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Abstract

Tumor segmentation from MRI data is an important but
time consuming task performed manually by medical ex-
perts. Automating this process is challenging due to the
high diversity in appearance of tumor tissue, among differ-
ent patients and, in many cases, similarity between tumor
and normal tissue. One other challenge is how to make use
of prior information about the appearance of normal brain.
In this paper we show how to incorporate prior informa-
tion into a multi-dimensional volumetric features set. Us-
ing manually segmented data we learn a statistical model
for tumor and normal tissue. We propose a variational seg-
mentation method that uses region statistics on the multi-
dimensional feature set to evolve a level set. The probabil-
ity of a voxel being inside or outside is given by the devi-
ation from the pre-computed statistical model. We demon-
strate the performance of our method on several sets of MRI
scans.

1. Introduction

Radiation oncologists, radiologists, and other medical
experts spend a substantial portion of their time segment-
ing medical images. Accurately labeling brain tumors and
associated edema in MRI (Magnetic Resonance Images) is
a particularly time-consuming task, and considerable vari-
ation is observed between labelers. Furthermore, in most
settings the task is performed on a 3D data set by labeling
the tumor slice-by-slice in 2D, limiting the global perspec-
tive and potentially generating sub-optimal segmentations.
Subsequently, over the last 15 years, a large amount of re-
search has been focused on semi-automatic and fully au-
tomatic methods for detecting and/or segmenting brain tu-
mors from MRI scans.

The process of segmenting tumors in MRI images as op-
posed to natural scenes is particularly challenging [22]. The

tumors vary greatly in size and position, have a variety of
shape and appearance properties, have intensities overlap-
ping with normal brain tissue, and often an expanding tu-
mor can deflect and deform nearby structures in the brain
giving an abnormal geometry also for healthy tissue. There-
fore, in general it is difficult to segment a tumor by simple
unsupervised thresholding [12]. Other more successful ap-
proaches consider fuzzy clustering [7, 19] or texture infor-
mation [1, 6].

Often the information extracted from the MRI images is
incorporated into a supervised approach that uses labeled
data and automatically learns a model for segmentation.
Different machine learning (ML) classification techniques
have been investigated: Neural Networks [6], SVMs (Sup-
port Vector Machines) [8, 28], MRFs (Markov Random
Fields) [11, 2], and most recently CRFs (Conditional Ran-
dom Fields) [16].

But, as previously mentioned, statistical classification
may not allow differentiation between non-enhancing tumor
and normal tissue due to overlapping intensity distributions
of healthy tissue with tumor and surrounding edema. One
major advantage when segmenting medical images as op-
posed to natural scenes is that structural and intensity char-
acteristics are well known up to a natural biological vari-
ability or the presence of pathology. Therefore, a geometric
prior can be used by atlas-based segmentation in which a
fully labeled template MR volume is registered to an un-
known data set [15, 33, 17, 23].

Having extracted different types of information from the
MRI data (e.g., texture, symmetry, atlas-based priors), one
challenge is to formulate a segmentation process that ac-
counts for it. Although classification techniques have been
widely explored in the field of medical image segmentation
and for this problem, variational and level set techniques are
a powerful alternative segmentation strategy that is now of
substantial interest to this field [24, 19]. It has been shown
that variational techniques can integrate different typesof
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information in a principled way (e.g., boundary informa-
tion [3], region information [4, 21], shape priors [5, 27],
texture for vector valued images [26, 25]). Some advan-
tages of using a level set representation is that since the
curve/surface is implicitly represented, topological changes
are naturally possible. There also exist efficient numerical
implementations [29].

In this paper, we propose a variational MRI tumor seg-
mentation method that incorporates both atlas-based priors
and learned statistical models for tumor and healthy tissue.
The formulation extends the Chan-Vese region-based seg-
mentation model [4] in a similar way to texture-based ap-
proaches [26, 25]. But instead of using an unsupervised
approach we learn a statistical model from a set of features
specifically engineered for the MRI brain tumor segmenta-
tion task. The set of features that we use are calculated from
the original MRI data, in addition to registered brain tem-
plates and atlases similar to Schmidt [28]. Our multimodal
feature set uses specific anatomical priors fully integrated
into a region-based variational segmentation, as opposed to
Prastawaet al. [24] who uses the level set only to smooth the
segmentation results at the final stage. It also differs from
Ho et al. [13], who proposed a region competition method
implemented on a level set ’snake’ but without considering
template and atlas priors.

In summary the main contributions of this paper are:

• We extract a high dimensional multiscale feature set
from brain MRI images using brain atlases and tem-
plates registered with the data. The multi-modal,
multi-scale feature set incorporates both anatomical
priors for the brain tissue and texture information.

• We incorporate this set of features into a 3D variational
region based segmentation method that uses a learned
statistical model defined on the same set of features
to differentiate between normal and pathological tissue
(tumor).

The remaining of this paper is organized as follows. The
next section briefly presents the problem formulation. In
Section3 we introduce the multidimensional feature set
and mention the methods used for registration and pre-
processing. Section4 describes the choice of statistical
model used for characterizing the regions and Section5
gives an overview of the entire system. Finally, Section6
presents the experimental results.

2. Problem formulation

This section presents the general formulation for the
variational 3D segmentation problem without committing
to a general set of features or statistical model for the data.
The next two sections will give detail on the specific choices
for our particular MRI segmentation problem.

Assume we have a multivariateM -dimensional feature
volume

V = {Vi|i = 1 . . .M}

whereVi : Ω ⊂ ℜ3 → ℜ+ and the domainΩ is assumed
open and bounded . The segmentation task consists of find-
ing a surfaceS (assumed regular) that splits the domainΩ in
two disjoint regionsΩ1, Ω2. S represents the interface be-
tween the regions denoted∂Ω. Following [21] we can seg-
ment by maximizing thea posterioripartitioning probabil-
ity p(P(Ω)|V(x)) with P(Ω) = {Ω1, Ω2} andx ∈ Ω. This
optimization is equivalent to an energy minimization [21].
Two assumptions are necessary: (i) all partitions are equally
possible and (ii) the pixels within each region are indepen-
dent. Denote the two probability density functions for the
valueV(x) to be in regionΩ1 andΩ2 with p1(V(x)) and
p2(V(x)), respectively. The optimal segmentation is then
found by minimizing the energy:

E(Ω1, Ω2) = −

∫

Ω1

log p1(V(x))dx −

∫

Ω2

log p2(V(x))dx

(1)

+ α

∫

S

dS (2)

The first two terms are referred to as data terms and the last
term represents the regularization on the area ofS.

One further challenge is defining a family of probability
density functions (PDF)p1, p2 that approximate the infor-
mation of each region and are able to discriminate between
the two regions. Section4 gives detail on the choice of sta-
tistical models used for the MRI segmentation.

We now introduce the level set representation by extend-
ing the integrals in Equation1 to the whole domain using
the level set function:

{

Φ(x) = D(x, S), if x ∈ Ω1

Φ(x) = −D(x, S), if x ∈ Ω2
(3)

whereD(x, S) represents the distance from pointx to the
surface (interface)S. Further, setHǫ(z) andδǫ(z) the reg-
ularized Heaviside and Dirac function, respectively. The
energy function from Equation1 can then be written as:

E(Ω1, Ω2) =

∫

Ω

( − Hǫ(Φ) log p1(V(x)) (4)

− (1 − Hǫ(Φ)) log p2(V(x)) (5)

+ α|∇H(Φ)|) dx (6)

The Euler Lagrange evolution equation forΦ is
(see [26]):

Φt(x) = δǫ(Φ(x))( log p1(V(x)) − log p2(V(x)) (7)

+ αdiv

(

∇Φ

|∇Φ|

)

) (8)
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This region segmentation strategy was proposed in [25, 26],
using an unsupervised approach where the parameters for
the region probability distributions are updated at each step
using the corresponding Euler Lagrange equations derived
from (4). We instead adopt a supervised approach where the
parameters are learneda priori from labeled training data.

3. Feature Extraction

Our experimental MRI data consists of T1, T1c (T1 after
injection with contrast agent - gadolinium), and T2 images.
We used two types of features. The first type of features
- image-based features- are extracted from image intensi-
ties alone. The second type of features -alignment-based
features- use templates and tissue prior probability atlases
registered with the data. The motivation in using the two
types of features is that although carefully designed image-
based features (such a textures) can improve the segmenta-
tion results [1, 6], they do not take advantage of anatom-
ical prior information that is known about the brain, and
hence require a lot of training data. Therefore, as recently
shown [28, 15, 24, 11] spatially aligned templates overcome
many image-based problems such as intensity overlap, in-
tensity heterogeneity and the lack of contrast at structure
boundary. They also allow accurate results to be obtained
with a relatively small number of training images.

3.1. Data pre-processing

To define alignment-based features, the data and tem-
plates have to be registered both spatially and in intensity.
We perform a pre-processing step that reduces the effect of
noise and intensity variations within and between images,
in addition to achieving spatial registration. This is donein
a pre-processing pipeline as in [28, 34]. For segmentation
purposes, we chose to always align the templates with the
original data in order to minimize the amount of distortion
applied to the original data (e.g. to preserve texture prop-
erties). This is also the reason why we used the noise free
and intensity corrected images (step 1,2,3) only for registra-
tion purposes and use the original ones in the segmentation.
For the registration and resampling stages we used Statisti-
cal Parametric Mapping implementations [32]. The pipeline
consist of:

1. Noise reduction (non-linear filtering).

2. Inter-slice intensity variation correction (weighted re-
gression).

3. Intra-volume bias field correction (Nonuniform inten-
sity normalization N3 [30]).

4. Alignment of different modalities (normalized mutual
information).

5. Linear and non-linear alignment of the template with
the data (We use the T1 template from [14]).

6. Resampling (β-splines) and intensity normalization of
the template with the data (weighted regression).

Figure1 illustrates the pre-processing step for two cases.
The left image is the original T1, the middle image shows
the effect of step 1-3 and the right image shown the regis-
tered T1 template.

Figure 1. The effect of pre-processing : (left) original T1 (mid-
dle) noise-free and intensity corrected (step 1-3) (right)registered
template for T1.

3.2. Features

The image-based featuresinclude the original data
modalities and a multi-scale texture characterization. These
types of features are well studied in the context of texture
segmentation. In the framework of variational segmenta-
tion, the most common texture features are Gabor (wavelet)
filters (e.g. [21]) and structure tensors [25]. Wavelet-based
texture features have been previously used also for medical
image segmentation [1]. Another approach that has been
discussed in this field is to include intensities of neighbor-
ing pixels as additional features and let a classifier learn the
method to combine these intensities [6, 8]. In the present
approach we use a multi-scale Gabor-type feature set [18].
Figure2 shows 6 examples of texture features.

Alignment-based featureswere previously used by Kaus
et al. [15] where they define a ’distance transform’ based
on a labeled template. The abnormality metric from [10]
could also be used as a feature of this type. Schmidt [28] ex-
tended the use of templates by defining features that use the
template data directly. This approach is valid when using
machine learning on a pixel-by-pixel basis for segmenta-
tion but is not be appropriate for a variational energy based
segmentation.

We use three types of alignment-based features. The first
type is the spatial likelihoods of 3 normal tissues (WM-
white matter, GM-gray matter and CSF) obtained from [14].
The actual features are calculated by taking the differences
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Figure 2. Example of texture-based features (MR8 [18]) - from
top/left t bottom/right: Gaussian, Laplacian of Gaussian,symmet-
ric (3) and antisymmetric (3) features at 3 scales.

Figure 3. Example of alignment-based features: (top:) T1, T2,
prior on gray matter GM and prior on white matter WM; (bottom)
symmetry features for T1, T2, features based on GM and WM
priors

between the registered priors with T1 (for GM) and T2 (for
WM,CSF). Figure3 shows the GM and WM priors (first
row, last two images) and the corresponding features (sec-
ond row, last two images). A second type is the average in-
tensity maps from a set of individuals aligned with the tem-
plate coordinate system (also obtained from [14]). Again,
the features were calculated by taking the difference be-
tween the registered templates and the data (comparing im-
ages of corresponding modalities).

Finally a third type of alignment-based feature is a char-
acterization of left-to-right symmetry. Tumors are typically
asymmetric while normal areas are typically symmetric.
This type of feature was originally proposed by Gering [11].
We characterize the symmetry by subtracting the intensity
value of the pixel on the opposite side of the line of symme-
try. Figure3 shows the symmetry features corresponding to
T1 and T2 (first two images on the bottom row). The line
of symmetry is extracted from the template and registered
with the data (along with the template).

In summary, the original data is transformed in a high di-
mensional feature set, where each voxel in the brain volume
is characterized by aM dimensional vectorx.

4. Region Statistics

The variational segmentation framework presented in
Section2 requires a statistical model (in the form of a prob-
ability density function) to describe the consistency of the
region. The most common choice is the Gaussian distribu-
tion [25, 26]. Alternatively, the PDF can be estimated based
on the histogram(s). Roussonet al. [25] proposed a contin-
uous version of the Parzen density while Maliket al. [20]
used a more complex measure based on texon histograms.
We implemented and evaluated two types of PDFs. The
first one is based on a Gaussian distribution and the other
one is based on a discriminatively-trained Generalized Lin-
ear Model that accounts for the discrete nature of the labels
(Logistic Regression).

4.1. Gaussian approximation

First, a general Gaussian approximation is used to model
the vector valued intensity information for ’tumor’ (Ω1) and
’normal brain’ (Ω2) regions. Since we are working with
multivariate data volumes, the parameters of the Gaussian
model are theM dimensional vector meanµi, and a covari-
ance matrixΣi of dimensionM × M (i = 1, 2 one set for
each region:Ω1 - ’tumor’, Ω2 ’normal brain’). The proba-
bility of a voxelV(x) to be inΩi is:

pi(V(x)) = g(V(x)|µi, Σi) (9)

=
1

(2π)2|Σi|1/2
e−

1

2
(V(x)−µi)

T Σ−1

i
(V(x)−µi)

(10)

The parameters{µi, Σi} are estimated from theN labeled
data volumes:

µi =
1

ni

N
∑

j=1

∑

x∈Ωi

V(x) (11)

Σi =
1

ni − 1

N
∑

j=1

∑

x∈Ωi

(V(x) − µi)(V(x) − µi)
T (12)

Under the hypothesis that the channels are not correlated,
the class-conditional PDF can be estimated using the joint
density probabilities from each component. This is equiv-
alent to having a joint diagonal covariance matrix on class
variables.

For modeling the ’normal brain’ area we also tried using
a mixture of two Gaussians as there are two major histogram
peaks (corresponding to white and gray matter). However,
we did not get better results with this strategy.

4.2. Logistic regression approximation

As a second choice for computing the PDF we used the
Logistic Regression, a discriminative (rather than genera-
tive) training strategy. The PDF for ’tumor’ and ’normal
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Figure 4. Three stages in the surface evolution. (top) 3D surface
and T2 brain intensities; (bottom) horizontal section. thecolor
code shows how far is the surface from the manual label.

brain’ pixels are given by:

p1(V(x)) = lr(V(x)|α, β) =
1

1 + exp(−α − βTV(x))
(13)

p2(V(x)) = 1 − p1(V(x)); (14)

The Maximum (Log-)Likelihood parametersα (scalar)
andβ (vector of dimensionM - the number of features),
are estimated from the labeled data (x) using a 2nd-order
nonlinear optimization strategy:

{α, β} = arg max
α,β

(lr(V(x)|α, β,x)) (15)

5. Segmentation System and Implementation
Details

We now present an overview of the segmentation system
and some implementation related details (see Figure5 for
an overview).

In the training phasewe used data manually labeled by
radiation oncologists and radiologists. The training datais
pre-processed as described in Section3.1. Next, the image-
based and alignment-based features presented in Section3.2
are extracted. We also perform a skull removal using FSL
tools [31] and mask all the features such that we further
process only brain area (note that this remains fully auto-
matic). The PDF (probability density functions) for ’tumor’
and ’normal brain’ regions are computed from all data using
voxels inside and outside the labels, respectively. We used
both models (Gaussian and Logistic Regression) outlined in
Equations11and15.

For the actualsegmentationthe data set is run through
the same pipeline as the training data including feature ex-
traction and skull removal. The level set is initialized with
the mask corresponding to the extracted brain area. The

evolution uses Equation7. The voxel probabilities for ’tu-
mor’/’normal brain’ are calculated using Equations9 and13
(using the pre-computed PDF parameters). The evolution
PDE is solved using an explicit finite differences scheme on
an irregular grid (the data has 1mm resolution on the slice
plane while about 5mm resolution on the vertical dimension
due to inter-slice distances used during acquisition). The
discretization of the data term is straightforward while for
the parabolic term representing the mean curvature motion
we used central differences.

The only parameter that controls the evolution isα, the
ratio between the regularization and data terms. The pa-
rameter was fixed during evolution and set so that the data
and regularization terms were balanced in magnitude (e.g.
about1/8 for Logistic Regression and1/300 for the Gaus-
sian). The evolution is stopped when the surface reaches a
stable position. The level set can change topology during
evolution. Although this is an advantage in other applica-
tions, it might not be desirable in the case of tumor seg-
mentation (that is in most cases localized in one spot). In
a post-processing step, we remove small surface pieces that
are not part of the tumor area (we remove pieces that are
smaller than half size of the biggest piece). Figure4 shows
3 stages in the surface evolution.

For visualization, we have created a user interface (see
Figure6) where the user can visualize the surface evolution
in 3D and on 2D slices (one horizontal and two vertical -
parallel to the tree main plains). The three planes corre-
sponding to the 2D slices can be moved along their axis.
There are two modes of displaying the 3D brain informa-
tion (as transparent voxels or using the slices). If a manual
segmentation is provided a color code shows the distance
error between the level set and manual segmented surface.
Also, different 3D brain modalities can be displayed (e.g.,
T1, T2, labeled data).

Training:
(1) preprocess labeled training data (Section 3.1)
(2) extract features (Section 3.2)
(3) compute PDF:’tumor’ p1 and ’brain’ p2

(Section 4)
Segmentation:
Initialization:

(1) preprocess (Section 3.1)
(2) extract features (Section 3.2)
(3) skull removal and init level set

Evolution:
(4) evolve level set until convergence

(Equation 7)
Postprocess:

(5) remove small surface pieces

Figure 5. Overview of segmentation method
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Figure 6. Visualization interface (top) and two other data modali-
ties (bottom: left - slices; right - labeled data).

6. Experiments

We validated the proposed method using data from 9 pa-
tients having either a grade 2 astrocytoma, an anaplastic as-
trocytoma or a glioblastoma multiforme. The tumor area
was manually segmented slice-by-slice is each data set by
an expert radiologist. We performedinter-patienttraining
(training on 8 patients and testing on 1).

For qualitative evaluation we present in Figure7 the re-
sults of using our technique with the two types of statis-
tics (Gaussian and Logistic Regression as described in Sec-
tion4) for three patients (each row corresponds to a patient).
We present both the segmented volumes as 3D surfaces as
well as one slice corresponding to the same segmentation.
The first two columns show one slice of the original T1, T2
data, the third column shown the manual segmentation, the
next two column present results for the automatic segmenta-
tion and the last two columns illustrate the final segmented
3D surfaces. The color code on the volume shows the dis-
tance from the manual segmentation.

For quantitative evaluation we used the VALMET val-
idation framework [9]. The results for the 9 tumor data
sets are shown in Table1. The volume overlap mea-
sures the normalized intersection in voxel space of the
two segmentations (manualX and automaticY ), given

Overlap Hausdorff Mean Dist
Case LR G LR G LR G

1 56% 30% 2.91 3.36 1.02 1.09
2 82% 72% 1.71 1.79 0.22 0.35
3 74% 71% 1.75 2.41 0.43 0.51
4 47% 37% 2.99 5.04 0.57 1.10
5 48% 47% 3.19 8.37 0.99 0.76
6 68% 61% 3.32 9.94 0.56 0.76
7 48% 08% 3.49 8.00 0.67 1.54
8 72% 51% 2.74 3.12 0.46 0.81
9 47% 39% 2.61 2.29 0.71 0.78

Table 1. VALMET scores for the 9 patient data sets with two types
of statistics G(Gaussian) LR(Logistic Regression). The overlap
score represents the percentage of overlap between the automatic
and manual segmentation (with respect to tumor size). The Hass-
dorf distance and mean distance are in voxel unit (about 3mm).

by Overlap(X, Y ) = (X ∩ Y )/(X ∪ Y ) (equivalent
to Jaccard similarity measure). The Hausdorff distance
from X to Y is Hausdorff(X, Y ) = maxx∈X dist(x, Y ).
To make the Hausdorff distance symmetric the greater of
Hausdorff(X, Y ) andHausdorff(Y, X) is taken. The last
measureMeanDist(X, Y ) represents the mean absolute
surface distance. The method that uses Logistic Regression
always performs better. This is probably due to the fact that
the generating distribution for both classes is complex, and
the Logistic link forms a better model of binary data. For
one volume the Gaussian model completely failed. Over
the data sets for the Logistic Regression, the highest mean
distance was about1 voxels (4 mm) and the highest Haus-
dorff distance3.5 voxels (14 mm) which is good compared
to the20 mm margin that is commonly used in brain tumor
surgery.

7. Conclusions

We have presented a variational method for brain tumor
segmentation. Existing region-based variational segmenta-
tion methods based on texture features are not suited for
tumor segmentation as they are not discriminative enough
when the appearance of tumor and normal tissue overlap.
Using priors of the appearance of anatomical structures in
the normal brain in the form of templates and atlases, we
define a set of multidimensional features and use them to
calculate statistics for ’tumor’ and ’normal brain’ area from
labeled MRI data.

To further improve the results we are going to investi-
gate more sophisticated probability models, including Reg-
ularized (MAP) Logistic Regression to reduce the effects
of noise, using kernels to expand the feature representation,
and Bayesian parameter estimation. We are also interested
in exploring multi-class scenarios, where anatomical prior
information could be used to help initialization (as in [23]).
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Figure 7. Results for the automatic segmentation compared to the manual segmentation. Each row represents a patient data set. The color
code on the volume shows the distance error from the manual segmentation (see the bar color code).

An advantage of variational methods compared to discrete
ones (e.g., MRFs) is that any type of regularization can be
easily incorporated into the energy function. We plan to in-
vestigate anisotropic regularization that would preservedis-
continuities at boundaries, and encode the expected shape
information of tumor volumes.
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