
3D Viewing and Rotation Using Orthonormal Bases

Steve Cunningham
Computer Science Department

California State University, Stanislaus
Turlock, Ca 95380

rsc@altair.csustan.edu

This note discusses the general viewing transformation and rotations about a general line. It

contrasts the common textbook approach to this problem with an approach based on orthonormal

bases from linear algebra and shows that a straightforward piece of mathematics can improve the

implementations of viewing and rotation transformations in actual work.

The common approach to viewing and general rotation operations treats these as a

translation followed by a sequence of rotations about the coordinate axes in model space, and

seems to go back to Newman and Sproull [4]. The viewing transformation requires three of these

rotations, while the general rotation requires four. The entries in these rotation matrices are

trigonometric functions of angles which are not readily seen, though the actual computations rarely

use the trig functions; the entries are computed from the components of vectors derived from the

translated eye vector as the rotations proceed. See Newman and Sproull (pps. 348 - 351) for more

details; this same approach has been used in Hearn and Baker [3] and other books. Some books

such as Foley and van Dam 2] discuss a (U,V,N) viewplane coordinate system such as we build

below, but still use rotations to build the actual viewing transformation.

The approach we suggest was developed independently but is not original to this note. It

appears in Berger [1] (pp. 274 - 282, where it seems a bit obscure), as well as in Salmon and

Slater [5] (pp 406-408, where it is developed more formally), but is not widely known. No

graphics texts seem to use this approach to general rotations in 3-space. The approach is

straightforward: after the usual translation of the view reference point to the origin, use the eye

point and up point in the viewing information to compute an orthonormal basis (U,V,N) for 3-

space for which the eye vector is one component (the Z-axis analogue) and the up vector is

projected onto another (the Y-axis analogue). Then the viewing transformation is simply a change

3D Viewing and Rotation Using Orthonormal Bases Page 2

of basis and its matrix is directly written from the orthonormal (U,V,N) basis. The general

rotation is much the same, with the up vector taken randomly, the desired rotation applied after the

initial viewing transformation, and then the inverse of the viewing transformation is applied.

The advantages of the orthonormal basis approach are twofold: there is a logical basis for

the approach which comes naturally from linear algebra, and the computation involves fewer steps.

I have found that students can apply these ideas in their own code more quickly and accurately than

they can the traditional approach.

The New Approach

Consider a standard setup for 3D viewing (there are variations, but this uses standard information

common to them all):

• A view reference point VRP

• An eye point EP

• An "up point" UP

From these we compute two vectors:

• An eye vector EV as the vector from VRP to EP

• An up vector UV as the vector from VRP to UP

and we have the situation shown in Figure 1:

VRP

UP

EP

•
 U
v
V EV

v
V

Figure 1: A standard viewing environment

3D Viewing and Rotation Using Orthonormal Bases Page 3

The new process starts in the same way as the standard process: by defining a translation

to move the view reference point to the origin. This has the standard matrix form

T0 =

1 0 0 0

0 1 0 0

0 0 1 0

−xv −yv −zv 0

Next compute the orthonormal basis for the space as seen by the viewer, as follows:

1. normalize EV and call the result N,

2. normalize UV and continue to call the result UV,

3. Compute V1 orthogonal to N by setting V1 = UV - (N. UV)N, as shown in Fig. 2,

N

UV

(N•UV)N

V1

Figure 2: Orthogonalizing UV and N

4. normalize V1 and call the result V,

5. compute the cross product U = V x N .

This creates a new coordinate system within the original model space which represents the

coordinated of the desired viewing space. This coordinate system is shown in Figure 3.

3D Viewing and Rotation Using Orthonormal Bases Page 4

NV

U

Figure 3: The UVN Coordinate System

Then the change of basis from (X,Y,Z)-space to (U,V,N)-space (assuming that matrices

multiply on the right of their operands) has U as its first row, V as its second row, and N as its

third row. The inverse of this matrix is the transformation from (U,V,N)-space to (X,Y,Z)-space

and provides the construction of the rotation part of the matrix M of the viewing transformation.

Since U, V, and N are orthonormal, this inverse is the transpose of the matrix above; the first

three rows of M have U as the first column, V as the second column, and N as the third

column, and the rest are zero. Finally, the viewing transformation is T0M. It is easier to compute

than the standard transformation and is as efficient to apply (if all three rotations are computed and

multiplied together) or more efficient (if the rotations are applied separately). The actual matrix of

this transformation is the output of the BuildViewTransform function below.

Rotations About a General Line

The usual approach to a rotation by an angle α about a general line is to move the line so it goes

through the origin (a translation), rotate the line into the XZ-plane, rotate the resulting line to align

with the Z-axis, perform the desired rotation by α now, reverse the two earlier rotations, and then

reverse the translation. This requires five rotations and two translations, and suffers from the same

3D Viewing and Rotation Using Orthonormal Bases Page 5

difficulties as the viewing transformation: the angles are not easy to see and the computations are

obscure.

The approach above to the viewing transformation extends easily to these rotations. The

line is assumed to be given by a point P = (xp,yp,zp) and a direction vector D = <A,B,C>.

Then the plane perpendicular to the line at the given point has equation

A(x-xp)+B(y-yp)+C(z-zp) = 0.

Let T be the translation that moves P to the origin. Pick any point Q = (x,y,z) in the plane and

let UP = (x-xp,y-yp,z-zp), as shown in Figure 4. Let N be the result when D is normalized,

and let V be the result when UP is normalized. Then compute U as in the viewing

transformation to complete the (U,V,N) triple, and build the change-of-basis matrix M with U,

V, and N as the first, second, and third columns, respectively.

Q

•
 U
v
P

v
D

Figure 4: The Setup for General Rotations

Now let R be the matrix of the rotation by α about the Z-axis, and let N and S be the

(trivially computed) inverses of M and T respectively. Then the matrix of the rotation by Q

about the line is T M R N S, which requires fewer matrices and less computation than the

traditional method of rotation about the coordinate axes. There is another benefit for students and

for floating-point speed: it uses no trigonometric functions except those in the matrix R.

3D Viewing and Rotation Using Orthonormal Bases Page 6

Pseudocode for Constructing the Viewing Transformation

The following pseudocode produces the matrix for the viewing transformation with the three

standard view specification points as input. It is expanded into actual C code in an appendix. No

pseudocode is given for the general rotation, since the matrices M and N of the previous section

are easily computed by the pseucode above (and the code in the appendix) if the last translation step

is omitted.

BuildViewTransform(VRP, EP, UP, T)

Input: points VRP, EP, UP as in the text
Output: transformation matrix T

Compute vector N ← EP – VRP and normalize N
Compute vector V ← VP – VRP
Make vector V orthogonal to N and normalize V
Compute vector U ← V x N (cross product)
Write the vectors U, V, and N as the first three rows of the

first, second, and third columns of T, respectively,
Compute the fourth row of T to include the translation of

VRP to the origin

References

[1] Berger, Mark. Computer Graphics with Pascal. Benjamin/Cummings, Menlo Park, CA,

1986.

[2] Foley, James D. and Andries Van Dam. Fundamentals of Interactive Computer Graphics.

Addison-Wesley, Reading, MA, 1982.

[3] Hearn, Donald and M. Pauline Baker. Computer Graphics. Prentice-Hall, Englewood

Cliffs, NJ, 1986.

[4] Newman, William M. and Robert F. Sproull, Principles of Interactive Computer Graphics,

Second Edition. McGraw-Hill, New York, 1979.

[5] Salmon, Rod and Mel Slater, Computer Graphics: Systems and Concepts. Addison-

Wesley, Reading, MA, 1987.

3D Viewing and Rotation Using Orthonormal Bases -- C code appendix Page 1

Appendix: C Code for Constructing the Viewing Transformation

This code contains the pseudocode from the article above as comments, showing just how the

pseudocode was expanded into the actual code.

#include "GraphicsGems.h" /* Header file for Graphics Gems */

/* Transformations are presented as 4 by 3 matrices, omitting the
 * fourth column to save memory.
 *
 * Functions are used from the Graphics Gems vector C library
 */

typedef float Transform[4][3];

void BuildViewTransform(VRP, EP, UP, T)
Point3 VRP, EP, UP;
Transform T;

{
Vector3 U, V, N;
float dot;

// Compute vector N ← EP – VRP and normalize N
N.x = EP.x - VRP.x; N.y = EP.y - VRP.y; N.z = EP.z - VRP.z;
V3Normalize(N);

/* Compute vector V ← VP – VRP
 * Make vector V orthogonal to N and normalize V
 */
V.x = UP.x - VRP.x; V.y = UP.y - VRP.y; V.z = UP.z - VRP.z;
dot = V3Dot(V,N);
V.x -= dot * N.x; V.y -= dot * N.y; V.z -= dot * N.z;
V3Normalize(V);

// Compute vector U ← V x N (cross product)
V3Cross(V,N,U);

/* Write the vectors U, V, and N as the first three rows of the
 * first, second, and third columns of T, respectively
 */
T[0][0] = U.x; /* column 1 ← vector U */
T[1][0] = U.y;
T[2][0] = U.z;
T[0][1] = V.x; /* column 2 ← vector V */
T[1][1] = V.y;
T[2][1] = V.z;
T[0][2] = N.x; /* column 3 ← vector N */
T[1][2] = N.y;
T[2][2] = N.z;

/* Compute the fourth row of T to include the translation of
 * VRP to the origin
 */
T[3][0] = - U.x * VRP.x - U.y * VRP.y - U.z * VRP.z;
T[3][1] = - V.x * VRP.x - V.y * VRP.y - V.z * VRP.z;
T[3][2] = - N.x * VRP.x - N.y * VRP.y - N.z * VRP.z;
return;

}

