(hG + 1)

24
p2(N), (4.3)

where N and T are the normal and tangent bundles, pi is the ith Pontryagin class,11

and rG and hG are the rank and Coxeter number, respectively. For the AN−1 theory,

one has rG = N − 1, dG = N2 − 1 and hG = N . Integrating the eight-form anomaly

polynomial I8 over Σg1 × Σg2 , one compares with the anomaly polynomial of a 2D theory

to determine cR trial,

I4 =
cR
6
c1(F )2 − cR − cL

24
p1(T ), (4.5)

where c1 denotes the first Chern class. Extremising cR trial to determine ε, one plugs the

expression back into cR to determine the exact left and right central charges [15]

cL =
η1η2

4

d2
Gh

2
GP + 2dGhGrG(3z2

1z
2
2 − 8κ1κ2z1z2 + κ2

1κ
2
2) + 3r2

Gz1z2(z1z2 − 2κ1κ2)

dGhG(κ1κ2 − 3z1z2)− 3rGz1z2
,

cR =
η1η2

4

d2
Gh

2
GP + 2dGhGrG(3z2

1z
2
2 − 8κ1κ2z1z2 + κ2

1κ
2
2) + 9r2

Gκ1κ2z1z2

dGhG(κ1κ2 − 3z1z2)− 3rGz1z2
, (4.6)

where we have defined

P = 3z2
1z

2
2 + κ2

1z
2
2 + κ2

2z
2
1 − 8κ1κ2z1z2 + 3κ2

1κ
2
2. (4.7)

To make sense of the above expressions for cL,R, we need to additionally define

ηi =

{ 1, gi = 1,

2|gi − 1|, gi 6= 1.
(4.8)

The exact R symmetry is

TR = TA + TB +
dGhG(κ1z2 + κ2z1)

dGhG(κ1κ2 − 3z1z2)− 3rGz1z2
(TA − TB). (4.9)

At the two-derivative level in supergravity, the goal is to recover the large N limit of

the exact central charge and R symmetry. To this degree of approximation, the central

11For a vector bundle E over a differentiable manifold, M ,

p1 =
1

2

(
i

2π

)2

trF 2, p2 =
1

8

(
i

2π

)4

(trF 2 ∧ trF 2 − 2trF 4), (4.4)

where F denotes the curvature two-form, i.e. the background SO(5)R field strength.
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charge (4.6) and R symmetry (4.9) become:

cL ' cR ' 2η1η2N
3 a2

1b
2
2 + a2

2b
2
1 + a1a2b1b2

2a1b2 + 2a2b1 − a1a2 − b1b2
, (4.10)

TR '
2(a1b2 + a2b1 − a1a2)

2a1b2 + 2a2b1 − a1a2 − b1b2
TA +

2(a1b2 + a2b1 − b1b2)

2a1b2 + 2a2b1 − a1a2 − b1b2
TB, (4.11)

where we have rewritten expressions using zi = ai − bi and the supersymmetry condi-

tion (2.15) with g7 = 2. We remark that the subleading terms for the central charges, cL, cR,

i.e. 1
N2 suppressed terms, have recently been matched at the four-derivative level [24].

Here we will show that the superpotential T captures all information at the two-

derivative level. We emphasise that this agreement does not stop at just the central charge

and R symmetry, but the extremisation of T , which produces supersymmetric AdS3 vacua,

is the direct supergravity analogue of the trial central charge in field theory that one

extremises to find the exact result.

It is now timely to recast our supergravity action in terms of the canonical expressions

for a 3D N = 2 gauged supergravity [25]. To do so, we recall some salient details; firstly,

the superpotential is quadratic in the moment maps VI associated to gauged isometries

T = 2VIΘIJVJ , (4.12)

which is further given in terms of the embedding tensor ΘIJ . Secondly, it is the embedding

tensor that determines the CS term:12

LCS =
1

2
AIΘIJdAJ . (4.13)

Writing the gauge fields, AI , I = 1, . . . , 4 in the order B1, B2, A1 and A2 respectively, thus

making connection with the gauge fields of section 2, we can read off the components of

the embedding tensor

Θ12 = − 1

4g7
(a1b2 + a2b1), Θ13 = − 1

2
b2, Θ14 = − 1

2
a2,

Θ34 = g7, Θ23 = − 1

2
b1, Θ24 = − 1

2
a1. (4.14)

This then determines T once we identify the associated moment maps:

VI =
1

4
e−WI (4.15)

To fully specify T , we should introduce V0 = 1, which is associated to a central extension

of the isometry group that generates the SO(2) R symmetry. The additional components

of the embedding tensor are ΘI0 = g7
2 .

It should be clear from the above analysis that the inverse of the superpotential T

may be regarded as the trial c-function in the vicinity of the superconformal fixed-point.

Not only is it extremised at the AdS3 vacuum, but it is also quadratic in moment maps,

12Here we just focus on the Abelian case.
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mirroring the trial c-function (4.1). Moreover, as we have just seen, since ` ∼ 1
T , we have

from the Brown-Henneaux formula [7], c = 3
2
`
G3

, that the central charge c is inversely

proportional to T . In fact, it is known that the rôle of T is more general; it is the natural

(super)gravity analogue of the Zamolodchikov c-function [13] for holographic RG flows

interpolating between AdS3 vacua [12]. It has recently been noted [50] that it also decreases

in flows from AdS3 to Gödel [46] fixed-points.

To make comparison, we need to fix the constant of proportionality, an exercise that

is most easily performed by borrowing the conventions of of [26] and comparing to the

Brown-Henneaux formula. Doing so, we recover the result of [15],13

c =
1

2
(cL + cR) ' 3`

2G3
N

' 16η1η2

T
N3, (4.16)

which agrees with (4.10) when g7 = 2. Note, this result holds for the AN theory. To get

the result for the DN theory, we can simply consider the Z2 orbifold of flat spacetime with

M5-branes at the origin. As a result, we have cDNL ' cDNR ' 4cANR .

We can also extract the R symmetry from 3D supergravity in the large N limit. To do

so, we recall that the R symmetry evaluated at the AdS3 fixed-point is given by the linear

combination [16]14

R =
2VI

T
QI , (4.17)

where QI denotes the charges corresponding to the U(1) currents. From the higher-

dimensional supergravity perspective, the R symmetry is a linear combination of the two

gauged U(1) isometries with gauge fields BI , i.e. of the gauged SO(2)2 Cartan of the maxi-

mally supersymmetric 7D theory. As can be seen from (2.20) and (2.21), these gauge fields

are dualised into U(1) isometries in our scalar manifold, YI , which enjoy a shift symmetry

YI → YI + αI , where αI denote constants. We can thus extract the R symmetry from the

moment maps VI = 1
4e
−WI , I = 1, 2 associated to the gauging of these isometries. The

result is

2V1

T
=

2(a1b2 + a2b1 − a1a2)

(2a1b2 + 2a2b1 − a1a2 − b1b2)g7
,

2V2

T
=

2(a1b2 + a2b1 − b1b2)

(2a1b2 + 2a2b1 − a1a2 − b1b2)g7
. (4.18)

We note that this agrees perfectly with (4.11) when g7 = 2 and one takes into account

the factor of one-half in (2.8) between F I and GI , since the moment map associated to

F I is 1
2e
−WI .

As mentioned earlier, by tuning the parameters a1 = a2 = a, b1 = b2 = b, and

consequently, κ1 = κ2 = κ, it is now easy to determine the corresponding central charge

and R symmetry for M5-branes wrapped on a KE4 manifold. With g7 = 2, we immediately

see from extremising T that κ < 0, so that the four-manifold is negatively curved. Once

again, we normalise so that κ = −1.

13In the conventions of [26], the 11D Newton’s constant is G11
N = 16π7`9p, the AdS7 radius is taken to be

one, RAdS7 = 2(πN)
1
3 `p = 1. As a direct consequence of the choice of radius, the gauge coupling of the

SO(5) gauged supergravity becomes m = 2 and G7
N = (3π2/16)N−3.

14See [62] for the 5D analogue.
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The central charge and R symmetry then follow from (4.16) and (4.17)

c ' a2b2

4ab− a2 − b2
3 vol(KE4)N3

2π2
,

TR '
2(2b− a)

4ab− a2 − b2
TA +

2(2a− b)
4ab− a2 − b2

TB, (4.19)

and are simply a refinement of previous expressions, once one takes account of the fact

that η1η2 = 1
4π2 vol(Σ1 × Σ2) = 1

4π2 vol(KE4) and a + b = 1. As expected, both of these

agree with the exact central charge and R symmetry in the large N limit [15].

5 11D uplift of AdS3 vacua

As demonstrated in section 2, any solution to our 3D N = 2 gauged supergravity may

be viewed as a solution to 11D supergravity [53, 54]. In this section, we focus on the

uplifts of supersymmetric AdS3 vacua corresponding to the extrema of the superpoten-

tial, which we will write in canonical form as a U(1) fibration over a 6D SU(3)-structure

manifold [52, 63, 64].

To perform the uplift, it is easiest to make use of the results of ref. [65], which are

already tailored to the U(1)2 truncation of the 7D theory. In the process, we adopt the

following parametrisation for the (constrained) S4 scalars,

µ5 = ρ0, µ2α−1 = ρα sinφα, µ2α = ρα cosφα, (5.1)

where α = 1, 2 and φα are 2π-periodic. We observe that since the µi are constrained so

that
∑5

i=1 µ
2
i = 1, we necessarily have

∑2
α ρ

2
α = 1, so that ρα = 0, 1, 2 now parametrise an

S2. More concretely, we can choose,

ρ0 = cosα, ρ1 = sinα cosβ, ρ2 = sinα sinβ. (5.2)

In terms of the coordinates α, β parametrising the S2, the uplifted 11D metric for AdS3

vacua may be expressed as

ds2
11 = ∆

1
3

[
e−4(λ3+λ4)ds2(AdS3) + e2λ3ds2(Σg1) + e2λ4ds2(Σg2)

]
(5.3)

+
1

4
∆−

2
3

[
e4λ1+4λ2 ∆

X
dα2 + e−2(λ1+λ2)XDβ2

+ sin2 α
(
e−2λ1 cos2 βDφ2

1 + e−2λ2 sin2 βDφ2
2

)]
,

where g7 = 2, the warp factor is now ∆ = e−4λ1−4λ2 cos2 α + sin2 αX, and we have fur-

ther defined

Dφα = dφα + 4Aα, α = 1, 2,

X = e2λ1 cos2 β + e2λ2 sin2 β,

Dβ = sinαdβ +
(e2λ1 − e2λ2)

X
cosα cosβ sinβdα. (5.4)
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The four-form flux may be expressed as

G4 =
1

8
U∆−2 sin2 α cosβ sinβDφ1Dφ2dαDβ

+
∆−1

2
F 2Dφ1

[
sinα cos2 βe2λ1 ∆

X
dα− e−4λ1−4λ2 cosα sinα cosβ sinβDβ

]
+

∆−1

2
F 1Dφ2

[
sinα sin2 βe2λ2 ∆

X
dα+ e−4λ1−4λ2 cosα sinα cosβ sinβDβ

]
+

1

16
(a1b2 + a2b1)

[
2 cosα vol(Σg1) vol(Σg2)− sinαe4(λ1+λ2)−8(λ3+λ4) vol(AdS3)dα

]
,

(5.5)

where we have omitted obvious wedge products to save space and defined

U = cos2 α
(
e−8λ1−8λ2 − 2e−2λ1−4λ2 − 2e−2λ2−4λ1

)
(5.6)

− sin2 α cos2 β
(

2e2λ1+2λ2 + e−2λ1−4λ2
)
− sin2 α sin2 β

(
2e2λ1+2λ2 + e−4λ1−2λ2

)
.

Imposing the Bianchi identity dG4 = 0 leads, in the notation of the earlier section, to

the constraints:

dC =
4

g
F 1 ∧ F 2 + 2

√
3g e−4λ1−4λ2 ∗7 C = 0. (5.7)

One observes that these constraints are indeed satisfied for AdS3 vacua, when the expres-

sions for the field strengths F I and three-form potential (2.8), (2.9) are inserted.15

Having uplifted the geometry, we can now comment on how the twist parameters ai, bi
should be quantised, so that the geometry is well-defined. Demanding that the gauge field

is a connection on a bona fide U(1) fibration, we require that the periods of the first Chern

class be integer valued. This leads to the conditions

1

2π

∫
Σg

2g7 dA1 = g7 ai(g− 1) ∈ Z,
1

2π

∫
Σg

2g7 dA2 = g7 bi(g− 1) ∈ Z, (5.8)

where g 6= 1 is the genus of the Riemann surface, Σg, over which we integrate. When one

compactifies on a torus, g = 1, this condition simply reads ai, bi ∈ Z. As such, we recognise

the need to quantise the parameters so that the internal geometry is well-defined. This

requirement places stringent constraints on reductions on spheres and tori, however in the

case of compactifications on hyperbolic spaces, one is free to quotient the Riemann surface

without breaking supersymmetry, thus increasing the genus.

We can now use the result of the previous section, namely (4.17), to rewrite (5.3) in the

canonical form in order to distinguish the R symmetry U(1)R from the global symmetry

U(1)G. From (4.17), we see that the R symmetry vector, K, is

K =
e−W1

T
∂φ1 +

e−W2

T
∂φ2 = 2`e−2(λ3+λ4)

(
e2λ1∂φ1 + e2λ2∂φ2

)
(5.9)

15The contribution to G4 due to C was omitted in [15], so the Bianchi identity will not be satisfied.
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where ∂φi are vectors associated to the U(1) isometries. Furthermore, we have rewritten

T in terms of the AdS3 radius, T = 1/(2`) and WI in terms of λI (2.11). Using the 11D

metric (5.3), one can determine the dual one-form

K =
` sin2 α

2e2(λ3+λ4)∆
2
3

(
cos2 βDφ1 + sin2 βDφ2

)
. (5.10)

Normalising K to unit norm, we can rewrite the metric in the φi-directions in the following

fashion:

ds2
2 =

sin2 α

4 ∆
2
3

(
e−2λ1 cos2 βDφ2

1 + e−2λ2 sin2 βDφ2
2

)
(5.11)

=
sin2 α

4 ∆
2
3 X

[(
cos2 βDφ1 + sin2 βDφ2

)2
+ cos2 β sin2 β

(
eλ2−λ1Dφ1 − eλ1−λ2Dφ2

)2
]
.

We note that the first term on the r.h.s. is simply the one-form corresponding to the R

symmetry, while the remaining term is the U(1)G symmetry.

We are free to change coordinates as follows:

dφ1 = e2λ1(dψ1 + dψ2), dφ2 = e2λ2(dψ1 − dψ2), (5.12)

where we observe for AdS3 solutions that λI are simply constant. As a result of this

redefinition, the 11D metric (5.3) becomes

ds2
11 = ∆

1
3

[
e−4(λ3+λ4)ds2(AdS3) + e2λ3ds2(Σg1) + e2λ4ds2(Σg2)

]
+

1

4
∆−

2
3

(
e4(λ1+λ2) ∆

X
dα2 + e−2(λ1+λ2)X Dβ2 (5.13)

+ sin2 α

[
X

(
Dψ1 +

(e2λ1 cos2 β − e2λ2 sin2 β)

X
Dψ2

)2

+
e2(λ1+λ2)

X
sin2(2β)Dψ2

2

])
,

which is the canonical form for U(1)R × U(1)G, where ∂ψ1 is the R symmetry vector and

∂ψ2 the global symmetry vector and we have defined

Dψ1 = dψ1 + 2e−2λ1A1 + 2e−2λ2A2, Dψ2 = dψ2 + 2e−2λ1A1 − 2e−2λ2A2. (5.14)

It is straightforward to recast the four-form flux, G4, in the new coordinates ψi and we

omit the expression.

At this stage we could contemplate performing a dimensional reduction on the U(1)G
isometry, however this would lead to a singular geometry where the dilaton Φ blows at

α = 0. One could further choose one of the Riemann surfaces to be a torus and perform a

T-duality without breaking supersymmetry, but the singularity will persist,16 so it is better

to consider the 11D geometries, which are regular.

As a consistency check on the uplifted geometry (5.3) and the identification of the

R symmetry in 11D, we should compare with existing classifications. To the extent of

16In the the process of twisting and compactifying the Killing spinor become independent of the Riemann

surfaces. One can then infer from ref. [66] that supersymmetry will be preserved in the T-duality.
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our knowledge, the most general existing classifications of supersymmetric AdS3 solutions

of 11D supergravity, with N = (0, 2) dual SCFTs, can be found in ref. [63] and ref. [52].

Since [63] considers purely magnetic flux configurations, we focus on the [52]. It has already

been checked that a number of known solutions to 7D supergravity [27, 28] fall into these

classifications. Supersymmetric geometries in this general class take the form [52]

ds2
11 =

1

λm2

[
ds2(AdS3) +

λ3

4 sin2 θ
dρ⊗ dρ

]
+ e7 ⊗ e7 + ds2(N6),

F4 =
1

m3
volAdS3 ∧d[ρ− λ−3/2 cos θ] (5.15)

+
λ3/2

sin2 θ
(cos θ + ∗8)(d[λ−3/2 sin θJ ∧ e7]− 2mλ−1J ∧ J) + 2mλ1/2J ∧ e7 ∧ ρ̂,

where N6 admits an SU(3) structure, which along with λ, θ, is independent of AdS3

coordinates and we have defined ρ̂ = λ/(2m sin θ)dρ. In terms of the SU(3) structure

forms, J and Ω, the supersymmetry conditions may be expressed as [52],17

ρ̂ ∧ d(λ−1J ∧ J) = 0, (5.16)

Jyde7 =
2mλ

1
2

sin θ
(2− sin2 θ)− cos θρ̂yd log

(
λ

3
2 cos θ

sin2 θ

)
, (5.17)

d(λ−
3
2 sin θ Im Ω) = 2mλ−1(e7 ∧ Re Ω− cos θρ̂ ∧ Im Ω). (5.18)

The combination λ−3/2 cos θ just depends on the coordinate ρ, f(ρ) = λ−3/2 cos θ, and

setting f(ρ) = ρ, we recover purely magnetic solutions and the results of ref. [63].

To make comparison, we note that the metric and electric flux take the same

form provided

ρ = `−1e2(λ1+λ2)−4(λ3+λ4) cosα, f = e−2(λ1+λ2)−6(λ3+λ4) cosα. (5.19)

Furthermore, we have checked that

e7 =
sinα

2∆
1
3

√
X

(cos2 βDφ1 + sin2 βDφ2),

J = ∆
1
3

[
e2λ3 vol(Σg1) + e2λ4 vol(Σg2)

]
+
e−(λ1+λ2) sinα sin 2β

8∆
2
3

(
eλ2−λ1Dφ1 − eλ1−λ2Dφ2

)
∧Dβ,

Ω =
1

2
e−λ1−λ2+λ3+λ4(ē1 + iē2) ∧ (ē3 + iē4)

∧
[

sinα sin 2β

2
√
X

(e2λ2Dφ1 − e2λ1Dφ2) + i
√
XDβ

]
, (5.20)

where ēi denote appropriately chosen one-forms on the Riemann surfaces, satisfy the above

supersymmetry conditions through a number of non-trivial cancellations. Just highlighting

17Here AyB = 1
p!
Aµ1...µpB

µ1...µp for p-forms A and B.
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one particular case, we observe that the simplest condition (5.16) implies the following

constraint on the scalars

eW1(a1e
W3 + a2e

W4) = eW2(b1e
W3 + b2e

W4) + 8eW3+W4(eW1 − eW2). (5.21)

We emphasise that it is not immediately obvious that this condition is satisfied, since this

equation is an artifact of the 11D description. However, it can be checked using (2.11) that

this condition is satisfied for all ai, bi. This agreement provides yet another consistency

check on the results of ref. [52] and also allows us to confirm that the R symmetry from

the 3D perspective agrees with the canonical R symmetry from 11D supergravity, in line

with our expectations.

Finding that the supersymmetry conditions are satisfied for all twistings ai, bi is not

entirely unexpected. The reason being that the classification of ref. [52], although it assumes

a wrapped M5-brane ansatz from the outset, recovers a known classification of all minimally

supersymmetric AdS3 solutions in 11D supergravity [67]. Since classifications with different

supersymmetry are simply related via an identification of G structures — in this case two

orthogonal G2-structures define the SU(3)-structure — it may be expected that (5.15) is

sufficiently general to cover the uplifted 11D geometries.18

Finally, one last comment. While we have focused on 11D uplifts in this section, re-

cently it has been shown [72] how minimal gauged supergravity [73] in 7D may be embedded

in massive IIA supergravity. Since minimal gauged supergravity has SU(2) valued gauge

fields, this necessitates that one truncates the U(1)2 theory to U(1), leaving a single gauge

field and scalar in 7D. As a result, only solutions based on Kähler-Einstein compactifica-

tions from section 2, where a1 = a2, b1 = b2, can be embedded this way.

6 Discussion

If there is a take-home message from our work, it should be the observation that, for the

class of 3D gauged supergravities arising from wrapped M5-branes, the superpotential T

contains a wealth of information. Extremising it, we get the AdS3 vacua, and the Brown-

Henneaux central charge is, modulo a coefficient, simply the inverse of T . Indeed, the

extremisation process through which one arrives at AdS3 vacua deftly encapsulates the

c-extremization procedure from 2D CFTs [14, 15]. To add weight to this statement, one

should recall that the R symmetry in the large N limit is given in terms of the moment

maps, which appear in T quadratically contracted with the CS coefficients (embedding

tensor). We have checked that the R symmetry agrees with the canonical U(1) R symmetry

from known classifications. Moreover, as we have seen in section 3, T dictates all the

supersymmetric solutions in the theory and as expressions are presented implicitly in terms

of T , the analysis should hold for all timelike supersymmetric solutions to 3D N = 2 gauged

supergravity, once the explicit superpotential is determined.

18Recently, AdS3 solutions with N = (0, 2) supersymmetry [68, 69] have been generated via SU(2) non-

Abelian T-duality [70] (also [66]). It would also be interesting to confirm that these fit into the above

classification. It was reported recently that another non-Abelian T-dual AdS3 geometry with N = (0, 4)

supersymmetry [71] fell outside of one of these classes.
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Although we have not touched upon it in this work, T also gives a concrete prediction

for the central charge at the warped AdS3 fixed-point. This claim is based on the as-

sumption that we can use the same coefficient that reproduces the Brown-Henneaux result

for AdS3 vacua. It would be interesting to see if the same result may be recovered from

the asymptotic symmetry algebra by generalising the analysis of ref. [49] to theories with

scalar potentials.

Unfortunately, all comments above are restricted to the two-derivative level and it

would be interesting if one could find a higher-derivative analogue of the superpotential

in 3D that also encodes the corrections. From a 5D perspective [24], we already know

the corrected AdS3 supersymmetric geometries, and that the CFT result may be recov-

ered at subleading order using c-extremization of Kraus-Larsen [10], while the difference

between cL and cR, which is not evident at the two-derivative level, can be read off from

the gravitational CS terms in 3D [74]. It would be nice to streamline this process using

supersymmetry, if possible. By either dimensional reduction of 5D off-shell supergravity, or

working directly with known supersymmetric invariants in 3D, for example [75], one should

be able to identify the analogue of T with four-derivatives in order to see to what extent

corrected solutions may be found via an extremisation process. As a warm-up, it should

be interesting to match the R symmetry at subleading order to reconcile the prescription

in the literature [76] with the analysis of ref. [24], which already agrees with the expected

CFT central charges.

It is a common feature that the 3D gauged supergravities, which we have found via

dimensional reduction, all have non-compact target spaces. In principle, 3D N = 2 gauged

supergravity also allows for compact target spaces, such as CP1 [77] and more generally

CPn [78]. Identifying an embedding for these theories would help elucidate properties of

the dual N = (0, 2) SCFT and allow one to study RG flows from both the perspective of

field theory and supergravity. We hope to explore this in future work.
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supported by the Marie Curie award PIOF-2012-328625 T-DUALITIES. E Ó C is grateful
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A Reduction of supersymmetry variations

In this appendix, we reduce the supersymmetry variations of the U(1)2 truncation of 7D

SO(5) gauged supergravity on a product of Riemann surfaces. A similar reduction on a

single Riemann surface from 5D U(1)3 gauged supergravity appeared in [41]. In 7D the

supersymmetry variations read [51]:

δψµ =

[
∇µ +

1

4
Qµ ijΓ

ij +
g7

20
Tγµ −

1

40
(γ νρ
µ − 8δνµγ

ρ)ΓijΠ
i
AΠj

BF
AB
νρ

+
g7

10
√

3

(
γ νρσ
µ − 9

2
δνµγ

ρσ

)
Γi(Π−1)Ai SAνρσ

]
ε,
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δχi =

[
1

2
Pµijγ

µΓj +
g7

2

(
Tij −

1

5
δijT

)
Γj +

1

16

(
ΓklΓi −

1

5
ΓiΓkl

)
γµνΠk

AΠl
BF

AB
µν

+
g7

20
√

3
γµνρ(Γ j

i − 4δ j
i )(Π−1)Aj SAµνρ

]
ε, (A.1)

where ε denotes the 7D supersymmetry variation, T = δijTij , and we have further defined

Πi
A = diag(e−λ1 , e−λ1 , e−λ2 , e−λ2 , e2λ1+2λ2),

Mµij = (Π−1)Ai(δ
B
A ∂µ + 2g7A

B
µA )Πk

Bδkj ,

Qµij =
1

2
(Mµ ij −Mµ ji), Pµij =

1

2
(Mµ ij +Mµ ji). (A.2)

The corresponding expression for Tij appears in the text (2.4).

To perform the reduction, we decompose the 7D supersymmetry variation and gamma

matrices as

ε = eCξ ⊗ η1 ⊗ η2,

γa = ρa ⊗ σ3 ⊗ σ3,

γm+2 = 1⊗ σm ⊗ σ3,

γm+4 = 1⊗ 1⊗ σm, (A.3)

where now a = 0, 1, 2, m = 1, 2 and C is a 3D scalar, yet to be determined. We impose the

projection conditions

γ34ε = γ56ε = −Γ12ε = −Γ34ε = iε, (A.4)

where γi are tangent space gamma matrices and Γi denote SO(5) gamma matrices. Note

we also take γ0123456 = 1 and Γ12345 = 1, so this implies γ012ε = ε. With four projection

conditions, we are generically left with two supersymmetries.

Performing the reduction using the ansatz in the text, one finds the following alge-

braic conditions:

2Γ1δχ1 = e2(λ3+λ4)

[
− 1

10
/∂(−3W1 + 2W2 +W3 +W4) +

g7

5

(
3e−W1 − 2e−W2 − e−W3−W4

)
+

1

20

(
3a1e

−W2−W4 + 3a2e
−W2−W3 − 2b1e

−W1−W4 − 2b2e
−W1−W3

)
,

− 1

40g7
(a1b2 + a2b1)e−W1−W2 − i 3g7

10
√

3
(e−W4/c1 + e−W3/c2)

+i
3

20
eW1 /G

1 − i 1

10
eW2 /G

2
]
ε,

2Γ3δχ3 = e2(λ3+λ4)

[
− 1

10
/∂(2W1 − 3W2 +W3 +W4) +

g7

5

(
3e−W2 − 2e−W1 − e−W3−W4

)
+

1

20

(
3b1e

−W1−W4 + 3b2e
−W1−W3 − 2a1e

−W2−W4 − 2a2e
−W2−W3

)
,

− 1

40g7
(a1b2 + a2b1)e−W1−W2 − i 3g7

10
√

3
(e−W4/c1 + e−W3/c2)

+i
3

20
eW2 /G

2 − i 1

10
eW1 /G

1
]
ε, (A.5)
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2γ3δψ3 = e2(λ3+λ4)

[
1

10
/∂(W1 +W2 − 2W3 + 3W4) +

g7

10

(
2e−W1 + 2e−W2 + e−W3−W4

)
+

1

20

(
a2e
−W2−W3 + b2e

−W1−W3 − 4a1e
−W2−W4 − 4b1e

−W1−W4
)

+
i

20
eW1 /G

1
+

i

20
eW2 /G

2 − i 3g7

5
√

3
e−W3/c2 + i

9g7

10
√

3
e−W4/c1

− 1

20g7
(a1b2 + a2b1)e−W1−W2

]
ε,

2γ5δψ5 = e2(λ3+λ4)

[
1

10
/∂(W1 +W2 + 3W3 − 2W4) +

g7

10

(
2e−W1 + 2e−W2 + e−W3−W4

)
+

1

20

(
a1e
−W2−W4 + b1e

−W1−W4 − 4a2e
−W2−W3 − 4b2e

−W1−W3
)

+
i

20
eW1 /G

1
+

i

20
eW2 /G

2 − i 3g7

5
√

3
e−W4/c1 + i

9g7

10
√

3
e−W3/c2

− 1

20g7
(a1b2 + a2b1)e−W1−W2

]
ε.

In deriving these expressions, we have made use of (2.15) and the inverse relations:

λ1 =
1

10
(−3W1 + 2W2 +W3 +W4), λ2 =

1

10
(2W1 − 3W2 +W3 +W4),

λ3 =
1

10
(W1 +W2 − 2W3 + 3W4), λ4 =

1

10
(W1 +W2 + 3W3 − 2W4). (A.6)

We observe that the δχ5 supersymmetry variation offers nothing, since consistency demands

that Γiχi = 0⇒ Γiδχi = 0. Taking various linear combinations, one finds the 3D algebraic

supersymmetry variations:

4e−C−2λ3−2λ4(Γ1δχ1 + γ3δψ3 + γ5δψ5) =

[
/∂W1 +

i

2
eW1 /G

1 − 4∂W1T

]
ξ ⊗ η1 ⊗ η2,

4e−C−2λ3−2λ4(Γ2δχ2 + γ3δψ3 + γ5δψ5) =

[
/∂W2 +

i

2
eW2 /G

2 − 4∂W2T

]
ξ ⊗ η1 ⊗ η2,

4e−C−2λ3−2λ4(−Γ1δχ1 − Γ3χ3 + γ5δψ5) =

[
/∂W3 +

i

2
eW3 /F

1 − 4∂W3T

]
ξ ⊗ η1 ⊗ η2,

4e−C−2λ3−2λ4(−Γ1δχ1 − Γ3χ3 + γ3δψ3) =

[
/∂W4 +

i

2
eW4 /F

2 − 4∂W4T

]
ξ ⊗ η1 ⊗ η2, (A.7)

where we have decomposed the spinor and dualised cI using (2.24). Following a procedure

outlined in [41], we can also extract the following

e−(λ3+λ4)[δψa + 2γa(γ
3δψ3 + γ5δψ5)]

=

[
Da + Tρa +

i

8

2∑
i=1

(
eWiρ bc

a Gibc + eWi+2ρ bc
a F ibc

)]
ξ ⊗ η1 ⊗ η2, (A.8)

where we have defined Da ≡ ∇a − ig72 (B1 +B2)a and C = −(λ3 + λ4).
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[29] C. Núñez, I.Y. Park, M. Schvellinger and T.A. Tran, Supergravity duals of gauge theories

from F (4) gauged supergravity in six-dimensions, JHEP 04 (2001) 025 [hep-th/0103080]

[INSPIRE].
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