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Abstract

Tomographic reconstruction of a 3D object in
terms of spherical harmonics from a small number of 2D
data sets is shown to be possible in cases of objects
of high symmetry and/or low shape anisotropy. A
test case using an object of cubic symmetry shows that
the reconstruction can work well in such high symmetry
cases when only two or three data directions are
available. Numerical tests suggest that recon-
structions are best done from data taken in low
symmetry directions.

Introduction

In many fields the data obtained in "imaging" an
object consists of a two dimensional (2D) array of
points, each of which can be represented by an inte-
gral over some type of density associated with the
object along a straight line through the object. The
2D arrays can be thought of as projections of the
three dimensional (3D) density. In most cases what is
desired is knowledge of the 3D density or object it-
self. The process of reconstructing the 3D density or
object from the projections, usually called computer
assisted tomography, is therefore, of great interest
to many in these fields since it is qenerally the only
way to get full 3D information about the object. In

some fields such as electrom microscopy 6 and

positron annihilation7'8 the problem is made more
difficult since it is often experimentally impossible
to get more than a few projections of the object.
Often, this difficulty is ameliorated by the existence
of symmetry in the object, usually in the form of some
point group consisting of rotations, inversions, and
reflections.

This paper addresses the tomography problem under
these latter conditions, although the technique pre-
sented here can be used in any tomographic situation.
The density or object is represented by the scalar

function p(p) which maps the point pc IR (the space of
1

the object) to a value p(p) in JR . In this paper,
points in the space containing the object will be
represented by p's and in the Fourier space will be
represented by r's. The Fourier transform of the

object p(p) will be written as a (r). This notation
is a derivative of that used in positron annihilation
where p(p) is the momentum density of the electrons in

the object,9 the measurements are made in momentum
space p and the Fourier space is (by quantum mechanics)
position space (r). But the notation here is consis-
tent in such a way that any 3D tomographic problem can

be reformulated in terms of it.

The data must be represented as an integral over

p(p) along a line. It must remembered that the object
will, in general, be rotated with respect to the
laboratory frame of reference and this must be taken
into account in the formulation of the problem. If R
is the rotation matrix from the frame of the object
to the lab frame and if p = ( ,n,) is a point in the
frame of the object then Rp= (p I P I P ) is the pointi x y z
in the lab frame. Similarly, the function p(p) can

be represented in the lab frame by using an operator R
which transforms scalar functions from the object
frame to the lab frame. Thus, in the lab frame Rp is
the function representing the density or object.
Since p(p) is a scalar function Rp(Rp) = p(p). Now
choose the rotation so that the line of integration
representing the projection taking place in the
experiment is along the z-axis in the lab frame. Then
the equation for the data becomes

data at point R
rottiy) with nR(pXpy) = dpzRp(Rp) (2D case) (1))
rotation RIc

where the data nR(px'py) is labeled with R as the

superscript to indicate, in a unique way, the orienta-
tion of the object when the data was taken. Another
common case, given here for completeness, is that in
which the measurement produces a projection which can
be represented by a double integral over the object
P(P):

data for the R 'd
point pz with = n (p )=ff dpXdp Rp(Rp) (10 case) (2)

the rotation RI
where, here, R is the rotation which transforms the
normal to the plane of integration in object frame to
the z-axis in the lab frame. This is the familiar form
of the 3D Radon transform.

There are several approaches to reconstructing
objects from their integrals or projections. 10-12 One

is to use back projection either in position space or

fourier space. Another is to use purely numerical
methods and reconstruct by some optimization procedure
(often called algebraic reconstruction). A third
method is to use an expansion of the object in known

functions and solve for the coefficients in the

expansion. I show below that the third method can

be accomplished in 2D case (Eq. 1) using spherical
harmonics and is feasible when the reconstructed
object is known to have high symmetry and/or its

anisotropies are small and "band limited" in angular
variation, which are often the case in electron
microscopy and positron annihilation.

The first reconstruction method using spherical
harmonics was by P.E. Mijnarends13 who solved the
problem for the 1D case totally in momentum space.
Later a Fourier or position space version of Mij-

narends' method was developed by N.K. Hansen. 14 A

somewhat different position space approach was also

developed by Muller.15 The first solution for the 2D

case in momentum space was given by C.K. Majumdar, 6

who, in an elegant analysis, revealed many of the
properties of the 2D case and first suggested that

many terms in the spherical harmonic series could be
obtained from only a few data projections. Another
early solution for 2D case in terms of spherical
harmonics was given by M.R. Howells and P.E. Osmon17
who also presented their solution totally in momentum
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space. Although Osmon and Howells took a somewhat
different approach than Majumdar, they also came to
the same conclusion that 2D data allows the determi-
nation of more terms in the series expansion than
there are data projections available.

Other series expansion reconstruction techniques
exist 16-18 which could be adapted to 3D reconstruction,but which would restrict the data directions to be inthe same plane. Additionally, other reconstructiontechniques have been applied to the positron 2D
annihilation data.19,20 The results have been quitegood, but several directions (5 or more) are requiredto produce an adequately reconstructed p(p).

The method in the present paper is the Fourier or
position space version of Majumdar's 2D technique. As
such it completes the set of available reconstruction
techniques using spherical harmonics as shown in the
table below:

Table 1

1D case 2D case

Momentum space
sol ution

Position space
solution

Mi jnarends
(ref. 13)

Hansen
(ref. 14)

Majumdar
(ref . 16)

Present Work

In applying this technique to a model in this
paper and to real data taken on a Vanadium single
crystal,21 I find that the conjecture by Majumdarand Osmon and Howells is correct: one can obtain
more terms in the series expansion of spherical
harmonics than there are data projections. This is
not the case with the 1D projections. As will be seen
below, the 2D case allows a very different treatment
of the data.

Solution of the Problem

The solution of the 2D reconstruction problem in
momentum space leads to exceedingly complex analytical
equations16,17 which make numerical evaluation dif-ficult, if not intractable. This is probably why no
reconstructions have yet been done using either
Majumdar's16 or Howells and Osmon's17 methods. Itturns out the solution of the problem in Fourier or
position space is far simpler.

First, assume that p(p) can be expanded in
spherical harmonics22

P(P) = I Pzm(P) Yzm(gpI 0p) (3)
where, P= 1| and YZm are sherical harmonics. The
exponential elP r can also be expanded in sphericalharmon i cs,

el =r 4wT I i jQ (pr)Y2m (,0 ) Y*km(,s0p) (4)

where 9 and 0 are the polar angles of the vector pp p
and 9 and 0 are the polar angles of the vector r.Then, it is easy to show that if a (r) is the Fouriertransform of p(p), it follows:

C(r) = I Cm(r) Ym(9,0)

where, r=IrIanf and a (r) and p (p) are related by theusual Hankel transW8~m, Pm

Pm(P) 2 0 jQ (pr) cQ m(r) r2 dr. (6)

Expression (6) allows one to use spherical har-
monics as the basis in position space also and,
therefore, do all the numerical work on the Fourier
transforms of the data rather than on the data itself.

The problem now is to determine am(r) from the
data. This can be done by using the approach of
Majumdar16 as follows. Take the Fourier transform of
the data,

GR(x,y) = ff dp dp nR(pXp ) ei (px+pyy) (7)
x y xy , 7

here R also uniquely labels the Fourier transform.

By the Central Slice Theorem aR(x,y) is equal to
a(r) on a plane in position space which passes throughthe origin and is oriented such that its normal is
just the ; axis rotated by the rotation R. This
is, of course, the z axis in the rotated system. Sothat from the various data projections information
about a(r) is obtained on several planes in position
space.

Now, as was the case for p(p), a (r) can bewritten in the lab frame by using the rotation R andthe associated function transformation R. The Fouriertransform in the lab frame is R a. The fact that a is
a scalar like p leads to the expansion of (r) in
terms of spherical harmonics in the lab frame22 which
are represented by primed angle variables,

a (r ) = Rcy(RrF)

a
a

m(r) Dmom(R) Y m (90' )

In Eq. (8) Dom(R) are the expansion coefficients
which depend on the Euler angles of the rotation22-24and Ykm,(@',0') are the spherical harmonics in the lab
frame. Since the information a R(x,y) is in the x-yplane, set z=O, i.e. 9'=900. Then write the sphericalharmonics in terms of the associated Legendre polynom-
ials and an exponential: Ym5(m0')= P ,(O)eim 0.
Here I use the definitions of Altman and Bradley for
the spherical harmonics with FQm being a normalized
associated Legendre polynomial. With these substitu-
tions Eq. (8) becomes

R
a (x,y) =

I CT (r) D mm(R) PQml (0) eim 0
2mmI

km

All the quantities in Eq. (9), except, of course,
a2m(r), are known or can be calculated. This means
Eq. (9) can be used as a linear system to solve forakm(r). However, it is better to do one more step
which is quite natural because of the exponentialnature of the right-hand-side of Eq. (9): take thepolar Fourier transform of Eq. (9) with respect to

a R(r) =- 1 2wr -ii0' R(5) 3 ~ 2-i:0f dO' e- a (x,y) =

(10)
lmaZ (r) Djm(R) PQj (O)

(8)

(9)
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where r= (x2+y2)112 and 0' = arctan(x/y). For the
ske of clarity and later exposition let H. (R) =

Dj,m(R)Pkj(O). Then Eq. (10) becomes j,Zm

OR(r) = E H. (R)a (r) (11)
i Zm j,zm k m

The 0' polar transform is possible because of
the 2D nature of the data (and therefore, it's Fourier
transform). It is this feature which allows one to
generate many independent equations ina Zm(r) for

each rotation R. This allows for the solution of
akm(r) to relatively high orders of z . This is

precisely the conjecture of Majumdar. 16 The only
question left is the stability or well-posed nature of

the system.23 This system turns out to be quite
stable when one "inverts" Eq. (11) using a least
squares approach. The technical reason for this is
given in Appendix 1. Here I write the equations for
reference in the next section where the tecpnique is
applied. Remarks on the calculation of Dm'm' Zkm
and P (0) are given in Appendix 2.

Let G=HTH, where H is the matrix in Eq. (11).
Then, in more detail

GQm, Q'm'
=

E Hj zm(R) Hj,kimn (R). (12)
Rj I

In symbolic form the solution is (a (r))=G HT(CYR(r)).km
Note that H and G are independent of r and only need
to be calculated once in each reconstruction. After
solving for aQm(r) numerical integration using Eq. (6)

will yield p m(p).
In general the use of any reconstruction scheme

employing spherical harmonics is limited by the
assumption that the object to be reconstructed is
"band" limited in angular variation. That is, there
is some value of the spherical harmonic index, say
Z max above which the p m(p) are either zero or small

enough not to affect the quality of the reconstruction.
As will be seen in the next section, it is possible in
many realistic situations to invert the matrix G
for Qa = 40. For applications in solid state

max
nua

physics and, perhaps, other fields, this angular
resolution will be superior to the resolution obtain-
able in the experiments which measure the projections

nR. At any rate, it is always possible with 2D data
to test for the value of Qmax by calculating the

polar Fourier coefficients of the data n (Px,py) and

determining the highest frequency which is still

above the noise level.16

A distinct advantage to the spherical harmonics
approach is that it is straight-forward to take into
account the point group symmetry of the object p(p) .

The point group is the set (group, in the mathematical
sense) of rotations, reflections, and inversions of
the object about or through a point in the object
space (p) which leave the object unchanged. For
example, an object with hexagonal symmetry is unchanged
by rotations of 600 about the axi s normal to the
hexagonal symmetry plane. One can define new harmonics
which are symmetrized linear combinations of the

spherical harmonics.25 Thus, the expansion of p(p)
becomes

P(P) = 1 Pk (P) Fk (Op90p) (13)
k

wh ere Fk (p 0p) ZmE k, mYm (p'P) -

The coefficients Ak,km are chosen so as to keep Fk

i nvari ant under the operati ons of the symmetry poi nt
group (see Appendix 3 for more remarks on Fk). This

eliminates any Yzm(op,op) 's which do not have the

proper symmetry. One then expands p(p) up to some
kmax' This often "compresses" the problem by reducing
the dimension of the matrix G while retaining a large
Z
max value. In terms of these new harmonics the

appropriate equations are

a (r) = I H. k(R)a k(r),
k j k k (14)

with Hj k (R) = I mAk mD9m (R)PWj (0), and

.Q

Pk (P) 22ir
7 j (pr) ak(r) r2dr

0
(15)

where £ depends on k. All the other equations for the
solution follow in the same way.

Model Reconstruction

A model with cubic symmetry was chosen to test
the 2D spherical harmonic reconstruction scheme. This
consisted of a set of spheres with the following
positions and weights or densities: a sphere of
weight 1.0 centered at the center of a cube 18 units
on a side, 6 spheres of weight 0.4 centered at 12
units from the cube center on either side of the
origin along the (LTr,p) axes, and 8 spheres of
weight 0.2 centered at the corners of the cube. The
spheres are al l 4 units in radius. The density is
zero between the spheres. Figure 1 shows the model.

Fig. 1 Model used to test reconstruction scheme.
Density of object is non-zero inside spheres
(with weights as shown) and zero elsewhere.
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Data was generated to produce two 2D projections:
1) z-axis (integration axis) oriented by the Euler
angles a=30°, 3=15°, andy=00, and 2) z-axis oriented
by a=10°, 0=40', and Y=00. The data arrays were from
-24 units to +24 units in the x and y directions with

2grid or bin size equal to 0.25x0.25 units . This is
equivalent to the type of data generated in a positron
annihilation experiment. In the case of cubic symmetry
the appropriate harmonics are cubic harmonics.25
These were used to obtain the reconstruction of
the model density employing the approach described
above with a weight factor assigned as in Appendix I.

In this case it was found that truncation up to
kmax=40 still lead to an invertible G matrix. However,
because of the discontinuous nature of the density
function of the model, the direct solutions tended to
have wild oscillations near the boundaries of the
spheres. In order to control this phenomena and to
model a more realistic case, the solution was smoothed
by multiplying the position (Fourier) space data
arrays by a gaussian of FWHM=0.4 units. In this
smoothed case, terms above k=25 made negligible
contribution to the solution so that the solution
presented here is nominally for kmax=25. This cor-

max~ ~ ~ ~~aresponds to Qmax=30 or an angular resolution of 'X6°.
The radial plots of the solution and the model

are shown in Fig. 2. Surface plots of the solution
and model are shown in Figs. 3, 4, and 5. The results
can be seen to be quite good. Figure 6 shows a
contour plot of Fig. 5. It shows that the outerlying
spheres are well produced with little or no distortion
in the shape of their surfaces.

Error Propagation

How does the propagation of errors look for each
particular reconstruction? This, in principle, can be
calculated directly since the reconstruction process
is linear.

Let B(Zm,Rp py) represent the total operator used
in the calculation of p (p) from data n (Px,p ):km~~~~xy

(p) = B(Qm,Rpxpy)nR(p xpy)l (16)
where sums and integrals over the appropriate variables
are implicit. Then the square of the standard deviation
induced in the solution Ap 2(p) by errors in the
data represented by the square of the standard devi-
ation of the data (AnR(px,p )2) is easily shown to be

AP2(P) =

I B(Zm,Rpx p ) B(ZQm', Rpx p ) Y (9p0 ) x
km im' x y x y zm p'

Y',m9( 0p) (AnR (Pxlp ) (17)

The calculation of B(Zm,Rpx,py) for the reconstruction
is itself a formidable task. The calculations in
Eq. (17) are thereby immensely difficult as they
effectively involve the square of the operator and
hence a large number of numerical operations.

Some preliminary results which involve using one
gaussian to represent the error AnR in a positron
annihilation experiment and examining only the R =0
terms of p m(P) suggest that for the case of the
model presented here and for the case of the applica-
tion of this method to Vanadium data with 4 projec-

p
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Fig. 2 Radial plots along cartesian axes (100), from
origin to center of cube edge (110), and from
origin to cube corner (111) of model and
reconstruction of model from two projections.

tions14 the technique yields rather isotropic errors
in the reconstruction which are of the order of a few
percent when the data errors are of the order of 1%.
The exception to this is near the origin where all
reconstruction schemes have difficulty. There the
error is of the order of 20%, but falls off rapidly to
a few percent within 1 or 2 units radial distance from
the origin.

Another approach to studying the propagation of
errors which avoids the above analysis is a Monte
Carlo method. That is, one generates errors in the
data using a random number generator. The errors are
distributed in a log-normal fashion at each point.The mean is taken to be zero and the standard deviation
is the square-root of the number of counts in the the
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Reconstruction

Model

Reconstruction

Fig. 3 Surface plot of model and reconstruction in an
x-y plane.

projection as in the usual statistics of image projec-
tions. Since the reconstruction operation is linear,
one need only reconstruct an "object" from the error
data arrays. Doing this for several different error
data arrays a picture emerges of the expected error in
the reconstruction.

This Monte Carlo procedure was done for the
reconstruction of the Model in the previous section
assuming 50,000 counts at the origin in the projec-
tions. It confirmed the preliminary results obtained
in the direct analysis of error propagation: the
errors were isotropically distributed in size and fell
off rapidly in magnitude as a function of radial
distance from the origin. Figure 7 shows an average
of 4 Monte Carlo error reconstructions. The figure
displays the standard deviation of the error in the
reconstruction as a function of radial distance. The
units are the same as Fig. 2 and allow a direct
comparison. The angular isotropy of the reconstruc-
tion error presumably results from the high symmetry
of the situation and the choice of the orientation of
the data projections (see remarks in the Conclusions).

Conclusions and Remarks

The above model test and other tests done show
that the reconstruction of 30 objects from 2D data can
be accomplished using spherical harmonics and is
especially applicable to cases of high symmetry
and/or low object anisotropy. One particularly
interesting finding was that the invertibility of the
G matrix which is so crucial to the solution of the

Fig. 4 Surface plot of model and reconstruction in an
x-y plane rotated 45 degrees about the original
y axis.

problem can be done for large Qmax values if the

original 20 data is taken in planes of lowest symmetry
rather than in high symmetry planes. This is apparent
in the Table 2 below in which for a cubic system, the
Euler angles of z-axis are given along with the
largest kmax and Qmax value for which the G matrix
can be inverted on a 32 bit computer using double
precision arithmetic.

Table 2

Number of z-axi s kmax
data sets a 13

1 (high symmetry) 0 0 0 1 0

1 (low symmetry) 71 33 0 10 16

2 (high symmetry) 0 0 0
0 45 0 5 10

2 (low symmetry) 71 33 0
54 43 0 30 32

Thus, in an experiment the data should be taken
in planes of lowest symmetry. However, this is not
typically the way positron annihilation data is taken
(see Refs. 7 and 8). Although visual inspection of
the 2D data is easiest in a high symmetry plane,

max
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Fig. 6 A contour plot of Figure 5.

Reconstruction
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Fig. 5 Surface plot of model and reconstruction in a
plane parallel to the x-y plane, but displaced
by 6 units to coincide with the top of the
cube in Figure 2.
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if the experimenter is looking toward reconstruction,
he will have to break with tradition to obtain the
best results.

Table 2 implies that the stability of the inver-
sion of the G matrix is highly dependent on the

Rorientation of the projections n . However, the true
calculation of the induced errors remains to be
done.

Therefore, with judicious choices of projections,
the technique remains a good option in situations with
appropriate symmetry and in which a large number of
data projections cannot be obtained.

0.0
C 10 20

Fig. 7 The average statistical error in the recon-

struction of the model from two projections
using four sets of randomly generated error

arrays. Ordinate units are the same as Figure
2.

Model
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Absolute Statistical Error
in Reconstruction

| (assuming 50,000 counts
at origin in data)
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Appendix 1

In the reconstruction of p(p) it is necessary to

invert the matrix G=HTH. The reason this matrix can
be inverted for large dimensions (30 - 40) is the
following. G comes about because of a least squares
solution to the linear equations in a(r). This least
squares solution can be done with a weighting factor
on each projection, i.e. for each R. The factor used
here is the "natural" one of sin(O)i)AAa, where a,B are
the first two Euler angles and ha and AO3 are rough
measures of the average angles between projections, R.
This gives for G

Gm, zDi'm' - Dk*(R) DJ.m(R) PQ j(O02.j(0) x
jR j

sin(13) A3 Aa. (Al)

As the number of projections increases and they
are roughly uniformly distributed over the unit
sphere, the product of the D t (R) matrices and themim
solid angle sin(13) AO Aa approaches the integral

F da dO3 sin(G) D.jm ((R)Djm(R) which is equal to22
03 jmO diamn161 m'm 3', Z/(2k+1). G becomes nearly diagonal which

helps to stabilize the inversion process. In the case
of high symmetry objects the number of projections is
effectively increased by the symmetry and they are
generally spread evenly over the unit sphere. There-
fore the method converges in the appropriate limit and
is quite stable in many applications in which objects
with high symmetry are being reconstructed.

Appendix 2

In the reconstruction using spherical harmonics
it is often necessary to calculate quantities up to
large A values. This has also been noted by Heuser-

Hofmann and Weyrich. 26 Here I give several recursion
relations for doing this. These have been tested to
at least Q=50 and appear to be quite stable. The
qpantities of interest are FP m(9 0) FP m(O), and

Dmi (R). m2m

A relatively stable recursion relation for the
numerical calculation of (unnormalized) Legendre

polynomial s s27 Pn+1(x) =

2xPn(x) Pn-l(x)-[xPn(x)-Pn-1l(x)]/(n+l). This is

easily generalized to (unnormalized) associated
Legendre polynomials,

P9+i m(x) = 2xP9m(x)-P m 1(X)-

[(1-2m)xPkm(x)+(2m-l)PQk1 m(x)]/(Z-M+l). (A2-1)

To use normalized associated Legendre polynor
P =N P where Nz m is the normalization consk.m 2.m km m
simply substitute for Pg,m in Eq. (A2-1) to ol

QZ+1 m(X)=2xR (x)-S 2JPZ1 m(x) -

[ (1-2m)xR-iWlPpm(x)+(2m-l)SQmPk_1 m(x) ]/ (Z-m+l)

mi als
;tant,

btai n

where

R2N mNQm - (2 z-}3), z-m+l 11/2
2.+1 2.Zm 2.2Z+7-,+M+1

(A2-3)

S2.=N N1 m
(2+ 3) (-m+1)(k-m)l

2m.+1 m ( 1)_ (z+m+1) 9.+-m

It is simple to set up recurrence relations for R km

and S m. They need be calculated only once. The
recurrence relation for the associated Ledendre

polynomials is increasing in so that Rkm and S2m

approach 1 as the recurrence progresses. The recur-

rence appears-to be quite stable. It has been tested

using double precision arithmetic up to Q=100.

The calculation of Pkm(0) is done by utilizing

the following formulas. P 2mO)=O if 2-m is odd,

otherwise PTm(°)= [ (2 Q+1)v m/2r]2 where v Q+lm+l

(Z+m+l)/vkm/(2.+m+2) and if m=O divide by another factor

of 2. The starting point for v m s is voo
v Z+2 O= vZO(Z+l) (Q+2 )

The calculation of Dp2, (R) can be done following
m m

the approach of Wigner28 as outlined by Edwards22

and Altman and Bradley. 23'24 Note that23 D2I (R)=
im 'Y

e dm m(13)elm. So that rotations about the z-axis

only contribute exponential factors. Wigner's "trick"
is to rotate to a new frame so that the y-axis rotation
3 is about the new z-axis. This is accomplished by a

rotation of fr/2 about z and a rotation of ir/2 about
the new y-axis. A rotation of f about the new z-axis
then accomplishes the old y rotation. One, then
returns to the old axes by a rotation of -fr/2 about
the newest y axis and a rotation of -1r/2 about the new

z-axis. This produces the equation22

dm (A2-4)

I ei m7r/2d Q im"Q2 )eWOdIO -f )- im 1r/2
m Oki m m m m2

The problem now only remains to calculate

d gQm(7r/2) as d tQjm(-7r/2) is simply related to it. 23,24

Following Altman and Bradley 3, for fixed Q value
and 3=7r/2 first calculate d4 =1/2 2. Then obtain d2' 's

from d.M 1=d m[(Q+M)/(Z-M+1) I Finally, one does

downward recursion on the other lower index using

dQ (m'-m) dQId=-1 m +m m'm

(A2-5)

[(Q +m (2Q+m+l) d2 1
[(2-ml+1) (2 -M+1) (2+M') m'

The programs to calculate these quantities have
been checked against Altman and Bradley's tables of

(A2?2) d2, (nr/2)23 up to 9. =20, by checking the position
of zeros in the arrays of values up to Q=502
and (most importantly) up to Q=50 by calculating
R
a(r) values from chosen ai2m(r) values and then using

G 1 to recover the a2m(r) Is



Appendix 3

The subject of symmetrized combinations of
spherical harmonics is a large one in itself and here
I only intend to make a few remarks to introduce the
reader to the idea. A mathematical development
is given in Ref. 25.

If p(p) is invariant under the operations of some
point group (which are rotations, reflections, and/or
inversions) it is more efficient to expand p(p) only
in those spherical harmonics or linear cornbinations of
those which are also invariant under the operations of
the group. This is the higher dimensional analog of,
for example, using only cosine functions in a Fourier
series expansion of an even function. In the text
these symmetrized harmonics are written as Fk, where
k merely enumerates the harmonics. For example, if an
object p(p) has hexagonal symmetry about some axis
(taken as the z-axis here), then only those spherical
harmonics Ykm for which m is a multiple- of 6 can
contribute to the expansion of p(p). In addition, hex-
agonal symmetry implies invariance under reflections
through planes which contain the symmetry axis and are
600 apart. There are 2 sets of these, with 6 in each
set. This means that only even harmonics can contrib-
ute to the p(p) expansion. This requires the (normal-
ized) harmonics in the expansion of p(p) to be the
form Fk = (YQ + Y* )/2, where m = 6n (n = 0, 1, 2,.).
So, by writing P(P) = Sk Pk(P)Fk(Q,0) terms of the
improper symmetry are eliminated at the outset and the
dimension of the matrix to be inverted is correspondly
reduced for fixed Z.

For objects with only one axis of n-fold symmetry
(n>2) the above simple construction of Fk works well.
For objects with more than one such axis the problem
of finding Fk is more difficult and cannot be done in
so straightforward a fashion. This latter case occurs,
for example, in objects with tetrahedral, cubic, and
icosahedral symmetry. For cubic symmetry a good
reference which leads the reader through the elimina-
tion and combination of YZm is Mueller, et al.30
The associated cubic harmonics have been computed3'
up to z=60. I have these in a computer file and will
make them available to anyone needing them. Although
icosahedral symmetry is common in certain electron
microscopy applications,1-6 I know of no calculation
of the associated icosahedral harmonics for this case.
Apparently this remains to be done.
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