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Abstract

We consider the problem of obtaining the 3D trajectory of a ball from a se-
quence of images taken with a camera which is possibly rotating and zooming
(but not translating). Techniques are developed to compute the component of
image motion of the ball due to camera rotation and zoom, using optic flow.
The 3D location of the ball in each frame of the sequence is then determined
using a novel geometric construction which makes use of shadows on the
known ground plane in order to compute the vertical projection of the ball
onto the ground, and the height of the ball above the ground.

1 Introduction

In the absence of any other constraints, the image projections of world points in a single
view of a scene are insufficient to compute a 3D reconstruction of the scene. The most
obvious way to obtain 3D structure is therefore to consider multiple views separated spa-
tially (and possibly temporally). An alternative to using multiple viewpoints is to enforce
physical and geometric constraints about the scene; for example, a particular illumination
model, planarity, parallelism or symmetry.

In this paper we make use of shadows in order to compute 3D structure from a single
viewpoint. We apply this to the problem of computing the 3D trajectory of a football from
broadcast images of a game. The image location of a ball is tracked automatically using
cross-correlation and a constant image velocity Kalman Filter, and a 3D reconstruction
obtained using the locations of the ball’s shadow, a (vertical) reference object and the
known structure of the football pitch markings.

Our work is most closely related to [7] who computed 3D structure for bilaterally sym-
metric objects; they noted that a single view of a bilaterally symmetric object is equivalent
to two views of half the object. In this paper we show that in some circumstances a point
light source can be considered to be equivalent to a second view. We provide a construc-
tive proof of how to determine the projection (in an arbitrary direction) of a point onto a
distinguished plane, given the point’s image location and the image location of its shadow
from a point light source at infinity (e.g. the sun).

The other work most closely related is that of [2] who also analysed ball trajectories in
football games, however we improve on their work in two main ways: (i) we compute the
height of the ball using an elegant construction devised by [1] which is much cleaner than
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the method proposed in [2]; and (ii) by using shadows we ultimately require much weaker
assumptions about the physical motion model of the ball. [2] assumes the ball moves in a
parabolic trajectory in a vertical plane, which is clearly false in many situations.

We are concerned in the present work with reconstructing the trajectory of the ball
over a sequence of images taken with camera which rotates and zooms but does not trans-
late. Since the camera is fixed, there is no baseline over which to triangulate so 3D recon-
struction from a single view is essential. However the rotation of the camera, and changes
in its intrinsic parameters, introduce an additional complication that the image motion of
the ball consists of two parts: (i) the physical motion of the ball; (ii) that induced by the
camera. We deal with this by observing the overall motion of the static parts of the scene
induced by the camera and subtracting this component from the ball’s image motion. To
compute the image motion we introduce a new algorithm based on some tried and tested
optic flow techniques from the literature.

In summary, we make the following contributions:

� We derive the equations which describe the image velocity field induced by a cam-
era which rotates and zooms (section 2.1);

� We describe and implement an algorithm to compute the velocity field directly from
spatial and temporal gradients (section 2.2);

� We devise a geometric construction to compute the projection (in an arbitrary di-
rection) of a 3D point into a distinguished plane using the image locations of the
point and its shadow in a single view (section 3.1);

� We determine a full 3D reconstruction of the point using this construction and one
devised by [1] (section 3.2);

� We present an implementation of all our ideas with application to trajectory analysis
of a moving football. Our implementation automatically tracks the image trajectory
of the ball, and then a semi-automatic procedure (reference heights and shadows are
picked manually) computes the 3D reconstruction of the trajectory (section 4).

In the remainder of the paper we adopt the following notation. Scalars are denoted by
normal math-script Roman and Greek letters (e.g.�; x;X). World locations are denoted
by bold upper case letters, e.g.X. Where required, these are assumed to be homogeneous
4-vectors whose components areX = [X Y Z W ]>. Image locations are denoted either
by homogeneous 3-vectorsx = [x y w]

> or by inhomogeneous 2-vectorsu = [u v]
>.

Matrices are denoted in uppercase typewriter font, e.g.M, H. Derivatives with respect to
time are denoted using dots, e.g._x is the derivative of the vectorx with respect to time.

2 Ball tracking

Since in typical broadcast images of a football match, the ball can appear rather small and
irregular, we adopt a correlation (rather than a contour) based approach to the problem of
measuring the ball’s image position in each frame.

In order better to cope with noise, and with frames in the sequence when the ball
is either occluded or indistinct, we have implemented a Kalman Filter which assumes a
constant image velocity motion model upon the trajectory. The filter’s predicted state and
covariance provide a natural search region – a validation gate – in which to conduct the
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Figure 1: Two trajectories automatically computed: (a) Paul Gascoigne shooting (and
scoring) against Scotland in Euro96; (b) Paul Ince shooting (and not scoring) against Italy
in a World Cup qualifying match.

search for a template correspondence. The best correlating position within the validation
gate, and above a similarity threshold, is assumed to be the correct match.

Much of the Kalman Filter implementation is straightforward and therefore details are
omitted here. One aspect worthy of consideration is that of the motion of the camera ob-
serving the scene. Clearly any camera rotation or zooming will affect the image location
of all features, including the ball. In the context of the standard Kalman Filter equations,
the camera motion is acontrol input. If the camera’s pan, tilt and zoom were known it
would be a simple matter to determine the apparent image motion as was done in [6].
We derive the appropriate equations in section 2.1 below. In our case these data are not
available directly, and so we make use of other computer vision techniques to determine
the image motion. In particular we determine, using a gradient based scheme, the optic
flow between frames, and use this to determine the apparent ball motion due to camera
rotation and zoom. The details are given in section 2.2.

Figure 1 shows examples of the image trajectories of the ball as computed automati-
cally by our system.

2.1 Equations of image motion

Here we derive the equations of image motion for a camera undergoing pure rotation and
pure zoom.

We assume that the image axes are perpendicular, that the principal point is constant
and located at (0,0), and that the pixels are square. Then the canonical projection equation
can be written very simply in homogeneous coordinates as:
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4xy
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The inhomogeneous representation is obtained asu = [u v] = [x=w y=w]
>.
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If the camera’s rotational velocity is given by
 then _X = 
�X and combining this
with the derivative of (1) yields
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Thus the image motion is related homographically to the image position. The homogra-
phy has 5 degrees of freedom, but the equations can be solved linearly by allowing six
degrees of freedom; coefficientsh = [h1 : : : h6] in (2).

The optic flow, _u is given by

_u =

�
_u
_v

�
=

�
_x=w � u _w=w
_y=w � v _w=w

�
(3)

Dividing (2) byw and combining with (3) yields the usual equations of image motion
[5], which can in turn be written in terms ofh as

_u =

�
u v 1 0 �u2 �uv
v �u 0 1 �uv �v2

�
h (4)

2.2 Computing optic flow

Since there exist few distinct features but much texture in a typical football broadcast
image, we opt to use intensity gradient based flow rather than discrete feature matches to
determine the overall image motion. By adopting the approach of Lucas and Kanade [3]
to optic flow computation, we arrive at an elegant means of computing the 6 degree of
freedom velocity field derived above.

The optic flow computation determines an approximation to the shape of the local
sum-of-squared-differences function (SSD) at each point in the image, and finds the min-
imum of the function. Algebraically, at each point (u,v) in the image we wish to minimise

E _u(u; v) =
X
ij

(I(u+ j + _u; v + i+ _v; t+ 1)� I(u; v; t))2 (5)

where the indicesi; j range over small patch centred on (u,v). Substituting a first order
approximation for the term in brackets and expanding the square yields

E _u(u; v) =
X
ij

_u2(Iu)
2 ++2 _u _vIuIv + _v2(Iv)

2 + 2 _uIuIt + 2 _vIvIt + (It)
2 (6)

The sum over the patch can be replaced by a convolution (in our case Gaussian). We then
differentiate with respect tou and set to zero, to find the minimum:
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If there is no brightness gradient thenM is singular and the flow cannot be computed, as
one would expect. If there is a uniform edge at(u; v) thenM has rank one, and only the
component of flow in the kernel ofM (in the direction of the brightness gradient) can be
determined. This is the well known aperture problem. IfM has full rank then the full flow
can be obtained.

Thus each image location gives either zero, one or two constraints on the six degree
of freedom optic flow field, resulting in an over-determined system. Algebraically this is
derived by combining (4) and (7):

M

�
u v 1 0 �u2 �uv
v �u 0 1 �uv �v2

�
h+ b = 0 (8)

We then solve forh, the six coefficients of the flow field.
In typical sequences we have considered,M rarely has rank zero. As a result, the

independently moving players and ball, which constitute a very small percentage of the
overall scene, contribute little to the overall result. Outlier detection and removal (not
implemented here) could improve matters further.

Since the camera undergoes pure rotation, image locations are related by a homogra-
phy (known as the infinite homography). This is obtained by integrating the instantaneous
homography_H over one time step:

x0 = (I + _H)x = Hx (9)

The algorithm has been implemented as follows. For each pair of images:

� Normalise the brightness values and compute a Gaussian pyramid

� For each level of the pyramid,i = n : : : 1 (coarse to fine):

– Compute the flow field_H between images at leveli as in section 2.2 above.

– Compute the inter-image homographyH = I+ _H and warp the images at level
i� 1 towards one another.

– Accumulate the inter-image transformationsTi = HTi�1.

By way of demonstration we show an example of a mosaic which has been constructed
from the inter-image homographies (figure 2). Because the inter-frame homographies are
computed by integrating up from velocity, there is inevitable drift in the mosaic, however
this could be addressed in the future by considering all inter-image transformations in a
batch bundle adjustment, not just those between successive pairs.

3 Geometry

In this section we show how shadows from infinite point light sources can be employed
to obtain affine and Euclidean structure from a single view. If one considers the light
source to be analogous to a second viewpoint then the result is hardly surprising, but does
involve some subtlety, as we show below. The ideas are discussed in more detail along
with various different applications and further theoretical investigations in [1].

We concern ourselves with computing the structure of a point relative to a distin-
guished plane in the world. While this plane could be any world plane, for didactic
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Figure 2: Above: the first, middle and last images in a 130 frame sequence of Alan
Shearer scoring against Scotland in Euro96; below: the mosaic constructed using our
flow technique.

purposes, here we will consider the ground plane. Likewise, the point could be any point
in the scene, but here we will refer to the point as “the ball”, for obvious reasons. Specif-
ically, we show:

Given an affine calibration of the ground plane (i.e. the image location of its
vanishing line), the image locations of the top and bottom of a known ref-
erence height/direction, the image location of a second point, and the image
locations of the shadow of the top of the reference height and shadow of the
unknown point, we can determine:

(i) the projection in the reference direction of the point onto the ground
plane; i.e. itsaffine coordinatesin the plane.

(ii) the projection distance; i.e. theaffine height.

Hence we obtain the affine structure of the point. Furthermore, if the ground
plane calibration is Euclidean and the reference direction is vertical, then we
obtain Euclidean structure for the unknown point.

3.1 Computing the X and Y coordinates

We prove the results by construction, beginning with (i). The geometry is shown in figure
3. The shadow is assumed to derive from a light source at infinity (for example, the sun).
The desired projection is obtained by construction as follows:

� Line l1 is drawn through the reference shadow; Linel2 is drawn such that
it passes through the shadow of the ball and is parallel in the world tol1 (i.e.
in the image it intersects linel1 on the vanishing line);� The plane�1 con-
taining the light source, the ball, and top of the reference height intersects the
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Figure 3: Obtaining the projection of a point onto the ground plane from a single view
using shadows.

ground plane in linel3, obtained as the line which passes through the shad-
ows of the ball and top reference;� The plane�2 containing the reference
direction and the ball intersects�1 in line l4 which is obtained as the line
passing through the ball and top reference;� The intersection ofl3 andl4 is
therefore the point of common intersection between the three planes�1, �2
and the ground plane;� The intersection of�2 with the ground plane is then
given byl5 which joins the common plane intersection point with the bottom
reference;� The intersection ofl5 with l1 is then the projection of the ball
onto the ground plane (in the reference direction) as required.

Since we began with the assumption that the ground plane was affine calibrated, we
therefore now know the affine coordinates of the projection of the ball on the ground plane
and have proved part (i).

3.2 Computing the Z coordinate

In order to complete the proof of part (ii) we now show how to determine the projection
distance (i.e. the affine height). Consider figure 4.

� The linel5 was obtained by construction in the previous step. It intersects
the vanishing line uniquely;� Lines l6 andl7 are constructed such that they
pass through the reference top and the ball (respectively) and are parallel in
the world tol5, hence in the image they intersectl5 on the vanishing line of
the ground plane� Linesl8 andl9 are parallel to the reference direction in the
world. They are known since the top and bottom reference, and the ball and
its projection are known. The intersection ofl8 andl9 is the vanishing point
in the reference direction,v. We denote the intersection ofl7 andl8 by ri
and the intersection ofl6 andl9 bypi
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Figure 4: A construction for computing the height of a point from the ground.

The cross ratio of the four points onl8 must equal the cross ratio of the corresponding
points onl9. Both cross ratios are equal to the cross ratio of the physical points on the
world lines (i.e. withv at infinity), which is a simple ratio of involving only the reference
and unknown height, viz< rb; ri; rt;v >=< pb;pt;pi;v >= hr=(hr � hp), wherehr
is the reference height andhp is the height of the ball. Hence

hp = hr �
hr

< rb; ri; rt;v >
(10)

While these constructions are useful to understand intuitively the underlying geome-
try, in practice we have developed algebraic methods (see [1]) which are more robust and
simpler to implement.

4 Results

In this section we present results of the trajectory reconstruction. Although we have
analysed a number of sequences in this way with encouraging results, space permits only
one set of results to be included here.

Although the ball tracking has been automated, the selection of reference heights
throughout the sequence, and the localisation of the ball shadow are currently performed
manually using a mouse.

The regular scene structure present on a football pitch – namely the pitch markings
and goals – mean that affine calibration of the ground plane is straightforward. The known
world locations of four pitch lines are used to compute the image to world homography
which maps points in the image to their ground plane positionsH [4]. The vanishing line
of the ground plane in the image is then simplyu> = [0 0 1]H.
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Figure 5: From left to right, the first middle and last images from a 40 frame sequence.

Figure 6: An overhead view of Gascoigne shot (see text for details)

Figure 5 shows the first, middle and last images from a sequence of 40 images of
Paul Gascoigne scoring against Scotland in Euro96. One of the upright Scottish players
(i.e. not Hendry who was floundering on the ground having been skinned) was chosen
as vertical reference and his height estimated as 1.75m. An overhead view of the ball’s
trajectory is shown in figure 6. This view is achieved using the vertical reference direction
and the shadow locations, as explained in section 3.1. The second (paler) trajectory,
provided for comparison, is simply the projection of the ball onto the ground plane in
the direction of sight (achieved by transforming the ball position via the image to ground
plane homography).

The full 3d reconstruction of the scene, obtained using the theory set out in section
3.2 is shown from two different viewpoints in figure 7.

5 Discussion

We have presented a system for computing the 3D trajectory of a football in a sequence
of images captured by a camera which can rotate and zoom (but not translate). The two
main distinct contributions were (i) compensation for camera motion via a new method for
computing the image velocity field, and (more importantly) (ii) a geometric construction
for computing the 3D position of a point relative to a known ground plane and one vertical
reference using its image location and the location of its shadow.

One idea we have not yet explored, but which seems is promising, is that of perform-
ing the filtering in three dimensional space, rather than in the image. This would have the
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Figure 7: Two different viewpoints of the 3D reconstruction of Gascoigne’s shot.

advantage that smoothness is imposed on the full trajectory, not just on its projection into
the image, which would mitigate depth errors.

A more theoretical and complete discussion of 3D reconstruction from a single view
can be found in [1]. We are grateful to Antonio Criminisi and Andrew Zisserman, our
co-authors on [1], for many fruitful discussions.
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