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Abstract— This paper describes an ultrasonic tagging
system developed for robustly observing human activity
in a living area. Using ultrasonic transmitter tags with
unique identifiers, the system is shown through experimental
application to be able to track the three-dimensional motion
of tagged objects in real time with high accuracy, resolution
and robustness to occlusion. The use of an ultrasonic system
is desirable because of its low cost and use of commercial
components, and the proposed system achieves high accuracy
and robustness through the use of many redundant sensors.
The system employs multilateration to locate tagged objects
using one of two estimation algorithms, a least-squares
optimization method or a random sample consensus method.

I. INTRODUCTION

Information processing services centered around human

activity in the real world has attracted increased attention

recently [1]. Human-centered applications require the fa-

cility to observe and recognize activities as a basis, and

the present paper describes a method for observing and

recognizing behaviors robustly and in real time based on

sensorizing objects in the real world.

Generally, the problem of human behavior recognition

can be formulated as a kind of pattern recognition problem

as follows.

P�Ŵ �Y � � max
Wi

P�Y �Wi�P�Wi�

P�Y �
� (1)

where P�Wi�Y � denotes the posterior probability that the

meaning of an observed behavior pattern Y is Wi, P�Y �
denotes the probability that a behavior pattern Y will be

observed, P�Wi� denotes the probability that the behavior

meaning Wi will occur, and P�Y �Wi� denotes the condi-

tional probability. Thus, the problem of human behavior

recognition becomes that of searching for the maximum

posterior probability P�Ŵ �Y �.
Two problems complicate the recognition of human

behavior: the ability to observe a behavior pattern Y

robustly, and the efficient recognition of meaning W from

the observed pattern. Without solving the first problem,

equation (1) cannot be formed. Without tackling the

second problem, guaranteeing a solution to the equation

within the time frame demanded by the application is

impossible.

As a method for efficient recognition of behaviors,

the idea of object-based behavior recognition has been

proposed [2]. In theory, the behavior of handling objects

in an environment such as an office or home can be recog-

nized based on the motion of the objects. However, when

applying the method to real environments, it is difficult

to even achieve an adequate level of object recognition,

which is the basis of the method.

Separating the problems of object recognition and be-

havior recognition is becoming increasingly realistic with

the progress in microcomputers, sensor, and wireless net-

works technology. It has now become possible to resolve

object recognition into the problems of sensorizing objects

and tagging the objects with identification codes (IDs),

and to address behavior recognition separately through the

development of applied technology.

The present authors have developed a three-dimensional

ultrasonic location and tagging system for the fundamental

function of robustly tracking objects. This system en-

ables a new approach of tag-based behavior recognition.

In terms of cost and robustness against environmental

noise, the ultrasonic system is superior to other location

techniques such as visual, tactile, and magnetic systems.

A number of ultrasonic location systems have already

been proposed or commercialized [3], [4], [5]. However,

the work [3] does not describe a method for improving

the robustness, accuracy, and resolution of position, and

although Shih [4] proposed a robust estimation method by

“direct substitution”, the system had difficulty in main-

taining accuracy of position and calculation in real time.



The system presented in the present paper is developed

specifically to address the issue of robustness and accuracy

in real time.

The ultrasonic location system calculates the three-

dimensional (3D) position of an object by trilateration

based on three distance measurements. Like other loca-

tion sensing systems such as motion capture, the system

requires more than a certain minimum number of receivers

to eliminate the effect of occlusion and outliers. The

system is comparably inexpensive due to the availability

of cheap ultrasonic receivers, which also makes it possible

to increase the number of ultrasonic receivers to mitigate

undesirable effects. An ultrasonic location system there-

fore provides significant advantages in terms of robust

positioning, high accuracy, and high resolution through

the collection of redundant distance data.

This research focuses on the development of a function

for estimating the 3D position of objects with high accu-

racy, high resolution and robustness to occlusion through

the use of redundant distance data. This paper describes

the 3D position estimation function and the results of

experiments conducted in a regular room area. In the next

secton, the developed 3D ultrasonic tagging system is first

introduced briefly. Section III describes the algorithms for

estimating the 3D position of objects in detail. Trilater-

ation or multilateration algorithms have been proposed

in the field of aerospace[6], [7]. This paper presents the

multilateration algorithms applicable to a more general

case that multiple ultrasonic receivers are put on arbitrary

positions. The results of experimental application of the

system are then presented and discussed.

II. ULTRASONIC TAGGING SYSTEM

A. System configuration

Figure 1 shows the system configuration for the 3D

ultrasonic tagging system. The system consists of an ultra-

sonic receiving section, an ultrasonic transmitting section,

a time-of-flight measuring section, a network section,

and a personal computer. The ultrasonic receiving section

receives ultrasonic pulses emitted from the ultrasonic

transmitter and amplifies the received signal. The time-

of-flight measuring section records the travel time of the

signal from transmission to reception. The network section

synchronizes the system and collects time-of-flight data

from the ultrasonic receiving section. The positions of

objects are calculated based on more than three time-

of-flight results. The sampling frequency of the proposed

system is 50 Hz.

Figure 2 shows a photograph of the prototype network

and time-of-flight measurement components, which are

to be attached to a wall. Figure 3 is a photograph of

the tagging unit (transmission unit), which consists of an

ultrasonic transmitter, a wireless communication unit, a

Fig. 1. Configuration of 3D ultrasonic tagging system

microcomputer (FLASH PIC) and power (two alkaline AA

batteries).

Fig. 2. Network and time-of-flight measurement components

Fig. 3. Ultrasonic tag

The room used to conduct the experiments is shown

in Fig. 4. The room was 3�5� 3�5� 2�7 m in size, and

was fitted with 307 ultrasonic receivers embedded in the

wall and ceiling. Tags were attached to various objects,

including a cup and a stapler as shown in Fig. 5. Some

objects were fitted with two transmitters. The purpose of

the experimental room is to clarify the effect of the use of

redundant sensors. More than 300 receivers do not mean



that the algorithms described in the next section need

such a large number of sensors. In actual usage, a smaller

number of receivers can be used.

Fig. 4. Room with embedded ultrasonic sensors for prototype devel-
opment

Fig. 5. Example of attaching tags to objects

III. USE OF REDUNDANT ULTRASONIC RECEIVERS

A. Trilateration

The ultrasonic tagging system calculates the 3D position

of an object by trilateration using three distance measure-

ments. Two methods of trilateration are investigated for

use with the proposed system: multilateration based on a

least-squares method using redundant distance data, and

multilateration based on robust estimation.

The basic principle of triangulation can be described by

�xi� x�2��yi� y�2��zi� z�2 � l2
i � �i � 1�2�3�� (2)

where li denotes the distance measured by the ith ultra-

sonic receiver at position �xi�yi�zi� from the ultrasonic

transmitter at �x�y�z�, as shown in Fig. 2. Thus, the posi-

tion �x�y�z� of an ultrasonic transmitter can be calculated

given three distance measurements li�i � 1�2�3� obtained

by three receivers that do not lie on the same line.

B. Multilateration: Basics

The estimation error εi can be defined by

l2
l1

l3

P=(x,y,z): intersection point

Fig. 6. Intersection point

εi �
���li�

�
�xi� x�2��yi� y�2��zi� z�2

��� � (3)

By solving the minimization problem

�x̂� ŷ� ẑ� � min
�x�y�z�

n

∑
i

εi� (4)

we can estimate the optimal value �x̂� ŷ� ẑ�.

The minimization problem of Eq. (4) involves the

solution of a non-linear equation and therefore requires

repetitive numerical computation. Shih [4] proposed a

direct substitution method to solve Eq. (4) that involved

substituting random and arbitrary �x�y�z� into Eq. (4) and

adopting the coordinate giving the minimum error as the

optimal value. This method is a robust estimation (M-

estimator), but involves large calculation cost to guaran-

tee the accuracy of the estimated position. For ultimate

accuracy, it would therefore be necessary to evaluate all

possible coordinates �x�y�z�. However, such calculation is

not suitable for real-time application.

C. Multilateration method 1: linearization of the mini-

mization problem

To obtain an algorithm suitable for accurate estimation

in real time, Eq. (4) may be linearized to allow an

analytical solution.

Using distance data li� l j and the receiver positions

�xi�yi�zi���x j �y j�z j�, we obtain the following spherical

equations for the possible position of the target.

�xi� x�2��yi� y�2��zi� z�2 � l2
i � (5)

�x j� x�2��y j� y�2��z j� z�2 � l2
j � (6)

By subtracting Eq. (6) from Eq. (5), we obtain an equation

for intersecting planes between the spheres, as shown in

Fig. 7.

2�x j� xi�x�2�y j� yi�y�2�z j� zi�y �

l2
i � l2

j � x2
i � y2

i � z2
i � x2

j � y2
j � z2

j (7)



l2
l1

l3

P=(x,y,z): intersection point

α: intersection plane

Fig. 7. Planes of intersection between spheres used to give the estimated
position

By inputting pairs of �i� j� into the above equation, we

obtain simultaneous linear equations, as expressed by

AP � B� (8)

where P �

�
�

x

y

z

�
� � (9)

A �

�
�

2�x0� x1� 2�y0� y1� 2�z0� z1�
2�x0� x2� 2�y0� y2� 2�z0� z2�
2�x0� x3� 2�y0� y3� 2�z0� z3�

�
� � (10)

B �

�
����

l2
1 � l2

0� x2
1� y2

1� z2
1� x2

0� y2
0� z2

0

l2
2 � l2

0� x2
2� y2

2� z2
2� x2

0� y2
0� z2

0

l2
3 � l2

0� x2
3� y2

3� z2
3� x2

0� y2
0� z2

0
...

�
���� � (11)

The position �x̂� ŷ� ẑ� can then be calculated by a least-

squares method as follows.

P � �AT A��1AT B� (12)

This method minimizes the square of the distance between

the planes expressed by Eq. (7) and the estimated position.

The algorithm is described in detail in Fig. 8. In actual

usage, the rank of matrix A must be considered.

D. Multilateration method 2: Robust estimation by

RANSAC

Data sampled by the ultrasonic tagging system is easily

contaminated by outliers due to reflections. Method 1

above is unable to estimate the 3D position with high

accuracy if sampled data includes outliers deviating from a

normal distribution. In the field of computer vision, robust

estimation methods that are effective for sampled data

including outliers have already been developed. In this

work, the random sample consensus (RANSAC) [8], [9]

estimator is adopted to eliminate the undesirable effects

of outliers. The procedure is as follows.

Rank(A)=1 Rank(A)=2 Rank(A)=3
(Collinear) (Non-coplanar)(Coplanar)

Solution is determinate.

A single solution exists.
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Solution is indeterminate.

At most two solutions exist.

Solution is indeterminate.

Infinite solutions exist.

A position cannot be fixed.

Candidate
of solution

If there are conditions to select

one solution from the two,

a single position can be fixed.

x0 is the minimum norm solution.

3) Select a single solution using 
    conditions such as

n is a base vector of nullspace of A.

1) Solve the minimum norm solution

2) Solve two positions using 
    the equations below.

),,( iiii zyxP =

A single position can be fixed.

Simultaneous equations of plane
on which an intersection line between the two spheres

0xn

Candidate
of solution

Candidate
of solution

Candidate
of solution

Fig. 8. Algorithm for estimating 3D position by a least-squares method
considering the rank of A

1) Randomly select three distances measured by three

receivers ( jth trial).

2) Calculate the position �xc j �yc j�zc j� by trilateration

using Eq. (2).

3) Calculate the error εc ji for all receivers (i �
0�1� ����n) by Eq. (13), and find the median εm j of

εc ji.

4) Repeat steps 1 to 3 as necessary to find the combi-

nation of measurements giving the minimum error,

and adopt the corresponding 3D position.



εc ji �
���li �

�
�xi � xm j�

2��yi � ym j�
2��zi � zm j�

2
���

(13)

εm j � med j �εc ji� (14)

�x̂� ŷ� ẑ� � min εm j (15)

IV. EXPERIMENTAL APPLICATION
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Fig. 9. Relationship between resolution and the number of sensors for
the least-squares method (left) and RANSAC (right)
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Fig. 10. Resolution in the x and y directions (left) and z direction (right)
(grid size: 2�2 mm)

A. Resolution

Figure 9 shows the relationship between the number of

receivers and the deviation of the estimated position for

4, 6, 9, 24, and 48 receivers in the ceiling. To compare

the effect of the RANSAC method and that of the least-

squares method, one receiver is selected randomly and

500[mm] is added to the distance data of the selected

receiver as outlier. Each point was derived from 30 estima-

tions of the position. The 5 lines in the figures represent

estimation for 5 different locations of the transmitter. The

resolution increases with the number of receivers, and the

RANSAC method provides a more stable estimation with

higher resolution compared to the least-squares method.

The resolution in the x, y, and z directions is illustrated

in Fig. 10, which shows the probability density distribution

for 1000 estimations using RANSAC. The resolution in

x and y directions is about 15 mm, while that in the z

direction is about 5 mm.
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Fig. 11. Relationship between positioning accuracy and the number of
receivers for the least-squares method (left) and RANSAC (right)

B. Positioning accuracy

Figure 11 shows the relationship between the number of

receivers and the error of the estimated position for 4, 6,

9, 24, and 48 receivers. The error is taken as the distance

from the position measured by a visual motion capture

system. One receiver is selected randomly and 500[mm]

is added to the distance data of the selected receiver as

outlier. Each point was derived from 30 estimations of the

position. The 5 lines in the figures represent estimation for

5 different locations of the transmitter. The error decreases

as the number of receivers is increased, and the RANSAC

method is appreciably more accurate with fewer receivers.

It is considered that the least-squares method is easily

affected by outliers, whereas the RANSAC method is not.

Figure 12 shows the 3D distribution of error for 1400

measured positions in the room. The figures show that

the error is lowest (20–80 mm) immediately below the 48

receivers in the ceiling, increasing toward the edges of the

room.

The results of experiments for evaluating accuracy and

resolution demonstrate that it is possible to improve accu-

racy and resolution by increasing the number of receivers,

and that the undesirable effect of outliers can be mitigated

through the use of RANSAC estimation.

C. Robustness to occlusion

As in other measuring techniques such as vision-based

methods, it is necessary to increase the number of sensors

to solve the problem of sensor occlusion, where the line of

sight to the target object is obstructed by other objects such

as walls or room occupants. In the present tagging system,

the problem of occlusion occurs often when a person

moves or operates an object. These situations give rise to

two separate problems; a decrease in the number of usable

sensors for the target, and an increase in reflections due

to obstruction and movement. As one of the most typical

situations where occlusion occurs, this section focuses on

occlusion due to a hand.

Figure 13 shows how the error increases and the number

of usable sensor decreases as a hand approaches an object

fitted with an ultrasonic transmitter for the least-squares

and RANSAC methods. Although the error increases

significantly by both methods when the hand approaches

the object, the RANSAC method is much less affected



Fig. 12. 3D distribution of error in the experimental room

than the least-squares method. This demonstrates that the

proportion of outliers increases when occlusion occurs,

and that RANSAC is more robust in this situation because

it can mitigate the effect of such outliers.
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Fig. 13. Accuracy of the ultrasonic tagging system when occlusion due
to a hand occurs

D. Real-time position measurement

Figure 14 shows the measured trajectory for a person

moving a cup to a chair, the floor, and a desk. The

figure demonstrates that the system can robustly measure

the positions of the objects in most places of the room

regardless of occlusion by a hand or body.

In the current system, the sampling frequency is about

50 Hz. This frequency decreases to 50�n Hz when n

objects are being monitored. However, it is possible to

maintain a high sampling frequency by selecting which

transmitters to track dynamically. For example, a trans-

mitter can be attached to a person’s wrist, and the system

can select transmitters in the vicinity of the wrist to

be tracked, thereby reducing the number of transmitters

that need to be tracked at one time and maintaining the

highest sampling frequency possible. Figure 15 shows the

measured trajectory in a dynamic selection mode. The red

sphere in the figure shows the position of the hand.

Fig. 14. Measured trajectory for moving a cup around the room

Fig. 15. Dynamic selection of transmitters

E. Recognition of human behavior

Figure 16 shows the measured trajectories when several

objects are moved one after another (see video). Behavior

recognition is performed by interpreting the change of

state using the ultrasonic tag.

Output example .....,

04:03:55 place yellow cup on desk

04:04:05 hold mobile phone

04:04:12 place mobile phone on floor

04:04:19 hold chair

04:04:31 place chair on floor

04:04:34 hold trash

04:04:40 place trash on floor

04:04:46 hold stapler



chair
cup

trash

cell phone

documents

stapler

Fig. 16. Trajectories for movement of several objects one after another

04:04:52 place stapler on desk

04:04:59 hold documents

04:05:13 staple documents with stapler .....

V. CONCLUSION

A 3D ultrasonic tagging system that provides robust

observation of human activity was presented. The ultra-

sonic tagging system consists of an ultrasonic transmit-

ter/receiver, a wireless communication unit and a host

computer, and can implemented at low cost. The system

measures the 3D position of any object fitted with an

ultrasonic transmitter with a unique ID.

In order to estimate the 3D position with high accuracy,

high resolution, and robustness to occlusion, the authors

propose two estimation methods, one based on a least-

squares approach and one based on RANSAC.

The system was tested in an experimental room fitted

with 307 ultrasonic receivers; 209 in the walls and 98 in

the ceiling. The results of experiments conducted using

48 receivers in the ceiling for a room with dimensions

of 3�5� 3�5� 2�7 m show that it is possible to improve

the accuracy, resolution, and robustness to occlusion by

increasing the number of ultrasonic receivers and adopting

a robust estimator such as RANSAC to estimate the 3D

position based on redundant distance data. The resolution

of the system is 15 mm horizontally and 5 mm vertically

using sensors in the ceiling, and the total spatially varying

position error is 20–80 mm. It was also confirmed that the

system can track moving objects in real time, regardless

of obstructions.

Further development of the system will include re-

finement of the method for measuring the 3D position

with higher accuracy and resolution, miniaturization of

the ultrasonic transmitters, development of a systematic

method for defining and recognizing human activities

based on the tagging data and data from other systems, and

development of new applications based on human activity

data.
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