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Abstract

The demand for surveillance systems has increased ex-

tremely over recent times. We present a system consisting

of a distributed network of cameras that allows for tracking

and handover of multiple persons in real time. The inter-

camera tracking results are embedded as live textures in an

integrated 3D world model which is available ubiquitously

and can be viewed from arbitrary perspectives independent

of the persons’ movements. We mainly concentrate on our

implementation of embedded camera nodes in the form of

smart cameras and discuss the benefits of such a distrib-

uted surveillance network compared to a host centralized

approach. We also briefly describe our way of hassle free

3D model acquisition to cover the complete system from

setup to operation and finally show some results of both an

indoor and an outdoor system in operation.

1. Introduction

In typical surveillance systems today, the raw live video

stream of a huge number of cameras is displayed on a set of

monitors, so the security personnel can respond to situations

accordingly. For example, in a typical Las Vegas casino, ap-

proximately 1,700 cameras are installed [1]. If you want to

track a suspect on his way, you have to manually follow him

within a certain camera. Additionally, when he leaves one

camera’s view, you have to switch to an appropriate cam-

era manually and put yourself in the new point of view to

keep up tracking. A more intuitive 3D visualization where

the person’s path is integrated from a distributed network of

smart cameras in one consistent world model, independent

of all cameras, is not yet available.

Imagine a distributed, inter-sensor surveillance system

that reflects the world and its events in an integrated 3D

world model which can be visualized ubiquitously within

the network, independent of camera views. This dream in-

cludes a hassle free and automated method for acquiring a

3D model of the environment of interest, an easy plug ’n’

play style of adding new smart camera nodes to the network,

the distributed tracking and person handover itself and the

integration of all cameras’ tracking results in one consistent

model.

In this paper we present a surveillance system to come

a little bit closer to this dream. The system consists of a

virtually arbitrary number of camera nodes, a server node

and a visualization node. Each camera node is realized by

a smart camera or a combination of one or more cameras

and a PC. The former is of course the preferred implemen-

tation that offers various benefits and will thus be described

later in detail, the latter extends the use of our system and

ensures an easier migration from existing camera systems.

A heterogenous network of both kinds of nodes is also pos-

sible. To cover the whole system, our contribution does not

stop from presenting an easy method for 3D model acqui-

sition of both indoor and outdoor scenes as content for the

visualization node by the use of our mobile platform – the

Wägele. Results of both indoor and outdoor setups are pre-

sented in section 3 before we conclude this paper.

1.1. Related Work

1.1.1 Surveillance Systems

The IEEE Signal Processing issue on surveillance [2] sur-

veys the current status of surveillance systems, e.g., Foresti

et al. present “active video based surveillance systems”,

Hampur et al. describe their multiscale tracking system.

On CVPR05, Terry Boult gave an excellent tutorial of sur-

veillance methods [3]. Siebel et. al especially deal with

the problem of multi camera tracking and person handover

within the ADVISOR surveillance system [4]. Trivedi et. al

presented a distributed video array for situation awareness

[5] that also gives a great overview about the current state

of the art of surveillance systems. Yang et. al [6] describe

a camera network for real time people counting in crowds.
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The Sarnoff group presented an interesting system called

“video flashlight” [7] where the output of traditional cam-

eras are used as live texture mapped onto the ground/walls

of a 3D model.

However, the idea of a surveillance system consisting of

a distributed network of smart cameras and a live visual-

ization of tracking results embedded in a 3D model has not

been covered yet.

1.1.2 Smart Cameras

There exists a variety of smart camera architectures de-

signed in academia [8, 9] and industry. What all smart

cameras share is the combination of a sensor, an embed-

ded processing unit and a connection, which is nowadays

often a network unit. The processing means can be roughly

classified in DSPs, general purpose processors, FPGAs and

a combination thereof. The idea of having Linux running

embedded on the smart camera gets more and more com-

mon (Matrix Vision, Basler).

From the other side, the surveillance sector, IP based

cameras are emerging where the primary goal is to transmit

live video streams to the network by self contained camera

units with (often wireless) Ethernet connection and embed-

ded processing that deals with the image acquisition, com-

pression (MJPEG or MPEG4), a webserver and the TCP/IP

stack and offer a plug ’n play solution. Further processing

is typically restricted to, e.g., user definable motion detec-

tion. All the underlying computation resources are normally

hidden from the user.

The border between the two classes gets more and more

fuzzy, as the machine vision originated smart cameras get

(often even GigaBit) Ethernet connection and on the other

hand the IP cameras get more computing power and user

accessability to the processing resources. For example the

ETRAX100LX processors of the Axis IP cameras are fully

accessible and also run Linux.

Our goal is to use a smart camera based surveillance

network. Only very few surveillance systems actually use

smart cameras yet.

1.1.3 Tracking – Particle Filter

Tracking as one key component of our system is based on

particle filters. Particle filters have become a major way of

tracking objects [10, 11]. The IEEE special issue [12] gives

a good overview of the state of the art . Utilized visual cues

include shape [11] and color [13, 14, 15] or a fusion of cues.

2. 3D Surveillance System Architecture

2.1. Architecture Overview

The top level architecture of our distributed surveillance

and visualization system is given in Fig. 1. It consists of

multiple, networking enabled camera nodes, a server node

and a 3D visualization node. Each camera node is imple-

mented either by a smart camera or by a combination of

one or multiple non-smart cameras in combination with a

PC to allow for maximum flexibility. In the following, all

Smart Camera Node

Camera + PC Node

Smart Camera Node

3D Visualization Node

Server Node

3D Surveillance - Architecture

Network

Figure 1. 3D Surveillance System Architecture

components are described on top level, before each of them

is detailed in the following sections.

2.1.1 Smart Camera Nodes

Our work is based on mvBlueLYNX smart cameras from

from Matrix Vision [16] like shown in Fig. 2. The 420CX

Figure 2. A smart camera node of our system

we use contain single CCD sensors with VGA resolution
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(progressive scan, 12 MHz pixel clock) and attached Bayer

color mosaics. Xilinx Spartan-IIE FPGAs (XC2S400E)

are used for low-level processing. 200 MHz Motorola

MPC 8241 PowerPC processors with MMU & FPU run-

ning embedded Linux are utilized for the main computa-

tions. They further comprise 32 MB SDRAM (64 Bit, 100

MHz), 32 MB NOR-FLASH (4 MB Linux system files,

approx. 40 MB compressed user filesystem) and 4 MB

NAND-FLASH (bootloader, kernel, safeboot system, sys-

tem configuration parameters). The smart cameras com-

municate via 100 MBit/s Ethernet connections, which are

used both for field upgradeability and parameterization of

the system and for transmission of the tracking results dur-

ing runtime. See [17, 18] for further details.

2.1.2 PC based Camera Nodes

Besides the preferred realization as smart camera, our sys-

tem also allows for using standard cameras in combination

with a PC to form a camera node. Even multiple stan-

dard cameras can be attached and computed by a single PC.

We implemented a DirectShow interface for the PC based

nodes, so any DirectShow device can be used: industrial

cameras (like the Matrix Vision mvBlueFox), webcams and

also analog cameras attached to a capture card which en-

ables a more hassle free migration from deprecated installa-

tions. We demonstrate the capability for heterogenous sys-

tems in terms of camera nodes in our results section 3.

2.1.3 Server Node

The server node acts as server for all the camera nodes and

concurrently as client for the visualization node. It man-

ages configuration and initialization of all camera nodes,

collects the resulting tracking data and takes care of per-

son handover. Fig. 3 illustrates a screenshot of the server

node.

2.1.4 Visualization Node

The visualization node acts as server, receiving position,

size and texture of each object currently tracked by any

camera from the server node. It embeds the ROI of each

object as a sprite (using the live camera texture) in a ren-

dered 3D point cloud of the environment (see Fig. 4). Both

the visualization node and the server node can run together

on a single PC.

2.2. Smart Camera Node in Detail

The smart camera tracking architecture as one key com-

ponent of our system is illustrated in Fig. 5 and comprises

the following components: a background modeling & auto

init unit, multiple instances of a particle filter based tracking

unit, 2D → 3D conversion units and a network unit.

Figure 3. GUI of the Server Node. Note that the raw camera stream

is only updated for the camera currently selected at an adjustable

interval to save bandwidth.

Figure 4. GUI of the XRT based Visualization Node where a per-

son currently tracked is embedded as live texture at his estimated

position.

2.2.1 Background Modeling – Segmentation – Auto

Init

In contrast to our previous system [17, 18], we take advan-

tage of the fact that each camera is mounted statically. This

enables the use of a background model for segmentation of

moving objects. As we target an embedded implementation,

computation time is very crucial so we developed a high

speed background unit as illustrated in Fig. 6. For every

pixel, the noise process (4) is estimated based on previous

observations and a change threshold is determined via a lin-

ear function. The actual image (1) is compared to an old im-

age (2). If the difference (3) is higher than this threshold, the

counter (5) is reset to zero, otherwise it is increased. Once

the counter reaches a certain level, it triggers the updating of
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Figure 5. Smart Camera Node’s Architecture

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 6. High speed background modeling unit in action. Per

pixel: (1) Raw pixel signal from camera sensor. (2) 10 frames old

raw signal. (3) Difference between (1) & (2). (4) Estimated noise

process based on running average filtered first deviation of raw

pixel data. (5) Confidence counter: Increased if pixel is consistent

with background within a certain tolerance, reset otherwise. (6)

Background model. (7) Trigger event if motion is detected.

the background model (6) at this pixel. Additionally, it is re-

set back to zero for speed purposes (to circumvent adaption

and thus additional memory operations at every frame). For

illustration purposes, the time it takes to update the back-

ground model is set to 50 frames in Fig. 6 (see first rising

edge in (6)). The background is updated every time the con-

fidence counter (5) reaches 50. The fluctuations of (1) up

until t = 540 are not long enough to update the background

model and are hence marked as moving pixels in (7). At

t = 590 the difference (3) kept low for 50 frames sustained,

so the background model is updated (in (6)) and the pixel is

no longer marked as moving (7). The fluctuations towards

the end are then classified as moving pixels. Single pixels

are then eliminated by a 4-neighborhood erosion. From the

resulting mask of movements, areas are constructed via a re-

gion growing algorithm, finally leading to quadratic regions

of interest containing the movement. This unit alone is ca-

pable of running at about 19 fps on the mvBlueLynx 420CX

smart camera using QVGA resolution derived from the raw

Bayer mosaiced VGA sensor data. The background mod-

eling unit thus handles the transformation from raw pixel

level to object level. For each detected object yet untracked,

a new particle filter is dynamically created during runtime

whereas the current appearance is used as target appearance.

This enables the tracking of multiple objects, which is de-

scribed next. The according particle filter is destroyed if the

object is not available any more over a certain time.

2.2.2 Multi Object Tracking – Color based Particle Fil-

ters

For each person/object p a particle filter engine is instanti-

ated. Particle filters have become an attractive way of track-

ing, as they are capable of handling multiple hypotheses

(multimodal pdfs) and nonlinear systems. Fig. 7 illustrates

the operation of a particle filter with 8 particles. Our engine

is based on color histograms in HSV space, see [17, 18]

for details. The state pX
(i)
t of sample i at time t comprises

its position, size and velocity. It is also capable of adapta-

tion of appearance during tracking. In contrast to [17] the

confidence for adaptation comes from the background unit.

On the mvBlueLynx smart camera, we achieve about 17 fps

for the whole tracking pipeline when one object is tracked,

15 fps for two objects. Besides the number of objects, i.e.,

the number of particle filter instances, the frame rate is also

affected by the target size on pixel level. We use a subsam-

pling approach to attenuate this effect.

The tracked approximated pdf p(pXt|Zt) is then re-

duced: only the maximum likelihood sample pX
(i)
t , that

represents the most probable position and scale for each ob-

ject/person p in camera coordinates, is further processed in

the 2D → 3D conversion unit described next.
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Figure 7. Particle filter iteration loop. The size of each sample

pX
(i)
t corresponds to its weight pπ

(i)
t .

2.2.3 2D → 3D Conversion Unit

3D Tracking is implemented by converting the 2D tracking

results in image domain of the camera to a 3D world coordi-

nate system with respect to the (potentially georeferenced)

3D model, which also enables global, inter-camera handling

and handover of objects.

Since both external and internal camera parameters are

known, we can convert 2D pixel coordinates into world co-

ordinate view rays. The view rays of the lower left and right

corner of the object are intersected with the fixed ground

plane. The distance between them determines the width and

the mean determines the position of the object. The height

(e.g., of a person) is calculated by intersecting the view ray

from the top center pixel with the plane perpendicular to the

ground plane that goes through the two intersection points

from the first step. If the object’s region of interest is above

the horizon, the detected position lies behind the camera

and it will be ignored. The extracted data is then sent to the

server along with the texture of the object.

2.3. Server Node in Detail

The server node is illustrated in Fig. 8. It consists of a

camera protocol server, a camera GUI, a person handover

unit and an XRT protocol client.

2.3.1 Camera Protocol Server

The camera server implements a binary protocol for com-

munication with each camera node based on TCP/IP. It

serves as sink for all camera nodes’ tracking result streams,

which consist of the actual tracking position and appear-

ance (texture) of every target per camera node in world co-

ordinates. This information is forwarded both to the person

handover unit and to a log file that allows for debugging

and playback of recorded data. Additionally, raw camera

images can be acquired from any camera node for the cam-

era GUI.

2.3.2 Camera GUI

The camera GUI visualizes all the results of any camera

node: the segmented and tracked objects are overlayed over

the raw sensor image. The update rate can be manually ad-

justed to save bandwidth. Additionally, the camera GUI

supports easy calibration relative to the model by blend-

ing the rendered image of a virtual camera over the current

live image as basis for optimal calibration, as illustrated in

Fig. 9.

Figure 9. Camera GUI. Different blending levels are shown: Left:

Real raw sensor image. Right: Rendered scene from same view-

point.

2.3.3 Person Handover Unit

To achieve a seamless inter-camera tracking decoupled

from each respective sensor node, the person handover unit

merges objects tracked by different camera nodes if certain

conditions are met. As results are already in world coor-

dinates, they can be compared directly. After a new object

has been detected by a camera node, its tracking position is

compared to all other objects that are already being tracked.

If an object at a similar position is found, it is considered

the same object and statically linked to it using its global id.

2.3.4 XRT Protocol Client

The XRT client unit implements a TCP/IP based protocol

to communicate the final objects tracked to the XRT visual-

ization node.

2.4. Visualization Node in Detail

A practical 3D surveillance system also comprises an

easy way of acquiring 3D models of the respective environ-

ment. Hence, we briefly present our 3D model acquisition

system that provides the content for the visualization node

which is described afterwards.

2.4.1 3D Model Acquisition for 3D Visualization

The basis for 3D model acquisition is our mobile platform

which we call the Wägele1 [19]. It allows for an easy ac-

1Wägele – Swabian for a little cart
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quisition of indoor and outdoor scenes: 3D models are ac-

quired just by moving the platform through the scene to be

captured. Thereby, geometry is acquired continuously and

color images are taken in regular intervals. Our platform

(see Fig. 10) comprises an 8 MegaPixel omnidirectional

camera (C1 in Fig. 10) in conjunction with three laser scan-

ners (L1-L3 in Fig. 10) and an attitude heading sensor (A1

in Fig. 10). Two flows are implemented to yield 3D models:

a computer vision flow based on graph cut stereo and a laser

scanner based modeling flow. After a recording session the

collected data is assembled to create a consistent 3D model

in an automated offline processing step. First a 2D map of

the scene is built and all scans of the localization scanner

(and the attitude heading sensor) are matched to this map.

This is accomplished by probabilistic scan matching using

a generative model. After this step the position and orien-

tation of the Wägele is known for each time step. This data

is then fed into the graph cut stereo pipeline and the laser

scanner pipeline. The stereo pipeline computes dense depth

maps using pairs of panoramic images taken from different

positions. In contrast to classical multi camera based scene

capturing techniques we require only one camera and sam-

ple the environment, which is much more inexpensive and

is not limited in the size of the environment. The laser flow

projects the data from laser scanners L2 and L3 into space

using the results of the localization step. L2 and L3 to-

gether provide a full 360◦ vertical slice of the environment.

The camera C1, then, yields the texture for the 3D models.

More details can be found in [19, 20].

2.4.2 3D Visualization Framework – XRT

The visualization node gets its data from the server node

and renders the information (all objects currently tracked)

embedded in the 3D model. It is based on the eXperimental

Rendering Toolkit (XRT) developed by Michael Wand et.al

at our institute which is a modular framework for real time

point based rendering. The viewpoint can be chosen arbi-

Figure 10. Two setups of our mobile platform. Left: Two Laser

scanners L1, L2 and one omnidirectional camera. Center &

Right: Three laser scanners L1, L2, L3 and omnidirectional cam-

era closely mounted together.

trarily. Also a fly-by mode is available that moves the view-

point with a tracked person/object. Objects are displayed as

sprites using live textures. Resulting renderings are shown

in the following section.

3. Results

Two setups have been evaluated, an indoor setup in

an office environment and an outdoor setup (see Fig. 11),

more details and videos can be found on the project’s web-

site [21]. First, a 3D model of each environment has been

acquired. Afterwards, the camera network has been set up

and calibrated relative to the model. To circumvent strong

reflections on the floor in the indoor setup, halogen lamps

are used with similar directions as the camera viewpoints.

Some indoor results are illustrated in Fig. 12. Fig. 13 shows

results of the outdoor setup. Even under strong gusts where

the trees were heavily moving, our per pixel noise process

estimator enabled robust tracking by spatially adapting to

the respective background movements.

4. Conclusion

Our approach of such a distributed network of smart

cameras offers various benefits. In contrast to a host cen-

tralized approach, the possible number of cameras can eas-
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(1) (2) (3)

Figure 11. (1) Indoor Setup. Note the smart camera on the tripod, halogen illumination and a webcam on top of a light. (2, 3) Outdoor

setup.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 12. Indoor Setup. Renderings of the XRT Visualization Node. Left column: Output of the server node (Camera GUI): raw image

of the camera node, overlayed with the target object on which a particle filter is running. (1),(4): Smart Camera, (7): webcam. Center

Column: Rendering of embedded live texture in XRT visualization system. Right Column: Same as center, but with alpha map enabled:

only segmented areas are overlayed for increased realism.

ily exceed hundreds. Neither the computation power of a

host nor the physical cable length (e.g., like with Camera-

Link) is a limiting factor. As the whole tracking is em-

bedded inside each smart camera node, only very limited

bandwidth is necessary which makes the use of Ethernet

possible. Additionally, the possibility to combine standard

cameras and PCs to form local camera nodes extends the

use of PC based surveillance over larger areas where no

smart cameras are available yet. Our 3D visualization of

tracking results enables a more intuitive and inter-camera

visualization of tracked persons. Research in this direction

is also important as security personnel have to concentrate
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(1)

(2)

(3) (4) (5)

(6) (7) (8)

(9) (10) (11)

Figure 13. Outdoor setup (1,8): Renderings of the acquired model in XRT visualization system. (2): Dewarped example of an omnidi-

rectional image of the model acquisition platform. (3), (6) Live view of camera nodes with overlayed targets currently tracking. (4,5)

Rendering of resulting person of (3) in XRT visualization system from two viewpoints. (9-11) More live renderings in XRT.

for hours on the raw surveillance footage. Our system is

capable of tracking multiple persons in real time. The inter-

camera tracking results are embedded as live textures in

a consistent and geo referenced 3D world model acquired

by a mobile platform. This enables the intuitive 3D visu-

alization of tracking results decoupled from sensor views.

Future research includes person identification using RFID

tags, long term experiments and the acquisition of enhanced

3D models.
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