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Abstract Supplying realistically textured 3D city models at

ground level promises to be useful for pre-visualizing up-

coming traffic situations in car navigation systems. Because

this pre-visualization can be rendered from the expected fu-

ture viewpoints of the driver, the required maneuver will be

more easily understandable. 3D city models can be recon-

structed from the imagery recorded by surveying vehicles.

The vastness of image material gathered by these vehicles,

however, puts extreme demands on vision algorithms to en-

sure their practical usability. Algorithms need to be as fast

as possible and should result in compact, memory efficient

3D city models for future ease of distribution and visualiza-

tion. For the considered application, these are not contradic-

tory demands. Simplified geometry assumptions can speed

up vision algorithms while automatically guaranteeing com-

pact geometry models. In this paper, we present a novel city

modeling framework which builds upon this philosophy to

create 3D content at high speed.

Objects in the environment, such as cars and pedestri-

ans, may however disturb the reconstruction, as they vio-

late the simplified geometry assumptions, leading to visu-

ally unpleasant artifacts and degrading the visual realism of
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the resulting 3D city model. Unfortunately, such objects are

prevalent in urban scenes. We therefore extend the recon-

struction framework by integrating it with an object recog-

nition module that automatically detects cars in the input

video streams and localizes them in 3D. The two compo-

nents of our system are tightly integrated and benefit from

each other’s continuous input. 3D reconstruction delivers

geometric scene context, which greatly helps improve detec-

tion precision. The detected car locations, on the other hand,

are used to instantiate virtual placeholder models which aug-

ment the visual realism of the reconstructed city model.

Keywords City modeling · Structure from motion · 3D

reconstruction · Object detection · Temporal integration

1 Introduction

Today, the main assistance modes offered by GPS-based

car navigation modules are speech and/or a display of a

very simplified aerial representation describing the upcom-

ing traffic situation. Navigation mistakes often arise due to

the difficulty of interpreting this information correctly in the

context of the real visual environment. We aim at simpli-

fying this interpretation by offering a pre-visualization of a

required traffic maneuver, by rendering a virtual trajectory

through a realistically texture-mapped 3D model of the en-

vironment.

Texture-mapped 3D city models can be extracted from

the imagery collected by survey vehicles. These vehicles are

equipped with cameras, GPS/INS units, odometry sensors,

etc. and drive around daily to record new city data which

can aid car navigation. For our envisioned application of il-

lustrating a driving maneuver, the playback of a recorded

survey image sequence of the exact same driving maneuver
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would already be sufficient. However, the number of possi-

ble traffic maneuvers is so enormous that pre-recording and

storing such demonstration sequences is practically impos-

sible. Reconstructing 3D city models from the survey se-

quences and rendering virtual trajectories through them of-

fers a more memory friendly and flexible solution.

For use in such an application, however, the extracted

3D models must be as simple as possible to keep storage

requirements low and to render them in real-time on car

navigation systems. Furthermore, the time needed to extract

these models from the survey sequences should also be short

to ensure practical usability in light of the vast extent of im-

age material gathered by survey vehicles.

In addition, movable objects in the environment, such as

cars or pedestrians, present a problem for any reconstruc-

tion system, as they block the view on parts of the scene

geometry. When those objects are moving, they may dis-

turb the system’s egomotion estimate, which relies on the

basic assumption of a predominantly static scene. When sta-

tic, they will often end up as part of the reconstruction, in-

creasing the complexity of the reconstructed geometry and

leading to unpleasant visual artifacts. It therefore becomes

desirable to detect such cases. However, this is difficult for

a purely bottom-up 3D reconstruction system—a dedicated

object recognition module will be needed for this purpose.

In this paper, we present a ground-level city modeling

framework which integrates both of the above components.

It is based on a highly optimized 3D reconstruction pipeline

that can run in real-time, thereby offering the possibility

of online processing while the survey vehicle is recording.

A realistically textured, compact 3D model of the recorded

scene can already be available when the survey vehicle re-

turns to its home base. Running in parallel to the reconstruc-

tion system, we apply an object detection pipeline, which

detects static and moving cars and localizes them in the re-

constructed world coordinate system. This second pipeline

is not yet able to run in real-time, but can be expected to

become so soon, as more efficient feature extractors become

available. The recognized car locations are then used to in-

stantiate virtual 3D car models in place of their real-world

counterparts, thereby covering potential reconstruction ar-

tifacts and augmenting the visual realism of the final city

model.

Both components are tightly integrated and benefit from

each other’s input. Thus, 3D reconstruction can become eas-

ier and more accurate when we know which kind of object

is being reconstructed. In turn, recognition becomes easier

and more reliable given a geometric scene context that re-

construction can deliver.

The paper is structured as follows. The following section

discusses related work. Section 3 then introduces the 3D re-

construction pipeline. After that, Sect. 4 presents the object

recognition system. Section 5 describes how the recognition

results are fed back to improve the reconstructed city model,

and Sect. 6 presents experimental results. A final discussion

concludes the paper.

2 Related Work

City modeling has evolved over the years. In the early days,

it used to be mainly performed on aerial images. Build-

ing types and locations were manually indicated or recog-

nized using computer vision algorithms and Digital Eleva-

tion Maps supplied by airborne laser scanners (Gruen 1997;

Haala and Brenner 1998; Haala et al. 1998; Maas 2001;

Vestri and Devernay 2001; Vosselman and Dijkman 2001;

Wolf 1999). Much could already be accomplished with

the resulting models, however, they usually lacked a re-

alistic impression at ground level, since building facades

could not be textured from aerial imagery. Today, we find

laser scanners mounted on mobile survey platforms gath-

ering 3D depths and textures for building facades through-

out cities (Frueh et al. 2005; Frueh and Zakhor 2001;

Hu et al. 2003; Stamos and Allen 2003; Sun et al. 2002)

filling the gaps where aerial imagery could not reach. Fur-

thermore, mobile reconstruction systems based on passive

3D vision algorithms are emerging.

The results of laser systems are very detailed and impres-

sive. These models could be used as is or be simplified to

save on memory. To this day, however, laser-equipped sur-

vey vehicles are sparse, and vast amounts of data have al-

ready been gathered by survey vehicles using video-streams

annotated with GPS/INS measurements in order to geo-

reference them. Although it is only a matter of time be-

fore laser scanners will see more wide-spread use, future

survey vehicles will still carry cameras in order to capture

texture maps, thus collecting additional information to draw

from. Vision algorithms are the key to tap into this valu-

able resource and extract 3D information from the video

streams. In addition to raw 3D measurements, we however

also want to extract semantic information about the recon-

structed scene from sensor input, such as the information

which local measurements lie on the same surface and what

kinds of objects are being reconstructed. Such information

is more readily accessible from video data, where additional

color and texture cues can be exploited.

Most computer vision city modeling algorithms appear-

ing today try to extract detailed 3D from video streams using

state-of-the-art dense reconstruction algorithms which incur

high computational cost. However, keeping the final appli-

cation of the 3D model in mind, the necessary level of de-

tail is low and suggests vision algorithms which exploit this

property to gain speed.

In this paper, we describe a ground-level vision-based

3D city modeling framework consisting of two parts: a
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Fig. 1 Overview of our system integrating recognition and geometry estimation

3D reconstruction component capable of generating a com-

pact city model at video frame rate, and an object recog-

nition component capable of reliably detecting cars in the

video streams and localizing them in 3D. The 3D recon-

struction part is based on our previous work (Cornelis

et al. 2006a). It deploys real-time Structure-from-Motion

(SfM) and real-time dense stereo algorithms to achieve its

goal. An excellent example of previous work on real-time

SfM can be found in (Nister 2003). Also recently, real-

time dense reconstruction algorithms which use the graph-

ics card have emerged, such as (Cornelis and Gool 2005;

Yang and Pollefeys 2003). However, the latter still lack a

more global constraint which is needed to disambiguate be-

tween multiple possible matches in the case of repeating pat-

terns, which often appear on building facades. The dense

stereo algorithm presented in this work fulfills this require-

ment by incorporating dynamic programming into real-time

dense reconstruction.

The recognition part of this paper is based on (Leibe et

al. 2005, 2007b). It stands in the tradition of several ob-

ject detection approaches that have recently become avail-

able which are capable of dealing with scenes of realis-

tic complexity, both for the detection of single (Dalal and

Triggs 2005; Leibe et al. 2005; Viola and Jones 2004;

Wu and Nevatia 2005) and multiple object classes (Miko-

lajczyk et al. 2006; Sudderth et al. 2005; Torralba et al.

2004). However, those approaches typically perform an un-

informed search over the full image and do not take ad-

vantage of scene geometry yet. Hoiem et al. (2006) have

shown that geometric scene context can greatly help recog-

nition and have proposed a method to estimate it from a

single image. We draw from the experience of those ap-

proaches and also extend the recognition system with scene

geometry information, however in our case delivered by

the SfM and reconstruction modules (Cornelis et al. 2006b;

Leibe et al. 2006).

Taken together, the two components of our system im-

plement a cognitive feedback loop. Object detection informs

the 3D modules about objects in the scene which may dis-

turb SfM calculations or which cannot be accurately mod-

eled by the reconstruction algorithm. In return, 3D recon-

struction informs object detection about the scene geometry,

which greatly helps to improve detection precision. Previous

work by Dick et al. (2001) already contained part of such a

cognitive loop idea, combining recognition of architectural

primitives with wide-baseline stereo for building reconstruc-

tion from a set of photographs. In our work, we extend their

ideas to a city modeling application where recognition and

reconstruction interact continually in order to create a visu-

ally realistic city model from continuous video input.

3 The City Modeling Framework

Figure 1 shows an overview of our proposed system setup.

Our input data are two video streams, recorded by a cali-

brated stereo rig mounted on top of a survey vehicle and

annotated with GPS/INS measurements. From this data, an

SfM algorithm first computes a camera pose for each im-

age. Subsequently, these poses are used to generate a com-

pact 3D city model with textures extracted from the image

material using a fast dense-stereo algorithm (Cornelis et al.

2006a). Both of those stages are highly optimized and run at

video frame rate. In parallel, an object detection module is

applied to both camera images in order to detect cars in the

scene. The three modules are integrated in a cognitive loop.

For each image, the object detection module receives scene

geometry information from the two other modules and feeds

back information about detected objects to them. Thus, the

modules exchange information that helps compensate for

their individual failure modes and improves overall system

performance.

The following sections explain the 3D reconstruction

pipeline in detail. Due to the extent of the inner-workings

of the framework and the limited space available here, we

refrain from explaining in detail the workings of well-known

algorithms such as Structure-from-Motion pipelines (Hart-

ley and Zisserman 2000) and dense stereo (Scharstein and

Szeliski 2002), but limit the discussion to the specific

changes which were made to allow for high processing

speeds and a compact 3D model representation.
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3.1 Structure-from-Motion

First of all, the following straightforward techniques are

used to decrease the computational complexity of the prob-

lem. We assume the camera internals and relative pose of the

stereo pair to be known beforehand. In addition, we restrict

camera pose computations to one video-stream only and use

the known stereo configuration to deduce the poses for the

other camera. Finally, we limit processing to the green color

channel of the images.

To further increase the processing speed, a Structure-

from-Motion framework was conceived consisting of two

complementary modules, able to run in parallel. The first

module focuses on processing every new incoming image:

it matches features with the previous image, deduces new

3D point reconstructions and retrieves the camera pose of

the new image. This module continuously writes out com-

puted camera poses and 3D reconstructions to the hard disk.

Whenever a block containing a fixed number of N im-

ages has been processed, it is made available to the second

module, which performs a windowed bundle-adjustment on

the block in order to refine pose and point reconstructions.

Therefore, the second module has a delay of exactly one

block with respect to the first module.

The first module determines feature matches between the

previous and the incoming image and uses their 3D-2D cor-

respondences to compute the camera pose (RANSAC, Fis-

chler and Bolles 1981, and iteratively re-weighted least

squares optimization, Haralick et al. 1989). As a result, the

epipolar geometry between current and previous image can

be computed and be used to limit and speed up the search for

extra feature matches. A feature track is first reconstructed

when the number of images through which it was matched

exceeds a threshold. Sufficient baseline for an initial 3D re-

construction is guaranteed by only processing new images

when the GPS or odometry signals sufficient movement. Re-

construction is performed by calculating the midpoint of the

shortest line segment which connects the lines of sight of the

start and the end of the feature track. Every time a feature

track is extended, its 3D point is refined by re-triangulation

using only the start and the new end of the feature track. The

re-triangulation is only accepted when the current triangula-

tion angle is closer to 90 degrees than ever before, to avoid

a decrease in reconstruction accuracy.

The most time-consuming step in the aforementioned

methodology is feature matching. For this reason, we de-

veloped a real-time feature detector based on extracting the

local maxima of a very simple feature measure, as shown in

Fig. 2:

score = |(AI1 + AI4) − (AI2 + AI3)|, (1)

where AIi denote the average intensities of the 2 × 2 image

regions. Both its simplicity and the fact that it exploits the

Fig. 2 Top: The measure used to detect image features. Bottom, Left:

For straight edges the measure value is low, Middle: For corners of this

type (I) the measure value is high, Right: For corners of this type (II)

the measure value is low. In city survey sequences, type (I) corners are

more prevalent than type (II) due to the building architecture. Further-

more, in survey sequences corners of type (I) do not change over time

into corners of type (II) because the camera typically does not rotate

around the optical axis

way that image data is laid out in computer memory (us-

ing integral images techniques, Veksler 2003), lead to a fast,

single-pass feature extraction algorithm which takes advan-

tage of image caching. The extracted features are matched

between consecutive images based on a fast sum of absolute

intensity differences.

While the first module determines the camera pose for

each new incoming image, the second module refines the

camera poses and 3D feature points for each block of N im-

ages which have been processed. It uses a windowed bun-

dle adjustment routine that is iteratively performed on each

block of N camera poses and 3D points in order to be able to

load the data efficiently into memory and avoid congestion.

The use of windowed bundle adjustment on blocks limits

the effect that long feature tracks straddling block bound-

aries might have on drift reduction. For this particular appli-

cation, however, this is not so disastrous, since the GPS/INS

image annotations help us to overcome drift by registering

the final result without drift in a common world frame.

3.2 Facade Reconstruction

Reconstruction of building facades by means of passive

stereo techniques is a very difficult problem. The typical im-

agery captured by the survey vehicle in urban environments

raises a number of well-known difficulties when perform-

ing disparity estimation on a set of stereo images. First of
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Fig. 3 Examples of non-conventional buildings of which the outer

walls can be modeled as ruled surfaces, which have more flexibility

than piecewise planar approximations

all, the homogeneous texture of the road surface and repet-

itive patterns on the facades make it hard to disambiguate

between various depths where the per-pixel similarity val-

ues are high. Furthermore, the presence of lens flares in the

cameras and the specular reflections of windows within the

facades add an additional level of difficulty to the disparity

estimation process.

3.2.1 Geometric Constraint

Many passive techniques have already been developed to

compute dense disparity maps from stereo images. However,

due to their computational complexity, they are not suited

for real-time processing of vast amounts of data. Needless

to say, large-scale city modeling covers large areas and will

therefore result in vast amounts of data to be stored on

disk for further use. Compared to storing the results of per-

pixel disparity estimations, one can reduce the amount of

data to be stored by limiting the search space to geometri-

cal primitives such as planes. Therefore, we have developed

an adapted dense stereo algorithm which incorporates the

assumption of simple output geometry, namely that build-

ing facades are approximately ruled surfaces parallel to the

direction of gravity �g. This allows us to gain speed while

keeping the amount of geometrical data to be stored to a

minimum. The ruled-surface approximation of the building

facades also adds more flexibility in that it allows for the

efficient modeling of the outer walls of non-conventional

buildings such as the ones displayed in Fig. 3.

3.2.2 Stereo Camera Rectification

SfM results in camera parameters for each incoming stereo

image pair. The gravity vector �g can be found by looking at

the vanishing points in the images. For the time being, we

will assume that the baseline of each stereo set is perpen-

dicular to �g, enabling us to rectify each stereo pair such that

the up direction of the rectified cameras equals �g. A general

rectification approach is discussed in Sect. 3.2.6.

3.2.3 Similarity Measure

As mentioned before, the ambiguities caused by the pres-

ence of homogeneous areas, repetitive patterns and specu-

lar reflections limit the use of algorithms which are based

on per-pixel similarity values. To overcome these prob-

lems, there is a need for a more global optimization ap-

proach, which usually comes at the expense of increased

computational complexity. The similarity measure defined

in this section, together with the line selection algorithm

in Sect. 3.2.4, introduce a way of incorporating such a

global optimization which efficiently resolves ambiguities

with minimal impact on processing speed.

Once a stereo pair is transformed into a standard stereo

setup with image size w × h (columns × rows), we can de-

fine a discrete disparity search range [0, dmax]. Because the

up direction after rectification equals �g, it can be shown that

for fixed values of x ∈ [0,w − 1] and d ∈ [0, dmax], the cor-

responding 3D points for all y ∈ [0, h − 1] form a straight

line parallel to �g.

Using the assumption that facades are also parallel to �g,

we can derive a robust line-based similarity measure by

summing the per-pixel similarity values along the y direc-

tion in image space. This results in a two-dimensional simi-

larity map S of size w × dmax where:

Sx,d =

h−1
∑

y=0

min(SSDmax,SSDx,y,d) (2)

with

SSDx,y,d = SSD(imrightx,y, imleftx+d,y) (3)

where SSDmax is a saturation value of the Sum of Squared

Differences, introduced to limit the influence of possible

outliers, and imright and imleft are the rectified images. The

left and middle images in Fig. 4 illustrate the use of the sim-

ilarity measure, while the right image shows the similarity

map S, computed for that stereo pair.

In order to gain speed, we apply the GPU to compute the

similarity maps. This is done in a single pass by drawing a

full-screen rectangle to a window of size w ×dmax while ex-

ecuting a GPU program with a for-loop that iterates over the

discrete values of y. For an implementation on the graphics

card, where colors are represented by floating point values in

the range [0.0,1.0], we applied a value of 0.05 for SSDmax.

Once the similarity map is computed, its data is offloaded

from the GPU to the CPU to serve as input to the line selec-

tion step of the algorithm.

3.2.4 Line Selection

As noted earlier, each entry in S corresponds to a 3D line

parallel to �g. So by selecting a d value for each x and in-
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Fig. 4 Left and middle: Rectified stereo pair with example of a best match, based on the similarity measure. Right: Computed similarity map with

optimal path resulting from dynamic programming (white line)

terconnecting them, one is able to reconstruct a ruled sur-

face of the facades. Selecting for each x the disparity d

where Sx,d is minimal would result in a fair amount of arti-

facts due to occlusions, etc. Looking at Fig. 4, however, one

can see that it is reasonable to apply a more global order-

ing constraint, imposing that vertical lines in the left image

and their corresponding lines in the right image should ap-

pear in the same order. This type of constraint is justified

by the fact that the majority of the scene we are trying to

model consists of planes, which inherently satisfy the or-

dering constraint due to their non-self-occluding property.

This ordering constraint can also be implemented efficiently

with dynamic programming which extracts a minimal cost

path from S that satisfies the ordering constraint, as shown

in Fig. 4.

3.2.5 Inter-Frame Smoothing

When performing disparity estimation on a pair of images,

one needs to take special care of boundary artifacts. In a

standard stereo setup, the pixels on the left side of the left

image are very unlikely to be seen by the other camera. The

same goes for the right pixels of the right image. Similarly,

for dynamic programming, it is difficult to determine the

start and end point of the optimal path. This section intro-

duces an inter-frame smoothness criterion which uses pre-

viously computed optimal paths to guide the dynamic pro-

gramming in the right direction, thereby reducing the effect

of the edge artifacts.

With a forward motion along the optical axis of the cam-

era, which is the most common scenario for survey vehicles,

static objects such as facades move away from the center

of the image in subsequent frames. This means that, for the

stereo set under consideration, the objects situated near the

edges of the image were situated more towards the center in

previously processed images where they had a better chance

of being reconstructed correctly. This leads to the possibil-

ity of reusing previously generated data to guide the optimal

path search of the current stereo set in the right direction.

Each pixel in the similarity map S corresponds to a 3D

line parallel to the gravity vector �g. Furthermore, the vector

�g remains the same for each similarity map, leading to the

conclusion that all computed similarity maps belong to the

same two-dimensional space (perpendicular to �g) and can

therefore be mapped onto each other. Figure 5 shows how

this mapping is used to achieve inter frame smoothing.

The left side of Fig. 5 illustrates how blending is used to

compute the new similarity maps S′
i , where i indicates the

stereo set index. If we define Sw′
i to be the area of S′

i warped

into the search space of Si+1, the new similarity maps are

generated sequentially according to the following formula:

S′
i+1 = (1 − α) × Si+1 + α × Sw′

i (4)

where the blending factor α ∈ [0,1). Initially, the value of

S′
0 is set to S0.

The right-hand side of Fig. 5 shows how the value of α

affects the new similarity maps. The top right image cor-

responds to a value of α = 0, which completely disables

inter-frame smoothing. The middle image corresponds to a

high α value. It shows how the previously computed simi-

larity map is blended onto the current one, thereby enforc-

ing smooth transitions between subsequent similarity maps.

Notice how the new similarity map extrapolates the origi-

nal one to the left and to right. This extrapolation is used to

guide the optimal path search algorithm in the right direction

near the edges of the image (white circle). When comparing

the top and middle image, one can also see that the blend-

ing does not only extrapolate but also reduces the matching

ambiguities. The new similarity map can actually be seen

as a weighted set of pairwise similarity values introduced in
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Fig. 5 Left: Illustration of how previously generated similarity maps are used to guide the optimal path search in the right direction by means

of a blending operation. Right: a Similarity map without inter frame smoothing. b With inter frame smoothing which extrapolates the original

similarity map (white circle). c Extracted optimal path (white line)

Sect. 3.2.3, which increases robustness. Finally, only the part

of the optimal path which is visible in the current stereo set

is selected for further processing, as indicated by the white

line in the bottom right image.

3.2.6 General Stereo Camera Rectification

In Sect. 3.2.2, we assumed that the baseline of each stereo

set is perpendicular to �g, enabling us to rectify each stereo

pair such that the up direction of the rectified cameras

equals �g. In the presence of tilted roads we are still able

to rectify each stereo pair such that this constraint is satis-

fied and the image plane is parallel to the baseline. This re-

sults in an epipolar geometry between the two cameras that

is slightly different from that of a standard stereo setup. For

this case, it can be shown that the projection of a vertical

line from one image into the other image results in a verti-

cal offset which is dependent on the disparity that is being

checked and (3) becomes

SSDx,y,d = SSD(imrightx,y, imleftx+d,y+VO(d)) (5)

where VO(d) represents the disparity dependent vertical off-

set. Also note that there exists a theoretical displacement for

either the left or right camera center along �g such that the

new baseline is perpendicular to �g. In practice, we do not

have control over this displacement, but because the search

space is limited to ruled surfaces parallel to �g, these ruled

surfaces are non self-occluding when displacing along the

vector �g. Therefore, the results for tilted and non-tilted roads

can be expected to be very similar. For implementation on

the GPU, both the rectification and vertical offset computa-

tions are performed implicitly by making use of the projec-

tive texturing capabilities of the GPU.

3.3 Topographical Map Generation

Since all ruled surfaces extracted from all stereo pairs are

parallel to �g, it is possible to create a topographical map by

applying an orthogonal projection along the �g vector. The

3D ruled surfaces now become 2D curves on the topographi-

cal map. By adding the left and right camera centers, we can

create a closed curve, outlining a single polygon for each

stereo pair. As Fig. 6 shows, these polygons can still contain

some errors.

Each polygon can be interpreted as a carving area, mean-

ing that the 2D area covered by the polygon has been marked

as empty by the corresponding stereo set. In order to create

an integrated topographical map, one could carve out the

polygons of each stereo pair and detect the silhouette of the

total carved area. This process, however, is prone to errors

introduced by a single incorrect polygon since it can never

be recovered by other stereo pairs. Therefore we apply a vot-

ing based carving algorithm. After the topographical map is

initialized to a value of zero, the area covered by each pro-

jected polygon is incremented by one. Finally, only the area

with a value greater than a threshold N is carved and the cor-
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Fig. 6 a Example of a ground

truth topographical map.

b Polygon extracted for a single

stereo set. c Voted carving.

d Resulting topographical map

from silhouette extraction.

e Tessellation of a single

carving polygon by means of a

triangle fan

responding silhouette is extracted, see Fig. 6. This results in

a more robust integration algorithm.

To obtain fast execution times for the topographical map

generation, the voted carving is implemented on the graph-

ics card using a blending operation. This means, however,

that the polygons must be subdivided into triangles. This

subdivision process must be such that each pixel inside the

polygon is covered by one triangle only. This kind of tes-

sellation is not trivial for concave polygons such as the ones

generated by the dynamic programming and can quickly be-

come time consuming for increasing horizontal resolution of

the images. In our case, the ordering constraint imposed by

the dynamic programming pass gives us a straightforward

solution to this tessellation problem. It can be shown that, if

the ordering constraint is satisfied, the polygon can be tes-

sellated by a triangle fan with its origin at the optical center

of one of the cameras as shown in Fig. 6.

Although the above-mentioned algorithm has the advan-

tage of simplicity, it still suffers from a few drawbacks when

applied in practice. For example, the areas in front of the

survey vehicle at low driving speed will receive more votes

than the areas at high speeds. To address these problems,

we propose a number of modifications to the voted carving

algorithm.

First of all, in a standard stereo setup the depth accu-

racy of a disparity estimation is inversely proportional to the

disparity. This implies that the depths corresponding to low

disparity values have a large error margin. Needless to say,

carving polygons that contain disparities of zero corrupt the

topographical map. Therefore we add a lower limit to the

disparity values (dmin) that are passed on by the optimal

path search algorithm to the voted carving. In our experi-

ments, we used a minimal value corresponding to 10% of

the maximum disparity range. Note that the disparity esti-

mation algorithm still operates on the full disparity range,

the disparity values are being limited after the optimal path

extraction.

Secondly, because the depth accuracy is lower for objects

that are situated far away from the camera, we apply a gra-

dient to the voting area of each carving polygon. The voting

value for each pixel inside the polygon is set to zmin/z where

z denotes the perpendicular distance to the baseline and zmin

corresponds to a disparity value of dmax. This gradient de-

creases inversely linear with z so that objects far away from

the camera receive lower confidence scores, as illustrated in

the second image of Fig. 7.

Finally, in most cases, there will be a substantial variation

in the driving speed of the survey vehicle, e.g. when stop-

ping for traffic lights. When standing still, the carving area

in front of the survey vehicle will accumulate many votes

and therefore easily pass the final thresholding stage. In this

case, the increased robustness added by the voted carving of

many different polygons and the gradient is bypassed, which

is undesirable. Luckily, the introduction of the gradient en-

ables us to normalize the results. For each pixel in the topo-

graphical map, its value is now divided by the number of

votes it has received. Because the number of votes corre-

sponds to the value of the voted carving algorithm without

the gradient, the two values needed to calculate the final re-

sult can be easily generated on the graphics card by storing

the result of the voted carving with the gradient e.g. in the

red channel of the topographical map and the results for the

voted carving with a constant value of 1 e.g. in the blue chan-

nel.

Not only does this normalization procedure reduce the

negative effect of speed variations but it also adds robust-

ness near the areas where turns are made. In such areas, the

3D scene directly behind the turn is only seen by a limited

number of frames. In those cases, the original voted carving

algorithm results in low values on the topographical map

like the ones indicated by the white circles in Fig. 7. These

low values make it hard to choose a good thresholding value.
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Fig. 7 a Original carving polygon. b Modified carving polygon with disparity limitation and gradient of voting values. c Comparison of the

topographical map with the original and the modified voting algorithm

As can be seen in the right image of Fig. 7, the normalization

procedure displays better behavior near turns.

Note that, in a worst case scenario, a pixel in the topo-

graphical map that was only seen by one stereo set and re-

sulted from an erroneous depth estimation close to the base-

line would have a very high normalized value and therefore

pass the thresholding stage. To reduce the effect of these

outliers, we use a combination of two thresholds. A pixel on

the topographical map can only pass the thresholding stage

if its number of received votes is larger than the first thresh-

old and if the value of its normalized vote is greater than the

second threshold.

3.4 Road Reconstruction

Facade reconstruction using passive techniques is a difficult

task. Looking at the visual imagery, road reconstruction is

even more so. Due to the homogeneous texture of a road,

one can only determine its position by using edge informa-

tion of road markings, if available at all. The correct detec-

tion of these edges however, is also tedious due to the likely

presence of false edges. For example, a parked car creates

false edges which lie outside the road plane. Hence, using

passive techniques for road reconstruction is extremely lim-

ited. Therefore we introduce a method which interacts with

the SfM in order to determine the road position.

The stereo cameras are mounted onto the survey vehicle

in fixed positions. This allows us to determine the positions

where the two front wheels touch the road, relative to the

camera coordinate frames, as shown in Fig. 8. As the SfM al-

gorithm tracks the positions and orientations of the cameras,

it also tracks the positions of these contact points implicitly.

This results in a sparse sampling of points on the road as the

vehicle moves forward. For each stereo set, the left and right

contact points are connected to form a line segment which

gets elongated in both directions until it intersects with the

Fig. 8 Calibration of the wheel contact points of the survey vehicle,

relative to the stereo rig

facade ruled surfaces. By interconnecting the resulting line

segments of consecutive stereo sets, we are able to recon-

struct another ruled surface, representing the road. Note that,

compared to the facades which are constrained to be par-

allel to the gravity vector �g, the ruled surface representing

the road is independent of �g and can therefore be slanted or

tilted.

Looking at Fig. 4, one can see that the line-based similar-

ity measure would perform better if the integration along the

y direction were limited to the facades. The reconstructed

ruled surface for the road makes this possible. It allows us

to discard similarity values SSDx,y,d for which the corre-

sponding 3D point is positioned beneath the road. Since the

road level of a certain point is only known once we passed

it, discarding those points would imply a certain look-ahead.

Therefore we use an approximation of the future road level

by extrapolating the previously computed road levels. Al-

though this future road level is only an approximation, it

provides similar results to using the actual future road level

because, at ground level, there are still a few objects corrupt-
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Fig. 9 Mapping of line segments onto textures. Each 3D line corre-

sponds to a column in the texture map

ing the line-based similarity measure such as parked cars

and pedestrians. One could raise the point that it would be

better to use the camera level rather than the road level to

discard points so that parked cars do not corrupt the results.

Using the camera level, however, is not robust in the pres-

ence of bumpy roads.

3.5 Texture Generation

Once the 3D facade and road models have been constructed,

we can apply textures to them by back-projecting the images

onto the models. Because the facade and road models consist

of line segments, we can initialize 2D textures where each

vertical line in a texture corresponds to a 3D line segment, as

shown in Fig. 9. To ensure that images do not back-project

on occluded 3D structures, we apply a commonly used tech-

nique in computer graphics, called shadow mapping. Before

an image is used for texturing, its corresponding depth map

is generated by projecting the 3D models onto its image

plane. When texturing a vertical line segment of the facade

strip with the image, we compare the line depth relative to

the camera with the depth stored in the depth map. If the for-

mer is larger or the line is situated outside the camera view

frustum, then the texture should not be applied.

The road and facade textures are initialized as black, and

the images are processed in the same order in which they

were recorded. If an image is the first to be applied to a

certain line segment and passes the visibility test, the black

color is replaced by the projected image. If a previously

processed image already projected onto the line segment,

the resulting color Cnew is a linear combination of the pre-

viously stored color Cold and the current texture color Ctex

according to the equation Cnew = (1 − B) · Cold + B · Ctex

where the blending factor B is 0.5 or greater. The constraint

on B ensures that newly applied images, which are closer

to the model and are therefore more detailed, have a larger

weight than previous images.

Fig. 10 Examples of texture maps created in the texture generation

step of the algorithm. These kind of images are suitable for texture

compression such as jpeg2000

Because the model is composed of ruled surfaces for both

the facades and the roads, we can make sure that line seg-

ments which are close in 3D space are also close in the tex-

ture map. In contrast to a random placement of the line seg-

ments in the textures, this avoids introducing high frequen-

cies in the resulting textures and allows us to apply compres-

sion techniques such as jpeg2000 to the textures, resulting

in a highly compact representation of a textured 3D model.

Figure 10 shows a number of typical texture maps extracted

by the texture generation pass. Notice how the building fa-

cades appear to be rectified.

3.6 Discussion

Figure 11 shows a comparison between the original im-

ages and renderings of the reconstructed models for three

recorded video sequences. As can be seen from those ex-

amples, the proposed algorithm manages to capture the road

surface and building facades very well. As pointed out in

Sect. 3.2, however, the reconstruction is based on the as-

sumption that the scene is composed of ruled surfaces. Since

cars violate this assumption, they appear squashed onto the

road and facade surfaces, thereby degrading the visual real-

ism of the 3D model to a large extent. Furthermore, moving

and/or shiny cars degrade the accuracy of the camera posi-

tions returned by the SfM algorithm which is based on the

assumption of a static scene with diffuse reflectance proper-

ties.

While RANSAC outlier rejection (Fischler and Bolles

1981) can help to remove moving objects from further con-

sideration, many natural car motions can be misinterpreted

as static because of an ambiguity in their image projections.

For example, following a car in the same lane at more or less

the same speed on a straight stretch makes it clearly indis-

tinguishable from a static object at infinity. Also, a car ap-

proaching on the other lane with a speed correlated to ours

is indistinguishable from a static car parked somewhere in

the middle of both lanes. Because of the nature of traffic,

these situations of correlated motion occur more often than
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Fig. 11 (top) Undistorted images, taken directly from the video stream; (bottom) rendering of the reconstructed models from the same point of

view

Fig. 12 (left) Visualization of the viewpoints the single-view detectors

were trained on. (right) Number of training images used for each view

we would wish (for our application). Furthermore, since cars

are passing close to the cameras, they may substantially in-

fluence the computed camera translation and rotation.

Car recognition can help in both aforementioned chal-

lenges by informing the SfM algorithm to ignore car features

and by retrieving the 3D position of cars, so that they can be

replaced by virtual 3D placeholders, thereby improving the

visual realism of the 3D city model. Replacing real cars by

virtual ones instead of actually trying to model them in 3D

from the images, is also advantageous for several other rea-

sons. First and foremost, an accurate reconstruction of the

observed car geometry is not necessarily a desirable goal.

Apart from the fact that such a reconstruction would be ex-

tremely difficult to obtain due to transparent windows and

specularities on the car surface, this reconstruction would

at best contain one half of each car, since the other half is

not visible from the collected viewpoints along the road.

Removing the cars from the reconstruction entirely, on the

other hand, is also not easily possible, since the area behind

and underneath them has never been observed by the survey

vehicle. Filling in the resulting gaps in the road and facade

textures would require semantically meaningful texture in-

painting, which is currently still far beyond the state-of-the-

art. Finally, content providers are often asked to remove per-

sonal items from their data to avoid privacy issues. The vir-

tual cars do not reveal license plates or other identification

cues and can thus alleviate such concerns.

4 Object Detection

In the following, we therefore integrate the reconstruc-

tion framework with an appearance-based object recognition

pipeline, which tries to detect cars from multiple viewpoints,

to estimate their precise location and orientation in 3D, and

to feed back this information to the city modeling engine.

Figure 13 visualizes the different stages of the recog-

nition pipeline. We start by applying several single-view

car detectors to both camera images and collect their re-

sponses to find possible car locations. However, without

any additional scene knowledge, those detectors produce

too many false positives at improbable image locations and
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Fig. 13 Stages of the recognition system: a initial detections before and b after applying ground plane constraints, c temporal integration on

reconstructed map, d estimated 3D car locations, rendered back into the original image

scales (Fig. 13a). Using the ground plane and camera pa-

rameters retrieved by SfM, we therefore enforce geometric

constraints that limit car detections to physically plausible

positions (Fig. 13b). Each car detection in each subsequent

frame casts a vote for the position and orientation of the car

in 3D world coordinates. These votes are then integrated

over time to form 3D bounding box hypotheses for static

cars, while moving cars are discarded (Fig. 13c, d). The re-

sulting lists of 3D car hypotheses is used to instantiate vir-

tual 3D placeholders in the 3D city model, which cover the

reconstruction artifacts and increase the visual realism of the

final model. The following sections describe those steps in

more detail.

4.1 Appearance-Based Object Detection

Object detection from a moving vehicle is a notoriously dif-

ficult task due to the combined effects of motion blur, lens

flaring, significant partial occlusion, and rapidly changing

lighting conditions between shadowed and brightly lit areas.

Some of those effects are visualized in Fig. 14. In order to

cope with those challenges, we found it necessary to base

the detectors on a robust combination of different cues.

The recognition system is thus based on a multi-cue ex-

tension (Leibe et al. 2006) of the Implicit Shape Model

(ISM) approach (Leibe et al. 2005, 2007b). A battery of 5

single-view ISM detectors is run in parallel to capture dif-

ferent aspects of cars (see Fig. 12 for a visualization of

their distribution over viewpoints). For efficiency reasons,

we make use of symmetries and run mirrored versions of the

same detectors for the other semi-profile views. All detec-

tors share the same set of initial features: local Shape Con-

text descriptors (Mikolajczyk and Schmid 2005), computed

at Harris–Laplace, Hessian–Laplace, and DoG interest re-

gions (Mikolajczyk and Schmid 2005; Lowe 2004).

As the detection system is described in detail in (Leibe et

al. 2007b), we only summarize its main steps here. Dur-

ing training, extracted features are clustered into appear-

ance codebooks, and each detector learns a dedicated spa-

tial distribution for the codebook entries that occur in its

target viewpoint. During recognition, features are again

matched to the codebooks, and activated codebook entries

cast probabilistic votes for possible object locations and

scales according to their learned spatial distributions. The

votes are collected in 3-dimensional Hough voting spaces

for (x, y, scale), one for each detector, and maxima are

found using Mean-Shift Mode Estimation (Comaniciu and

Meer 2002; Leibe et al. 2007b).

4.2 Integration of Ground Surface Constraints

Geometric scene constraints, such as the knowledge about

the ground surface on which objects can move, can help

detection in several important respects. First, they can re-

strict the search space for object hypotheses to a corridor in

the (x, y, scale) volume, thus allowing significant speedups

and filtering out false positives. Second, they make it pos-

sible to evaluate object hypotheses under a size prior and

“pull” them towards more likely locations. Last but not least,

they allow to place object hypotheses at 3D locations, so that

they can be corroborated by temporal integration. In the fol-

lowing, we use all three of those ideas to improve detection

quality.

Given the camera calibration and a ground plane esti-

mate from SfM, we can estimate the 3D location for each

object hypothesis by projecting a ray through the base point
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Fig. 14 (top) Car detections on typical images from the city scenario. (bottom) Examples for the difficulties in this scenario: a motion blur, b lens

flaring, c bright lighting, d strong shadows

of its bounding box and intersecting this ray with the ground

plane. If the ray passes above the horizon, we can trivially

reject the hypothesis. In the other case, we can estimate

its real-world size by projecting a second ray through the

bounding box top point and intersecting it with a vertical

plane through the object’s 3D base. Using this information,

we can formally express the likelihood for the real-world ob-

ject H given image I by the following marginalization over

the image-plane hypotheses {hi}:

p(H |I ) =
∑

i

p(H |hi, I )p(hi |I )

∼
∑

i

p(hi |H)p(H)p(hi |I ) (6)

where p(H) expresses a prior for object sizes and distances,

and p(hi |H) reflects the accuracy of our 3D estimate. In

our case, we enforce a uniform distance prior up to a maxi-

mum depth of 70 m and model the size prior by a Gaussian,

similar to (Hoiem et al. 2006). The hypothesis scores are

thus modulated by the degree to which they comply with

scene geometry, before they are passed to the next stage

(Fig. 13a, b).

4.3 Hypothesis Selection

In order to fuse the individual object hypotheses into a con-

sistent system response, we next apply the following hypoth-

esis selection stage. We first compute a top-down segmenta-

tion for each hypothesis h according to the method described

in (Leibe et al. 2007b). This yields two per-pixel probabil-

ity maps p(figure|h) and p(ground|h) per hypothesis. With

their help, we can express the hypothesis likelihood p(h|I )

in terms of the pixels p it occupies:

p(h|I ) =
∏

p∈I

p(h|p) =
∏

p∈Seg(h)

p(p = figure|h)p(h) (7)

where Seg(h) denotes the segmentation area of h, i.e. the

pixels for which p(p = figure|h) > p(p = ground|h). We

then search for the optimal combination of hypotheses that

best explains the image content under the constraint that

each pixel can be assigned to at most one hypothesis.

The resulting hypothesis selection problem is formu-

lated in a Minimum Description Length (MDL) framework.

Briefly stated, this framework provides a formalism to weigh

off the explanatory power of a set of hypotheses against the

complexity of the resulting explanation. Taking an analogy

to image encoding, each detection hypothesis can explain a

set of pixels, namely its support region in the image, and

can thus provide savings (Leonardis et al. 1995) in terms of

transmission bits. However, in order to specify the hypoth-

esis, we have to “pay” a certain model cost, as well as a

cost for the error made by this representation. When two de-

tection hypotheses overlap, they compete for image pixels;

thus, their combined support area is reduced. As the model

cost however still applies, such a hypothesis combination is

only beneficial if the combined support outweighs the in-

creased cost. Following the formalism of (Leonardis et al.

1995), we express the savings of a particular hypothesis h

as

Sh ∼ Sdata − κ1Smodel − κ2Serror, (8)

where Sdata corresponds to the number N of data points or

pixels that are explained by h; Smodel denotes the model cost;
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Fig. 15 (Color online) Visualization of the temporal integration stage: a estimated 3D object locations as the survey vehicle is moving along (in

green); b real-world object hypotheses obtained by mean-shift clustering (in orange); c final hypotheses selected by the QBOP (in red)

Serror describes a cost for the error that is made by this rep-

resentation; and κ1, κ2 are constants to weight the different

factors. It can be shown that if the error term is chosen as the

log-likelihood over all data points x assigned to a hypothe-

sis h, then the following relationship holds:

Serror = − log
∏

x∈h

p(x|h) = −
∑

x∈h

logp(x|h)

= −
∑

x∈h

log(1 − (1 − p(x|h)))

=
∑

x∈h

∞
∑

n=1

1

n
(1 − p(x|h))n. (9)

Using a first-order approximation1 for the infinite sum, we

obtain

Serror ≈
∑

x∈h

(1 − p(x|h)) = N −
∑

x∈h

p(x|h). (10)

Substituting (10) into (8), the savings then reduce to the

merit term

Sh = −κ1Smodel +
∑

x∈h

((1 − κ2) + κ2p(x|h)), (11)

which is effectively just a sum over the data assignment like-

lihoods, together with a regularization term to compensate

for unequal sampling. When hypotheses overlap, they com-

pete for data points, resulting in interaction costs. As shown

in (Leonardis et al. 1995; Leibe et al. 2007a), the optimal

1This approximation is justified if we make sure that only sufficiently

confident point assignments are made, as is the case e.g. for all pixels

belonging to a hypothesis’s top-down segmentation Seg(h), since they

fulfill the condition p(p = figure|h) > p(p = ground|h).

hypothesis selection can then be formulated as a Quadratic

Boolean Optimization Problem (QBOP):

max
m

mT Qm = max
m

mT

⎡

⎢

⎣

q11 · · · q1M

...
. . .

...

qM1 · · · qMM

⎤

⎥

⎦
m (12)

where m = (m1,m2, . . . ,mM) is a vector of indicator vari-

ables, such that mi = 1 if hypothesis hi is accepted and 0

otherwise. Q is an interaction matrix whose diagonal ele-

ments qii express the merits of each individual hypothesis,

while the off-diagonal elements qij express the cost of their

overlap.

In our case, we express the merits of each image-plane

hypothesis by how well it explains the image pixels it oc-

cupies, using p(h|I ) from (7). Since this measure favors

objects at larger scales, we set the model cost to a scale

and viewpoint dependent normalization factor Aσ,v(h), ex-

pressing the expected area of an object hypothesis at its

detected scale and viewpoint. This results in the following

merit terms:

qii = Shi
= −κ1 + p(hi |Hi)p(Hi)f (hi), (13)

f (hi) =
1

Aσ,v(hi)

×
∑

p∈Seg(hi )

((1 − κ2) + κ2p(p = fig.|hi)). (14)

Two image-plane hypotheses hi and hj interact if they com-

pete for the same pixels. In this case, we assume that the

hypothesis h∗ ∈ {hi, hj } that is farther away from the cam-

era is occluded and subtract its support in the overlapping

image area. The interaction cost then becomes

qij = qji = −
1

2
p(h∗|H ∗)p(H ∗)f (h∗). (15)
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Fig. 16 (top) Online 3D car location estimates of our system using only information from previous frames. (bottom) Final 3D estimates integrated

over the full sequence

This formulation allows to select the best global interpreta-

tion for each image from the output of the different single-

view detectors. Since typically only a subset of hypotheses

produces overlaps, it is generally sufficient to compute a

fast greedy approximation to the optimal solution. Exam-

ples for the resulting detections are shown in Fig. 14. As

can be seen from those examples, the resulting object detec-

tion module is capable of reliably detecting cars from dif-

ferent viewpoints and in scenes of realistic complexity. It

should be noted, however, that both the reliance on multiple

cues and the parallel execution of several single-view de-

tectors introduce additional computational cost, so that the

object detection module is not yet capable of real-time per-

formance. In future work, we therefore intend to speed up

this stage by incorporating more efficient feature extraction

(Bay et al. 2006) and efficient sharing of features between

detectors (Mikolajczyk et al. 2006; Torralba et al. 2004).

4.4 Integration of Facade Constraints

Using the information from 3D reconstruction, we add an-

other step to check if hypothesized 3D object locations lie

behind reconstructed facades. As this information will typi-

cally only be available after a certain time delay (i.e. when

our system has collected sufficient information about the fa-

cade), this filter is applied as part of the following temporal

integration stage.

4.5 Temporal Integration

The above stages are applied to both camera images simul-

taneously. The result is a set of 3D object hypotheses for

each frame, registered in a world coordinate system. Each

hypothesis comes with its 3D location, a 3D orientation vec-

tor inferred from the selected viewpoint, and an associated

confidence score. Since each individual measurement may

still be subject to error, we improve the accuracy of the esti-

mation process by integrating the detections over time. This

procedure results in 3D bounding box estimates for each sta-

tic car, while moving cars are discarded.

Figure 15 shows a visualization of the integration pro-

cedure. We first cluster consistent hypotheses by starting

a mean-shift search with adaptive covariance matrix from

each new data point H and keeping all distinct convergence

points H (Fig. 15b). We then select the set of hypothesis

clusters that best explains our observations by again solving

a QBOP, only this time in the 3D world space

q̃ii = −κ̃1 +
∑

Hk∈Hi

((1 − κ̃2) + κ̃2 gk,i), (16)

q̃ij = −
1

2

∑

Hk∈Hi∩Hj

((1 − κ̃2) + κ̃2gk,∗ + κ̃3O(Hi,Hj )),

(17)

gk,i = e−λ(t−tk)p(Hk|Hi)p(Hk|I ) (18)

where p(H |Hi) is obtained by evaluating the location of

H under the covariance of the cluster Hi ; H
∗ denotes the

weaker of the two hypothesis clusters; and O(Hi,Hj ) mea-

sures the overlap between their real-world bounding boxes,

assuming average car dimensions. This last term is the main

conceptual difference to the previous formulation in (14)

and (15). It introduces a strong penalty term for hypoth-

esis pairs that overlap physically. In order to compensate

for false positives and moving objects, each measurement is

additionally subjected to a small temporal decay with time
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constant λ. The results of this procedure are displayed in

Fig. 15c.

4.6 Estimating Car Orientations

In the above procedure, car orientations are estimated us-

ing the following two observations. First, the main estima-

tion errors are made both along a car’s main axis and along

our viewing direction. Since the latter moves when pass-

ing a parked car, the cluster’s main axis is slightly tilted

towards our egomotion vector (c.f. Fig. 15a). Second, the

semi-profile detectors, despite being trained only for 30°

views, respond to a relatively large range of viewpoints. As

a result, the orientation estimates from those detectors are

usually tilted slightly away from our direction of movement.

In practice, the two effects compensate for each other, so

that a reasonably accurate estimate of a car’s main axis can

be obtained by averaging the two directions. Some typical

examples of the resulting 3D estimates are shown in Fig. 16.

5 Feedback into 3D Reconstruction

The object recognition module uses the knowledge of cam-

era parameters and ground plane resulting from the 3D re-

construction algorithm to guide its search for cars. In addi-

tion to identifying 3D bounding volumes that could contain

cars, it also generates a list of 3D hypotheses for the scale,

position, and rotation of each detected car. These could be

used directly to instantiate 3D virtual cars. However, the ori-

entation estimates are not in all cases sufficiently accurate

due to the inherent limitations of the appearance-based ob-

ject recognition algorithm (which uses object detectors that

are trained on a discrete set of car orientations). In addition,

the location estimates are based on a rough ground plane

estimate, extrapolating the road surface under the survey ve-

hicle at the time when the object was first seen. Therefore,

the virtual cars look more or less alright, but they can be po-

sitioned slightly above or below the road surface, and do not

always seem to be neatly parked due to the noise on their

rotation. Therefore, the following refinement is performed

for each car. Along the camera path resulting from SfM, one

looks for the camera center closest to the estimated 3D car

position. Around this location, the ground plane is estimated

using the contact points of the wheels of the survey vehicle

on the road, as previously explained in Sect. 3. The 3D vir-

tual model is then lowered onto this ground plane. Its orien-

tation within the plane can be refined as follows. When the

car direction returned by the object recognition algorithm is

close to the direction of the local camera path section where

it passes the car, the latter direction is adopted as final ori-

entation of the car. As a consequence, when the motion of

the survey vehicle through the street is smooth, the resulting

refined orientations of the cars will inherit this smoothness.

At each detected car location, we then instantiate a vir-

tual car model acting as a placeholder. We apply the fol-

lowing computer graphic tools to blend the virtual 3D cars

into the real environment. First, a directional light source is

placed above the scene, and the cars are rendered using local

Gouraud shading. To simulate the metallic look of a typical

car, a specular component is added which takes as its in-

put a spherical reflection map that is built up on-the-fly by

the graphics card. In this way, the cars reflect the environ-

ment, as would be expected in real-life. For speed reasons,

the shadows of cars on the road are not explicitly calculated,

but are mimicked by dark spots which were blended onto

the road under the car. This also helps in covering up the

remaining car artifacts which were textured onto the road

surface.

Figure 17 (right) shows a collection of views on the final

3D city model from vantage points away from the original

camera path followed by the survey vehicle. (Note that in

those examples only the cars’ main orientations are inferred;

the information whether a car is facing forward or backward

was not yet used in the rendered examples. This can however

easily be corrected by incorporating scene knowledge about

allowed driving directions, which is done in the newest ver-

sion of our system.)

6 Experimental Evaluation

6.1 3D Reconstruction

We tested the reconstruction system on three stereo se-

quences. Table 1 shows the statistics and timing results of

each specific sequence. Note that real-time processing at 25

frames per second can be achieved by batching and pipelin-

ing the different operations. The SfM, bundling, map gener-

ation and texture application each form an independent stage

in the pipeline and can therefore be executed on two comput-

ers in parallel. Note that we make use of both the CPUs and

GPUs. The tests were performed on a PC with a AMD 64

X2 Dual Core CPU, 1 GB of RAM and an nVidia Geforce

8800GTX GPU. For maximum performance, the algorithm

is able to exploit the dual-core functionality of the CPU by

assigning one core to each of the two modules of the SfM.

Comparisons between the original images and renderings

of the reconstructed models from the same viewpoint are

shown in Fig. 11. The topographical map generation is il-

lustrated in Fig. 18.2 Because the simple geometry assump-

tions are never perfectly met in real life, it makes no sense

to investigate the reconstruction accuracy of the resulting 3D

models. As our goal is to supply simple models for realistic

2Sample result videos can be downloaded from the following website:

http://homes.esat.kuleuven.be/~ncorneli/ijcv07/.
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Fig. 17 (left) Rendered image taken from the original 3D city model and augmented with the virtual placeholders. (right) A collection of rendered

images from the final 3D city model taken from various vantage points

Table 1 Timing results of the

3D reconstruction system City 1 City 2 City 3 CPU GPU

Image Size 360 × 288 384 × 288 384 × 288

Disparity Range 64 64 64

# Stereo Pairs 1175 290 400

SfM 33.7 fps 29.6 fps 31.4 fps ×

Bundle 30.1 fps 26.8 fps 28.9 fps ×

Map Generation 37.2 pairs/s 36.2 pairs/s 35.8 pairs/s ×

Texturing 41.6 pairs/s 41.2 pairs/s 40.3 pairs/s ×

Data Storage 712 KB 473 KB 876 KB

Travel Distance 500 m 400 m 650 m

pre-visualization of traffic situations the only measure used

to judge the quality of the result is the subjective measure of

realism.

Figure 19 illustrates some drawbacks of the current im-

plementation. The top image shows that incomplete carving

can occur near corners. This is due to the limited frustum

of the cameras. The silhouette extraction stage will extract

a ruled surface along the dashed line, while the actual fa-

cades are represented by the bold lines. This problem can

be resolved by using either additional or omni-directional

cameras. The bottom left image illustrates a case in which

the simple geometry assumptions were clearly violated, but

where the resulting simplified textured model could still be

used to yield a realistic rendering through the city model

to illustrate traffic maneuvers. Because of the homogeneous

texture on the side of the taller building, the optimal stereo

matching path clearly shows preference towards the smaller

building. The building in the bottom right image also vi-

olates the simple geometry assumptions. Here, the optimal

path prefers the smaller building on the left side of the poorly

reconstructed building and vice versa on the right side.

6.2 Object Recognition

In order to evaluate the object recognition performance,

we manually annotated the car locations in the first test

sequence. This sequence consists of 1175 image pairs

recorded by the camera vehicle over a distance of approx-

imately 500 m. The stereo input streams were captured at

a frame rate of 25 fps and a relatively low resolution of
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Fig. 18 (top left) Topographical map generation by voted carving; (top

right) silhouette, extracted after thresholding; (bottom left) aerial view

of the corresponding area; (bottom right) silhouette mapped onto aerial

image

Fig. 19 a Incomplete carving due to limited frustum of the cameras.

b Ruled surface assumption violated with limited impact on visual per-

ception. c Ruled surface assumption violated with noticable impact on

visual perception (as visible on the 2nd floor gallery)

380 × 288 pixels. All image pairs are processed at their

original resolution by the SfM and reconstruction modules

and bilinearly interpolated to twice that size for object de-

tection (similar to Lowe 2004). The 5 single-view car de-

tectors were trained on images taken from the LabelMe

database (Russell et al. 2005), for which viewpoint anno-

tations and rough polygon outlines were already available

(c.f. Fig. 12). In all experiments, we set κ2 = 0.95, κ̃2 = 0.5,

and plot performance curves over the value of κ1.

For a quantitative estimate of the performance improve-

ment brought about by the inclusion of geometry con-

straints, we annotated the left camera stream of the video

sequence by marking all cars that were within a distance of

50 m and visible by at least 40–50%. It is important to note

that this includes many difficult cases with partial visibility,

so it is unrealistic to expect perfect detection in every frame.

We then evaluate the detection performance using the crite-

rion from (Leibe et al. 2005): a detection is only counted as

correct if it (a) overlaps with the annotation bounding box by

more than 50% and (b) is the closest such detection for this

annotation rectangle; else it is counted as a false positive.

Figure 20 presents the resulting detection performance

with and without ground plane constraints. As can be seen

from the plot, detection reaches a level of about 50% re-

call at 4 false positives per image (fppi) when no assump-

tions about scene geometry are made. Using the ground

plane automatically estimated from SfM, both the recog-

nition rate and the detection precision are considerably in-

creased. Looking at the operating point for temporal integra-

tion of 47% recall (marked by a cross in the plot), the false

positive rate is reduced from 3 fppi to 0.34 fppi, correspond-

ing to an almost tenfold increase in detection precision.

Counted over its full length, the sequence contains 77

(sufficiently visible) static and 4 moving cars, all but 6 of

which are correctly detected in at least one frame. The on-

line estimation of their 3D locations and orientation usually

converges at a distance between 15 and 30 m and leads to a

correct estimate for 68 of the static cars; for 5 more, the ob-

tained estimate would also have been correct, but does not

reach a sufficiently high confidence level to be accepted. The

moving cars are also detected in most input frames, but tem-

poral integration does not converge to a stable location esti-

mate for them due to their motion. In more recent work, we

have therefore extended the integration framework to also

estimate trajectories for moving objects and track them over

time (Leibe et al. 2007a). Figure 20 (bottom) shows a topo-

graphical map with the camera path and all reconstructed car

locations.

7 Discussion & Conclusion

In this paper, we presented an effective city modeling frame-

work which delivers compact and visually realistic 3D

representations to be used for easy distribution and pre-

visualization of ground-level traffic situations in consumer

navigation tools. Our proposed approach integrates 3D re-

construction and object detection in a tight collaboration,

which allows one algorithm to help the other overcome its
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Fig. 20 (Color online) (top) Comparison of the object detection per-

formance with and without scene geometry constraints. (bottom) Map

with the reconstructed camera path and all detected car locations (in

red)

weaknesses. Specifically, the reconstruction pipeline builds

on a speed-optimized SfM algorithm to determine cam-

era poses for a stereo survey sequence. Computation time

is kept low thanks to the pre-calibrated stereo rig, the use

of monochrome video signals and a simple feature extrac-

tion algorithm. Subsequently, the resulting camera poses are

used by an adapted dense stereo algorithm. The latter uses

the graphics card as implementation platform and incorpo-

rates the assumptions of simple output geometry, namely

that building facades are approximately all parallel to the di-

rection of gravity and that the road can be approximated by

a ruled surface. The results are compact and can be retrieved

at video frame rate, making it realistic for this city mod-

eling framework to be unleashed on large image databases

covering entire cities.

As parked and moving cars may degrade the visual re-

alism of the reconstruction and lead to unpleasant artifacts

in the final 3D city model, we combined the reconstruction

system with an object detection pipeline. This recognition

system was used to detect cars in the original video input,

guided by the online scene geometry estimates the recon-

struction pipeline could provide. The inclusion of those geo-

metric constraints proved extremely helpful and led to a sig-

nificant increase in detection precision, as could be shown in

our experiments. The detection results were then temporally

integrated in a world coordinate frame to create 3D bound-

ing box hypotheses for static cars and instantiate a virtual

3D placeholder for each such detected car in the final city

model. In this way, the artifacts caused by cars could be re-

moved, and a final 3D city model with heightened visual

realism could be obtained.

Apart from covering up the reconstruction artifacts from

observed cars on the road surface, the placeholder models

have several additional advantages. Since they are instanti-

ated in the same locations as their real counterparts, they

give a better impression of the scale of the reconstructed

model and the width and possibility of its streets. This is

an important feature, as the main application area of future

city modeling technology will most likely be in car navi-

gation systems, for which recovery of the number and di-

mensions of individual driving lanes becomes increasingly

important. In addition, the placeholder models make it pos-

sible to “brand” the city model with the car type the final

navigation system is built into. The reconstructed city would

then contain neutral car models, interspersed with models of

the driver’s (or manufacturer’s) preferred car brand. Last but

not least, the substitution of observed real cars by generic

models also addresses privacy issues.

The proposed placeholder solution also does not violate

our goal of creating a compact city model suitable for ren-

dering on a low-cost platform. The reconstructed city model

for the entire first test sequence, including all facade tex-

tures, takes up only 712 kB. Each placeholder car model

requires an additional 300–500 kB of storage, but it can be

reused whenever the car is instantiated in the reconstruction.

In our test application, we used 4 distinct car models, which

together with the shadow effects, already gave rise to a sur-

prising degree of variability in the depicted scenes. For a

final application, we expect that 10–12 distinct car models

will be sufficient to reduce repetitions. The spherical reflec-

tion map used for increased realism also does not add to the

storage costs, since it can be created dynamically, as part

of the regular rendering process. The simple rendering algo-

rithm we used can be performed even by the latest genera-

tion of PDAs with mobile graphic cards.

It is important to point out that our approach is targeted

at the ground-level reconstruction of urban scenes and takes
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advantage from the tall buildings that can be found there,

both for finding good features during SfM and for the facade

reconstruction itself. Although it can compensate for occa-

sional gaps in the facades, it would not work well for rural or

suburban scenes, where such structures are entirely missing.

However, such less densely populated scenes can be cap-

tured well by aerial imagery (in contrast to urban scenes,

where high buildings and narrow streets severely limit the

aerial camera’s view). The methods are thus complemen-

tary, and the best-suited approach should be chosen for each

environment. This is in line with current practice of land

surveying companies, which are already now employing a

mixture of different methods for different environments.

At this stage, all detected cars were removed from fur-

ther processing by the reconstruction algorithm. However,

parked cars can still contribute some features to the recon-

struction algorithm as they comply to the assumption of a

static scene. We will therefore investigate to what extent we

can distinguish between parked and moving cars and use

that information. We envision some problems with scenar-

ios which are borderline cases. For instance, when standing

in front of a red traffic light, most cars around us will be

static, but they will gradually start to move when the traffic

light turns green. Therefore, there is a grey zone in which

we cannot clearly determine whether the car is static or not.

The first cognitive loop which was established between

reconstruction and recognition will inspire us to add addi-

tional loops between existing components to increase the

overall robustness of the combined system. Detectors for

other object classes, such as pedestrians, motorbikes, trees,

etc. could be used in the same spirit as presented in this pa-

per. They will help in improving the visual quality of the

final 3D model, and in automatically masking out image

content which might otherwise disturb the reconstruction or

lead to privacy issues.

This paper emphasizes the use of passive stereo for 3D

city modeling purposes. Although it is only a matter of time

before fast, cheap, and compact active range scanners will

become available, passive scanners still have the advantage

of being able to capture the entire scene at a single point in

time. This can prove useful when implementing cognitive

loops such as the one between 3D reconstruction and object

detection. Next to the road surface, the ruled surfaces of the

facades can also be used to filter out false positives in the

object detection stage, allowing the application to lower the

detection threshold while maintaining the detection perfor-

mance. Lowering this threshold reduces the chance that an

object is missed which can have disastrous consequences in

e.g. real-time pedestrian detection for automated vehicles.

Future work on the reconstruction system will mainly fo-

cus on two separate problems. On the one hand, the simple

geometry assumptions will never completely fit the true 3D

geometry of the scene. This makes it very difficult to ex-

tract a consistent model texture from the original images.

Super-resolution schemes cannot be applied, as they assume

that the 3D geometry is correct in order to merge different

textures. A different, clever way of merging textures from

different images is needed to remove artifacts from the final

texture. On the other hand, we can use the simplified model

as a starting point for determining a more detailed 3D model

when accurate 3D measurements are required.

A further increase in reconstruction accuracy and real-

ism can be achieved by mounting more than two cameras

on the survey vehicles and by using view dependent texture

mapping (Debevec et al. 1998). Finally, the higher-level un-

derstanding of urban architecture would help in improving

the 3D geometry and therefore also its texture. For instance,

balconies which stick out of the building facades could be

detected and modeled, doors could be detected and pushed

deeper into the facades, etc.
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