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Abstract tumors vary greatly in size and position, have a variety of
shape and appearance properties, have intensities overlap
Tumor segmentation from MRI data is an important but ping with normal brain tissue, and often an expanding tu-
time consuming task performed manually by medical ex-mor can deflect and deform nearby structures in the brain
perts. Automating this process is challenging due to the giving an abnormal geometry also for healthy tissue. There-
high diversity in appearance of tumor tissue, among differ- fore, in general it is difficult to segment a tumor by simple
ent patients and, in many cases, similarity between tumorunsupervised thresholdin@4]. Other more successful ap-
and normal tissue. One other challenge is how to make useproaches consider fuzzy clustering [L9] or texture infor-
of prior information about the appearance of normal brain. mation [L, 6].

In this paper we show how to incorporate prior informa-  often the information extracted from the MRI images is
tion into a multi-dimensional volumetric features set. Us- incorporated into a supervised approach that uses labeled
ing manually segmented data we learn a statistical model gata and automatically learns a model for segmentation.
for tumor and normal tissue. We propose a variational seg- pifferent machine learning (ML) classification techniques
mentation method that uses region statistics on the multi-naye peen investigated: Neural Networky BVMs (Sup-
dimensional feature set to evolve a level set. The probabil-port Veector Machines)d, 28], MRFs (Markov Random

ity of a voxel being inside or outside is given by the devi- Fields) [L1, 2], and most recently CRFs (Conditional Ran-
ation from the pre-computed statistical model. We demon-gyom Fields) [.6].

strate the performance of our method on several sets of MRI

scans But, as previously mentioned, statistical classification

may not allow differentiation between non-enhancing tumor
and normal tissue due to overlapping intensity distribnsio
. of healthy tissue with tumor and surrounding edema. One
1. Introduction major advantage when segmenting medical images as op-
Radiation oncologists, radiologists, and other medical PoSed to natural scenes is that structural and intensity cha
experts spend a substantial portion of their time segment-acteristics are well known up to a natural biological vari-
ing medical images. Accurately labeling brain tumors and ability or the presence of pathology. Therefore, a georvetri
associated edema in MRI (Magnetic Resonance Images) iPror can be used by atlas-based segmentation in which a
a particularly time-consuming task, and considerable-vari fully labeled template MR volume is registered to an un-
ation is observed between labelers. Furthermore, in mostknown data setl[5, 33, 17, 23.
settings the task is performed on a 3D data set by labeling Having extracted different types of information from the
the tumor slice-by-slice in 2D, limiting the global perspec MRI data €.g, texture, symmetry, atlas-based priors), one
tive and potentially generating sub-optimal segmentation challenge is to formulate a segmentation process that ac-
Subsequently, over the last 15 years, a large amount of recounts for it. Although classification techniques have been
search has been focused on semi-automatic and fully auwidely explored in the field of medical image segmentation
tomatic methods for detecting and/or segmenting brain tu- and for this problem, variational and level set techniques a
mors from MRI scans. a powerful alternative segmentation strategy that is now of
The process of segmenting tumors in MRI images as op-substantial interest to this fiel@4, 19. It has been shown
posed to natural scenes is particularly challengiiid.[The that variational techniques can integrate different types
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information in a principled wayd.g, boundary informa- Assume we have a multivariafe/ -dimensional feature
tion [3], region information {, 21], shape priorsf, 27], volume
texture for vector valued image&€, 25]). Some advan- V={Vili=1...M}

tages of using a level set representation is that since thG{NhereV LQC R Rt
curve/surface is implicitly represented, topological cpas -
are naturally possible. There also exist efficient numérica
implementations{9].

In this paper, we propose a variational MRI tumor seg-
mentation method that incorporates both atlas-basedsprior
and learned statistical models for tumor and healthy tissue
The formulation extends the Chan-Vese region-based seg
mentation model4] in a similar way to texture-based ap-

and the domain is assumed
open and bounded . The segmentation task consists of find-
ing a surfaces (assumed regular) that splits the dom@im

two disjoint regions2;, Q2. S represents the interface be-
tween the regions denotél2. Following [21] we can seg-
ment by maximizing the posterioripartitioning probabil-

ity p(P(Q)|V(x)) with P(2) = {Q4,Qs} andx € Q. This
optimization is equivalent to an energy minimizatici]

hes76. 25 But i d of usi ised Two assumptions are necessary: (i) all partitions are égual
proaches {6, 25]. But instead of using an unsupervise possible and (ii) the pixels within each region are indepen-

approach we learn a statistical model from a set of featuresdent. Denote the two probability density functions for the

specifically engineered for the MRI brain tumor segmenta- valueV(x) to be in region; and<s with p:(V(x)) and

tion task. The set of features that we use are calculated from . . S
o . " . . % , respectively. The optimal segmentation is then
the original MRI data, in addition to registered brain tem- P2(V(x)) P y P g

T ) . found by minimizing th :
plates and atlases similar to Schmidg]. Our multimodal ound by minimizing the energy

feature set uses specific anatomical priors fully integtate

into a region-based variational segmentation, as oppased t B, ) = - /521 log p1 (V(x))dx — /szz log p2(V(x))dx
Prastawat al. [24] who uses the level set only to smooth the (1)
segmentation results at the final stage. It also differs from

Ho et al. [13], who proposed a region competition method + a/ as (2)
implemented on a level set 'snake’ but without considering &

template and atlas priors. The first two terms are referred to as data terms and the last

In summary the main contributions of this paper are: term represents the regularization on the are8.of

One further challenge is defining a family of probability
density functions (PDF)1, po that approximate the infor-
mation of each region and are able to discriminate between
the two regions. Sectiofigives detail on the choice of sta-
tistical models used for the MRI segmentation.

We now introduce the level set representation by extend-
e We incorporate this set of features into a 3D variational ing the integrals in Equatiof to the whole domain using

region based segmentation method that uses a learne¢he level set function:

e We extract a high dimensional multiscale feature set
from brain MRI images using brain atlases and tem-
plates registered with the data. The multi-modal,
multi-scale feature set incorporates both anatomical
priors for the brain tissue and texture information.

statistical model defined on the same set of features ®(x) = D(x, S) if x € Oy
to differentiate between normal and pathological tissue { B(x) = —D(7x 51) if x € Oy (3)
(tumor). T

whereD(x, S) represents the distance from poito the
surface (interfacey. Further, seff.(z) andd.(z) the reg-
ularized Heaviside and Dirac function, respectively. The
energy function from Equatioh can then be written as:

The remaining of this paper is organized as follows. The
next section briefly presents the problem formulation. In
Section3 we introduce the multidimensional feature set
and mention the methods used for registration and pre-

processing. Sectiod describes the choice of statistical
model used for characterizing the regions and Secfion E(,Q) = /Q( — He(®)logp1(V(x)) (4)
gives an overview of the entire system. Finally, Section L
presents the experimental results. (1 — He(®))logp2(V(x))  (5)
+ a|VH(®)|) dz (6)
2. Problem formulation The Euler Lagrange evolution equation fab is
(see pa):

This section presents the general formulation for the
variational 3D segmentation problem without committing P — 5P 1 v ] v 7
to a general set of features or statistical model for the.data () (200))(log pr(V(x)) ~ logpa(V(x)) (7]
The next two sections will give detail on the specific choices + adiv < Vo >) (8)

for our particular MRI segmentation problem. Vo
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This region segmentation strategy was proposedinjo], 6. Resampling/§-splines) and intensity normalization of
using an unsupervised approach where the parameters for  the template with the data (weighted regression).

the region probability distributions are updated at eaep st . ) .

using the corresponding Euler Lagrange equations derived Figurelillustrates the pre-processing step for two cases.

from (4). We instead adopt a supervised approach where the! N€ left image is the original T1, the middle image shows
the effect of step 1-3 and the right image shown the regis-

tered T1 template.

parameters are learnadpriori from labeled training data.

3. Feature Extraction

Our experimental MRI data consists of T1, T1lc (T1 after
injection with contrast agent - gadolinium), and T2 images.
We used two types of features. The first type of features
- image-based featuresare extracted from image intensi-
ties alone. The second type of featuresignment-based
features- use templates and tissue prior probability atlases
registered with the data. The motivation in using the two
types of features is that although carefully designed image
based features (such a textures) can improve the segmentd
tion results [, 6], they do not take advantage of anatom-
ical prior information that is known about the brain, and
hence require a lot of training data. Therefore, as recently
shown P8, 15, 24, 11] spatially aligned templates overcome
many image-based problems such as intensity overlap, in
tensity heterogeneity and the lack of contrast at structure
boundary. They also allow accurate results to be obtained
with a relatively small number of training images.

_Figure 1. The effect of pre-processing : (left) original Tig-
dle) noise-free and intensity corrected (step 1-3) (rigbgjstered
template for T1.

. 3.2. Features
3.1. Data pre-processing
. . The image-based featuregclude the original data
To define a"g”mer_“ based features, the dat_a _and te_m modalities and a multi-scale texture characterizatioreseh
plates have to be registered both spatially and in intensity S
. ypes of features are well studied in the context of texture
We perform a pre-processing step that reduces the effect o

noise and intensity variations within and between images segmentation. In the framework of variational segmenta-
: . 1y ) . ) €€en imag 'tion, the most common texture features are Gabor (wavelet)
in addition to achieving spatial registration. This is dame

. .2 . . filters (e.g [21]) and structure tensorgf]. Wavelet-based
a pre-processing pipeline as iag, 34]. For segmentation

|
. . texture features have been previously used also for medical
purposes, we chose to always align the templates with the. .

o i o7 ) . image segmentation.]. Another approach that has been
original data in order to minimize the amount of distortion . o : . o .
apolied 1o the oriinal datz(@ to preserve texture bro discussed in this field is to include intensities of neighbor
erpt?es) This is alsgo the reas(gn wr? we used the ncF:isepfreeing pixels as additional features and let a classifier |claen t
and int'ensit cormected imaaes (stey 1,2,3) only for regist method to combine these intensiti€s §]. In the present
. y ges Pl y egist approach we use a multi-scale Gabor-type featurelst [
tion purposes and use the original ones in the segmentation

: . . . Figure2 shows 6 examples of texture features.
For the registration and resampling stages we used Statisti . .
: L : L Alignment-based featuregere previously used by Kaus
cal Parametric Mapping implementatiof<]. The pipeline

consist of et al. [15] where they define a 'distance transform’ based
' on a labeled template. The abnormality metric frohi][
1. Noise reduction (non-linear filtering). could also be used as a feature of this type. Schriiidx-
tended the use of templates by defining features that use the
template data directly. This approach is valid when using
L . . . machine learning on a pixel-by-pixel basis for segmenta-
3. Iptra-volume b_las f|e|(;i correction (Nonuniform inten- tion but is not be appropriate for a variational energy based
sity normalization N3 (). segmentation.
4. Alignment Of diﬁerent m0da|ities (norma”zed mutual We use three types of a"gnment_based features. The first
information). type is the spatial likelihoods of 3 normal tissues (WM-
5. Linear and non-linear alignment of the template with white matter, GM-gray matter and CSF) obtained frar [
the data (We use the T1 template froil]). The actual features are calculated by taking the difference

2. Inter-slice intensity variation correction (weightesd r
gression).
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4. Region Statistics

The variational segmentation framework presented in
Section? requires a statistical model (in the form of a prob-
ability density function) to describe the consistency @& th
region. The most common choice is the Gaussian distribu-
tion [25, 26]. Alternatively, the PDF can be estimated based
on the histogram(s). Roussenal. [25] proposed a contin-
uous version of the Parzen density while Madikal. [20]
used a more complex measure based on texon histograms.
We implemented and evaluated two types of PDFs. The
Figure 2. Example of texture-based features (MR])[ - from first one is based on a Gaussian distribution and the other
top/left t bottom/right: Gaussian, Laplacian of Gaussgmmet- o i hased on a discriminatively-trained Generalized Lin
fic (3) and antisymmetric (3) features at 3 scales. ear Model that accounts for the discrete nature of the labels
(Logistic Regression).

4.1. Gaussian approximation

First, a general Gaussian approximation is used to model
the vector valued intensity information for 'tumof2() and
'normal brain’ (23) regions. Since we are working with
multivariate data volumes, the parameters of the Gaussian
model are thé// dimensional vector mean, and a covari-
ance matrix2; of dimensionM x M (i = 1,2 one set for
each regionf); - 'tumor’, Q5 'normal brain’). The proba-
bility of a voxel V(x) to be in€; is:

Figure 3. Example of alignment-based features: (top:) T4, T

prior on gray matter GM and prior on white matter WM; (bottom) pi(V(x)) = g(V(x)|pi; %) (©)
symmetry features for T1, T2, features based on GM and WM _ 1 ef;(V(x)fui)"'E;l(V(x)ﬂu)
priors (2m)2]%;|1/2

(10)

The parameter§u;, 2; } are estimated from th& labeled

between the registered priors with T1 (for GM) and T2 (for i
data volumes:

WM,CSF). Figure3 shows the GM and WM priors (first

row, last two images) and the corresponding features (sec- 1 &

ond row, last two images). A second type is the average in- ~ #i = -~ Z Z V(x) (11)
tensity maps from a set of individuals aligned with the tem- b =1 xeQ

plate coordinate system (also obtained frord]]. Again, 1 X

the features were calculated by taking the difference be- i = —— YD V) - ) (V(x) — )" (12)
tween the registered templates and the data (comparing im- ‘ J=1x€Q;

ages of corresponding modalities). Under the hypothesis that the channels are not correlated,

Finally a third type of alignment-based feature is a char- the class-conditional PDF can be estimated using the joint
acterization of left-to-right symmetry. Tumors are typiga  density probabilities from each component. This is equiv-
asymmetric while normal areas are typically symmetric. alent to having a joint diagonal covariance matrix on class
This type of feature was originally proposed by Gerifd[ variables.

We characterize the symmetry by subtracting the intensity =~ For modeling the 'normal brain’ area we also tried using
value of the pixel on the opposite side of the line of symme- a mixture of two Gaussians as there are two major histogram
try. Figure3 shows the symmetry features corresponding to peaks (corresponding to white and gray matter). However,
T1 and T2 (first two images on the bottom row). The line we did not get better results with this strategy.

of symmetry is extracted from the template and registered o ) ] ]
with the data (along with the template). 4.2. Logistic regression approximation

In summary, the original data is transformed in a highdi-  As a second choice for computing the PDF we used the
mensional feature set, where each voxel in the brain volumeLogistic Regression, a discriminative (rather than genera
is characterized by &/ dimensional vectoxk. tive) training strategy. The PDF for 'tumor’ and 'normal



IEEE CVPR 2007 - submission

Figure 4. Three stages in the surface evolution. (top) 3Easar
and T2 brain intensities; (bottom) horizontal section. todor
code shows how far is the surface from the manual label.

brain’ pixels are given by:

1

1+ exp(—a — TV(x))
(13)
(14)

n(Vx) =ir(V)|e, 8) =

p2(V(x)) =1 -pr(V(x));

The Maximum (Log-)Likelihood parameters (scalar)
and 3 (vector of dimensionV/ - the number of features),
are estimated from the labeled daig§ (ising a 2nd-order
nonlinear optimization strategy:

{a, B} = argrg%x(lr(V(xMa,ﬁ,x)) (15)

5. Segmentation System and Implementation
Details

We now present an overview of the segmentation system
and some implementation related details (see Figuia
an overview).

In thetraining phasewe used data manually labeled by
radiation oncologists and radiologists. The training data
pre-processed as described in Secich Next, the image-
based and alignment-based features presented in S8cion
are extracted. We also perform a skull removal using FSL
tools [31] and mask all the features such that we further
process only brain area (note that this remains fully auto-
matic). The PDF (probability density functions) for 'tumor
and 'normal brain’ regions are computed from all data using

voxels inside and outside the labels, respectively. We used

both models (Gaussian and Logistic Regression) outlined in
Equationsl1 and15.

For the actuakegmentatiorthe data set is run through
the same pipeline as the training data including feature ex-
traction and skull removal. The level set is initialized hwit

the mask corresponding to the extracted brain area. The

evolution uses Equation The voxel probabilities for 'tu-
mor’/’normal brain’ are calculated using Equatidhand13
(using the pre-computed PDF parameters). The evolution
PDE is solved using an explicit finite differences scheme on
an irregular grid (the data has 1mm resolution on the slice
plane while about 5mm resolution on the vertical dimension
due to inter-slice distances used during acquisition). The
discretization of the data term is straightforward while fo
the parabolic term representing the mean curvature motion
we used central differences.

The only parameter that controls the evolutiorvisthe
ratio between the regularization and data terms. The pa-
rameter was fixed during evolution and set so that the data
and regularization terms were balanced in magnitwede (
aboutl /8 for Logistic Regression antl/300 for the Gaus-
sian). The evolution is stopped when the surface reaches a
stable position. The level set can change topology during
evolution. Although this is an advantage in other applica-
tions, it might not be desirable in the case of tumor seg-
mentation (that is in most cases localized in one spot). In
a post-processing step, we remove small surface pieces that
are not part of the tumor area (we remove pieces that are
smaller than half size of the biggest piece). Figishows
3 stages in the surface evolution.

For visualization, we have created a user interface (see
Figure6) where the user can visualize the surface evolution
in 3D and on 2D slices (one horizontal and two vertical -
parallel to the tree main plains). The three planes corre-
sponding to the 2D slices can be moved along their axis.
There are two modes of displaying the 3D brain informa-
tion (as transparent voxels or using the slices). If a manual
segmentation is provided a color code shows the distance
error between the level set and manual segmented surface.
Also, different 3D brain modalities can be displayedq,

T1, T2, labeled data).

Training:

(1) preprocess |labeled training data (Section 3.1)

(2) extract features (Section 3.2)

(3) conpute PDF:’tumor’ p; and 'brain’ ps
(Section 4)
Segmentation:
Initialization:
(1) preprocess (Section 3.1)
(2) extract features (Section 3.2)
(3) skull removal and init Ievel set
Evol uti on:
(4) evolve level set until convergence

(Equation 7)
Post process:

(5) renmove small surface pieces

Figure 5. Overview of segmentation method
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- Ciwindow [ = Overlap Hausdorff | Mean Dist
Case| LR G LR G LR G
56% 30%]| 2.91 3.36| 1.02 1.09
82% 72%]| 1.71 1.79| 0.22 0.35
74% 71%| 1.75 2.41| 043 0.51
47% 37%)| 2.99 5.04| 0.57 1.10
48% 47%)| 3.19 8.37| 0.99 0.76
68% 61%| 3.32 9.94| 0.56 0.76
48% 08%| 3.49 8.00| 0.67 1.54
72% 51%| 2.74 3.12| 0.46 0.81
47% 39%)| 2.61 2.29| 0.71 0.78

plane, nelices:10, alpha:0 60, ntri:2460, fps: 1.0
STOPED, dist 0.3934, ak1.00, ap:a.00 cnt 346
scores kin0.743432 haus:1 399663 mean:0.319500

O©CoO~NOOOUOTA,WNPEP

Table 1. VALMET scores for the 9 patient data sets with tweetyp
of statistics G(Gaussian) LR(Logistic Regression). Therlayp
score represents the percentage of overlap between theatito
and manual segmentation (with respect to tumor size). ThesHa
dorf distance and mean distance are in voxel unit (about 3mm)

by Overlap(X,Y) = (X NY)/(X UY) (equivalent

to Jaccard similarity measure). The Hausdorff distance
from X to Y is Hausdorff(X,Y) = maxgex dist(z,Y).

To make the Hausdorff distance symmetric the greater of
Hausdorff(X,Y) andHausdorff(Y, X)) is taken. The last
measureMeanDist(X,Y) represents the mean absolute
surface distance. The method that uses Logistic Regression
always performs better. This is probably due to the fact that
the generating distribution for both classes is compled, an
the Logistic link forms a better model of binary data. For
one volume the Gaussian model completely failed. Over
the data sets for the Logistic Regression, the highest mean
distance was aboutvoxels ¢¢ mm) and the highest Haus-
dorff distance3.5 voxels ((4 mm) which is good compared

to the20 mm margin that is commonly used in brain tumor

ties (bottom: left - slices; right - labeled data).

6. Experiments

We validated the proposed method using data from 9 pa-
tients having either a grade 2 astrocytoma, an anaplastic as
trocytoma or a glioblastoma multiforme. The tumor area
was manually segmented slice-by-slice is each data set by>"''9€":
an expert radiologist. We performeater-patienttraining )
(training on 8 patients and testing on 1). 7. Conclusions

For qualitative evaluation we present in Figuréhe re- We have presented a variational method for brain tumor
sults of using our technique with the two types of statis- segmentation. Existing region-based variational segaaent
tics (Gaussian and Logistic Regression as described in Section methods based on texture features are not suited for
tion 4) for three patients (each row corresponds to a patient). tumor segmentation as they are not discriminative enough
We present both the segmented volumes as 3D surfaces aghen the appearance of tumor and normal tissue overlap.
well as one slice corresponding to the same segmentationysing priors of the appearance of anatomical structures in
The first two columns show one slice of the original T1, T2 the normal brain in the form of templates and atlases, we

data, the third column shown the manual segmentation, thegefine a set of multidimensional features and use them to
next two column present results for the automatic segmenta-alculate statistics for 'tumor’ and 'normal brain’ areatin

tion and the last two columns illustrate the final segmented |gpeled MRI data.
3D surfaces. The color code on the volume shows the dis-  To further improve the results we are going to investi-
tance from the manual segmentation. gate more sophisticated probability models, including-Reg
For quantitative evaluation we used the VALMET val- ularized (MAP) Logistic Regression to reduce the effects
idation framework P]. The results for the 9 tumor data of noise, using kernels to expand the feature representatio
sets are shown in Tablé. The volume overlap mea- and Bayesian parameter estimation. We are also interested
sures the normalized intersection in voxel space of thein exploring multi-class scenarios, where anatomicalprio
two segmentations (manud& and automaticY’), given information could be used to help initialization (as #3]).
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Manual
labeling

2D view LogReg 2D view Gaus

Segmentation

s 3D view LogReg 3D view Gauss
3D Surface with distance error

Figure 7. Results for the automatic segmentation comparétetmanual segmentation. Each row represents a patiensefatThe color
code on the volume shows the distance error from the mangaiesgtation (see the bar color code).

An advantage of variational methods compared to discrete
ones €.g, MRFs) is that any type of regularization can be
easily incorporated into the energy function. We plan to in- [8]
vestigate anisotropic regularization that would preseiige
continuities at boundaries, and encode the expected shape

information of tumor volumes.
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