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Abstract

Algorithms that predict the degree of visual discomfort experienced when viewing stereoscopic 3D (S3D) images

usually first execute some form of disparity calculation. Following that, features are extracted on these disparity maps

to build discomfort prediction models. These features may include, for example, the maximum disparity, disparity

range, disparity energy, and other measures of the disparity distribution. Hence, the accuracy of prediction largely

depends on the accuracy of disparity calculation. Unfortunately, computing disparity maps is expensive and difficult

and most leading assessment models are based on features drawn from the outputs of high complexity disparity

calculation algorithms that deliver high quality disparity maps. There is no consensus on the type of stereo matching

algorithm that should be used for this type of model. Towards filling this gap, we study the relative performances of

discomfort prediction models that use disparity algorithms having different levels of complexity. We also propose a set

of new discomfort predictive features with good performance even when using low complexity disparity algorithms.

Keywords: Visual discomfort, Low complexity disparity calculation algorithms, 3D NSS, Uncertainty map

Abbreviations: GGD, Generalized Gaussian distribution; LCC, Linear correlation coefficient; MOS, Mean opinion

score; NSS, Natural scene statistics; QA, Quality assessment; SAD, Sum-of-absolute difference; SROCC, Spearman rank

order correlation coefficient; SSIM, Structural similarity; SVR, Support vector regression; S3D, Stereoscopic 3D

1 Introduction
The human consumption of stereoscopic 3D (S3D)movies

and images has dramatically increased in recent years.

3D content can better allow the user to understand the

visual information being presented, thereby enhancing

the viewing experience by providing a more immersive,

stereoscopic visualization [1]. However, stereo images

that have low-quality content or shooting errors can

induce unwanted effects such as fatigue, asthenopia, eye

strain, headache, and other phenomena conductive to a

bad viewing experience [2]. A large number of studies

have focused on finding features (e.g., disparity, spatial

frequency, stimulus width, object size, motion [3], and

crosstalk effects) that can be reliably extracted from 3D

images (stereopairs) towards creating automatic 3D dis-

comfort prediction algorithms to predict and potentially
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reduce feelings of visual discomfort experienced when

viewing 3D images [2, 4].

Several possible factors of visual discomfort have been

extensively studied, such as the vergence-accommodation

conflict [5, 6], excessive disparities and disparity gradi-

ents [7], prolonged viewing, the viewing distance [8], and

the amount of defocus-blur [9]. Prolonged exposure to

conflicts between vergence and accommodation is a main

determinant of the degree of experienced visual discom-

fort and fatigue when viewing S3D content [9–11]. Hence,

several predictive models have been built to simulate

and predict occurrences of this phenomenon. Commonly,

the features used in discomfort prediction models were

extracted from disparity maps. These features included

the disparity location, disparity gradient, disparity range,

maximum angular disparity, and disparity distribution

[7, 12–16]. Hence, the predictive powers of these discom-

fort assessment models strongly depends on the accuracy

of disparity calculation.

However, there is no consensus regarding the type of

disparity calculation algorithm that should be used for 3D

visual discomfort. Early on, some developers used stereo
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matching algorithms that extract only sparsely distributed

disparities (e.g., at luminance edges) to achieve low com-

plexity, fast computation [13, 14]. More, recent studies

have emphasized the use of high complexity dense stereo

matching algorithms that deliver high quality disparity

maps, such as the matching algorithm [17] used in [7],

dynamic programming [15, 18], the Depth Estimation Ref-

erence Software [19] used in [12], and combinations of

sparse and dense disparity estimation methods [16].

Although high complexity dense disparity calculation

algorithms deliver more accurate disparity results, speed

of computation is desirable in many settings, e.g., on real-

time 3D videos. However, there is scarce literature on

the performance differences of 3D discomfort prediction

models deploying different disparity algorithms nor of the

causative factors contributing to these differences, such

as complexity. Furthermore, little attention has been paid

to balancing speed against prediction accuracy by mak-

ing use of low complexity disparity algorithms. Towards

filling these gaps, we begin by studying the performance

differences of S3D discomfort prediction models using

three nominal disparity algorithms having different levels

of complexity. We then introduce two new sets of discom-

fort predictive features, the uncertainty map and natural

scene statistics, which have previously found use in 3D

image quality assessment models [20–22]. These features

efficiently improve the performance of prediction models

that use low complexity disparity calculation methods.

2 Background
The main difference between viewing natural scenes and

viewing a stereoscopic display is that vergence and accom-

modation normally occur in a synergistic manner in nat-

ural viewing but they do not when viewing a display. In a

3D scene viewed on a stereoscopic display, accommoda-

tion is fixed by the distance of the dichoptic images from

the two eyes but vergence is free to adapt to the disparity-

defined depth planes that occur when a fused image is

achieved. This perceptual conflict is a main cause of visual

discomfort. As the binocular disparity signal is the pri-

mary cue in evoking vergence [23], extracting accuracy

disparity signals from stereoscopic image pairs is the first

important step to make good predictions of the degree of

visual discomfort experienced when viewing 3D images.

Stereo matching is the most common method to extract

disparity signals from image pairs. The disparity signals

(in pixels) which are extracted by stereo matching algo-

rithms can be converted to retinal disparities (in angles)

given the viewing parameters and the size of the dis-

play [24]. Although this conversion is not linear, most

studies prefer to using pixel disparities when conducting

visual discomfort modeling to simplify algorithm design

[7, 13–16, 25]. We will also use pixel disparity-based

features.

Research on stereo matching algorithm design has been

a topic of intense inquiry for decades. Stereo matching

algorithms can be classified into sparse and dense stereo

matching. Sparse stereo matching methods do not calcu-

late disparity at every pixel and are deployed for their low

complexity or if only sparse data is needed. Dense stereo

matching methods calculate disparity at every pixel. Most

recent discomfort assessment models are built on dense

stereo matching algorithms [26].

All dense stereo matching algorithms use some method

of measuring the similarity of pixels between the two

image views. Typically, a matching function is computed

at each pixel for all disparities under consideration. The

simplest matching functions assume that there is lit-

tle or no luminance difference between corresponding

left/right pixels, but more robust methods may allow

for (explicitly or implicitly) radiometric changes and/or

noise. Common pixel-based matching functions include

absolute differences, squared differences, or sampling-

insensitive absolute differences [27]. Common window-

based matching functions include the sum of absolute

or squared differences (SAD, SSD), normalized cross-

correlation (NCC), and rank and census transforms

[28]. Some matching functions can be implemented effi-

ciently using unweighted and weighted median filters

[29, 30]. More complicated similarity measures are possi-

ble and have included mutual information or approximate

segment-wise mutual information as used in the layered

stereo approach of Zitnick [31]. Some methods not only

try to employ new combined matching functions but also

propose secondary disparity refinement to further remove

the remaining outliers [32].

In order to gain insights into the influence of the

choice of stereo algorithm on the performance of 3D

visual discomfort models, we selected three popular and

characteristic dense stereo algorithms, ranging from a

computationally expensive, high performance model (e.g.,

as assessed on the Middlebury database [33]) to a very

simple, inexpensive model that delivers reasonable perfor-

mance.

Researchers have deployed a wide variety of stereo

matching algorithms to obtain disparity maps for assess-

ment 3D discomfort predictionmodels [16–19]. The algo-

rithms previously used are characterized by high compu-

tational complexity and generally deliver highly accurate

disparity maps. Of the three disparity engines we use,

the optical flow software (DFLOW) [17] delivers highly

competitive predictions of disparity on the Middlebury

Stereo Evaluation dataset [33]. This tool has been utilized

in a mature 3D visual discomfort assessment framework

which achieves good predictive power [7].

The second comparison algorithm is a window-based

stereo matching algorithm based on the SSIM [34] index

(DSSIM) [20]. The disparity map of a stereo pair is
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generated by using SSIM as the matching objective,

resolving ties by a minimum disparity criterion. This algo-

rithm was used in a popular 3D QA model [20] but has

not yet been utilized in previous 3D visual discomfort

assessment models.

The third algorithm (DSAD) was chosen for its very low

complexity. It uses a window-based sum-of-absolute dif-

ference (SAD) luminance matching functional without a

smoothness constraint. This is a very basic stereo match-

ing algorithm that has only been used in early, simple 3D

visual discomfort prediction models.

3 Affect comparison of disparity estimation on
visual discomfort prediction

Figure 1 shows four images (“cup,” “human,” “lawn,” and

“stone”) from the IEEE-SA stereo image database [35]

and disparity maps extracted by these three algorithms.

Figure 2 are corresponding depth distribution histograms

computed from the depth maps delivered by these three

algorithms. The search range of DSSIM and DSAD was

fixed at [−120, 90] which is the maximum and minimum

disparities of images in the IEEE-SA database. The values

of the disparity maps range from dark to white denoting

disparity ranging from maximum to minimum.

It is apparent that the disparity maps extracted by

DFLOW yield the highest quality of depth detail. The

disparity maps delivered by DSSIM are of much lower reli-

ability than those of DFLOW. The disparity maps from

DSAD are even worse than those of DSSIM. There are

many areas with false disparities. Among the three meth-

ods DFLOW, DSSIM, and DSAD, there is a decreasing

degree of coherence and segmentability of the computed

disparity patterns. Often, disparity errors occur on com-

plex textured regions which the lower complexity stereo

algorithms handle less well.

Clearly, the DSSIM and DSAD disparity maps would

be difficult to apply in 3D visual discomfort predic-

tion frameworks that require depth segmentation. Hence,

we instead only study discomfort prediction frameworks

based on analysis of the disparity distribution. Four fea-

tures are extracted based on the study in [7]. The first

two features are the mean values of the positive and neg-

ative disparities. These are computed separately since it

is known that the sign of disparity can affect experienced

visual discomfort [13, 36]:

f1 =
1

NPos

∑

D(n)>0

D(n) (1)

Fig. 1 Example images from the IEEE-SA database and their corresponding disparity maps. From left column to right column: a–d the images “cup,”

“human,” “lawn,” and “stone”. The corresponding disparity maps e–h calculated by DFLOW, i–l calculated by DSSIM, andm–p calculated by DSAD



Chen et al. EURASIP Journal on Image and Video Processing  (2016) 2016:23 Page 4 of 10

Fig. 2 Histograms or empirical disparity distributions corresponding to the images “cup,” “human,” “lawn,” and “stone”. a–d, e–h, i–l Delivered by

DFLOW, DSSIM, and DSAD, respectively

f2 =
1

NNeg

∑

D(n)<=0

D(n) (2)

In (1) and (2), D(n) is the nth smallest value in the

disparity map, whileNPos andNNeg are the number of pos-

itive and negative values in the disparity map, respectively.

If NPos = 0 or NNeg = 0 , then f1=0 or f2 = 0.

The average of the upper and lower 5 % disparities

define the third and fourth features:

f3 =
1

N5 %

∑

n≤Ntotal×5 %

D(n) (3)

f4 =
1

N95 %

∑

n≥Ntotal×95 %

D(n) (4)

where N5 % and N95 % are the number of values that are

lower and higher than 5 % and 95 % of the disparity values,

respectively.

We extracted these four basic statistical features from

disparity maps calculated by the three abovementioned

stereo depth-finding algorithms on the stereo pairs in the

IEEE-SA stereo image database [35]. The IEEE-SA stereo

image database contains 800 stereo image pairs of high-

definition (HD) resolution (1920×1080 pixels). An inte-

grated twin-lens PANASONIC AG-3DA1 3D camcorder

was used to capture the 3D content in the database. The

subjective discomfort assessment experiment was con-

ducted in a laboratory environment commensurate with

standardized recommendations for subjective evaluation

of picture quality [37]. A 46-in. polarized stereoscopic

monitor of HD resolution was used to display the test

stereo images. Each subject viewed the test stereo images

from a distance of about 170 cm, or about three times the

height of the monitor. Twenty-four valid subjects partic-

ipated in the subjective test. Each subject was asked to

assign a visual discomfort score to each stereo test image

on a Likert-like scale: 5 = very comfortable, 4 = com-

fortable, 3 = mildly comfortable, 2 = uncomfortable, and

1 = extremely uncomfortable. More information can be

found in [25].

Simply stated, the images and corresponding MOS of

these images were divided into test and training sub-

sets. A support vector regression (SVR) was deployed as

a regression tool on the training set and then applied

to the test set. To implement the SVR, we used the

LibSVM package [38] with the radial basis function ker-

nel, whose parameters were estimated by cross-validation

during the training session. One thousand iterations of

the train-test process were applied where the image

database was randomly divided into 80 % training and

20 % test at each iteration. The training and testing sub-

sets did not overlap in content. The performance was

measured using Spearman’s Rank Ordered Correlation

Coefficient (SROCC) and (Pearson’s) linear correlation

coefficient (LCC) between the predicted scores and the

MOS. Higher SROCC and LCC values indicate good cor-

relation (monotonicity and accuracy) with human quality

judgments. We obtained the mean, median, and stan-

dard deviations of LCC and SROCC of the three models

against MOS over all 1000 train-test trials, as tabulated

in Table 1. Values of LCC and SROCC close to 1 mean

superior linear and rank correlation with MOS, respec-

tively. Obviously, the higher the mean and median, the

better the LCC and SROCC performance. Conversely,



Chen et al. EURASIP Journal on Image and Video Processing  (2016) 2016:23 Page 5 of 10

Table 1 Mean SROCC and LCC over 1000 trials of randomly chosen train and test sets on the IEEE-SA database

SROCCMean SROCCMed SROCCSTD LCCMean LCCMed LCCSTD

DFLOW 0.7445 0.7457 0.0389 0.8318 0.8358 0.0317

DSSIM 0.6628 0.6627 0.0426 0.7006 0.7019 0.0423

DSAD 0.5873 0.5889 0.0493 0.6057 0.6083 0.0491

a higher standard deviation implies more unstable

performance.

From the results, we can see that the predictive power

of the four-feature discomfort prediction models is dra-

matically reduced by the use of a low complexity stereo

algorithm instead of a high performing, high complexity

algorithm.

There is a significant increase in pixels having large esti-

mated disparity errors in the disparity maps extracted by

DSSIM and DSAD. By observing the histograms of the

disparity distributions in Fig. 2, it may be seen that the dis-

parities produced by DSSIM and DSAD span nearly the

entire disparity range. Hence, it is difficult to obtain accu-

rate values of the mean negative and positive disparities,

nor the top 5 % biggest and smallest disparities. For exam-

ple the four feature values (1)–(4) extracted by DFLOW

on the image “human” were [1.69, –12.5, –26.9, 2.5], the

values computed using DSSIM were [32.6, –33.5, –107.4,

78.8], and those using DSAD were [45.8, –45.0, –111.4,

85.5]. The largest and smallest 5 % of disparities found by

DSAD essentially bracket the entire disparity.

Table 2 compares the computation times and estimation

accuracies of these three disparity calculation methods.

The computation times were recorded in units of hours

on the IEEE-SA database. Since IEEE-SA does not pro-

vide ground truthmaps, the estimation accuracies of these

three algorithms were tested on the Middlebury stereo

database [33]. The average percentages of bad pixels was

recorded for each algorithm. From Table 2, it is appar-

ent that the DSAD disparity algorithm executes with the

fastest computation speed but it achieves the worst esti-

mation accuracy.

Feature extraction from disparity distributions mea-

sured on the DSSIM and DSAD maps will likely be seri-

ously affected by the high percentages of estimated errors,

thereby adversely affecting discomfort prediction results.

This would seem to advocate the use of only high com-

plexity, high performance stereo modules in S3D visual

Table 2 Compute times and accuracies of disparity calculation

algorithms

DFLOW DSSIM DSAD

Time/hour 45.71 22.04 3.51

Average percent of bad pixels 15.87 % 29.47 % 66.03 %

discomfort prediction models. However, another possibil-

ity worth exploring to improve the usability of disparity

maps extracted by low complexity algorithms like DSAD

or DSSIM, is to develop additional resilient features on

them that can ameliorate the effects of disparity estima-

tion errors.

4 Uncertainty map
A promising approach is to understand the distribution

of estimated errors, from which useful features may be

developed to improve the performance of discomfort pre-

diction models using low-complexity stereo algorithms.

Pixels associated with disparity errors are often dissim-

ilar with features computed on the corresponding dis-

parity shifted pixels in the other view. The authors of

[39] defined a disparity uncertainty map to estimate the

uncertainty produced by DSSIM and used it as a fea-

ture to improve the task of 3D no-reference distortion

assessment. The uncertainty is defined as:

Uncertainty(l, r)=1−
(2μlμr + C1)(2σlr + C2)

(μ2
l + μ2

r + C1)(σ
2
l + σ 2

r + C2)
(5)

where l is the left-view image and r is the disparity-

compensated right-view image of a stereo pair,μ and σ are

the local weighted mean and weighted standard deviation

computed over a local Gaussian window, and C = 0.01

is a constant that ensures stability. An 11 × 11 Gaus-

sian weighting matrix with a space constant 3.67 pixels

was used to compute μ and σ as in [39]. The uncer-

tainty reflects the degree of similarity between the corre-

sponding pixels of a stereo pair. Hence, the uncertainty

distribution of a disparity map can be used to represent

the distribution of estimated errors. Figure 3 shows the

uncertainty distributions of DFLOW, DSSIM, and DSAD

maps computed on the image “human.” It may be observed

that the histogram computed on the DFLOW uncertainty

map corresponds to a very peaked distribution. The his-

tograms of the DSSIM and DSAD uncertainty maps are

less peaky since more large estimated errors occur. This

is consistently the case for the distributions of DFLOW,

DSSIM, and DSADmaps on the other images in the IEEE-

SA database. This phenomenon may be understood by

observing that the stereo matching algorithms find good

matches (with low uncertainty) at most places, while less

common occluded or ambiguous flat or textured areas

may cause sparse disparity errors (with high uncertainty).



Chen et al. EURASIP Journal on Image and Video Processing  (2016) 2016:23 Page 6 of 10

Fig. 3 Histograms of the uncertainty maps computed on “human.” a–cMaps delivered by DFLOW, DSSIM, and DSAD, respectively

A log-normal distribution can be fit to the histogram of

the uncertainty map [39]. The probability density function

of a log-normal distribution is:

lx(x;μ, σ) =
1

xσ
√
2π

exp−
(ln x − μ)2

2σ 2
(6)

where μ is the location parameter and σ is the scale

parameter. A simple maximum likelihood method can

be used to estimate μ and σ for a given histogram of

uncertainties [39].

To summarize, the features used to describe estimated

disparity errors are the best-fit log-normal parameters

(μ and σ ), and the sample skewness and kurtosis of the

uncertainty map which are calculated as (7) and (8):

s =

∑

(i,j)

(U(i,j) − Ū)
3
/N

σU3
(7)

k =

∑

(i,j)

(U(i,j) − Ū)
4
/N

σU4
(8)

where U(i,j) is the uncertainty value at coordinate (i, j), Ū

is the mean, σU is the standard deviation, and N is the

number of pixels.

5 3D NSSmodel
Towards ameliorating the weaknesses introduced by the

use of low-complexity stereo models, we take a statisti-

cal approach towards characterizing the errors introduced

by these algorithms. We accomplish this by subjecting the

computed disparity maps to a perceptual transform char-

acterized by a bandpass process followed by a nonlinear-

ity. The resulting data are then amenable to analysis under

a simple but powerful natural scene model. Research on

natural scene statistics (NSS) has clearly demonstrated

that images of natural scenes belong to a small set of the

space of all possible signals and that they obey predictable

statistical laws [40]. Further, the studies of Hibbard [41]

and Liu [42] found that the distribution of disparity fol-

lows a Laplacian shape. The authors of [39] processed

the depth and disparity maps by local mean removal and

divisive normalization and found that the histograms of

the processed depth and disparity maps take a zero-mean

symmetric Gaussian-like shape. One form of this process

is [43]:

M(i, j) =
I(i, j) − μ(i, j)

σ (i, j) + C
(9)

where i, j are spatial indices,μ and σ are the local weighted

mean and weighted standard deviation computed over a

local Gaussian window, and C = 0.01 is a constant that

ensures stability. An 11 × 11 Gaussian weighting matrix

with a space constant 3.67 pixels is used to compute μ and

σ as [39].

We applied the identical process (9) to DSAD, DSSIM,

and DFLOW maps. The processed histograms for each

computed on image “cup,” “human,” “lawn,” and “stone”

are shown in Fig. 4a–c. All of the histograms computed

fromDFLOWmaps take zero-mean symmetric Gaussian-

like shape as elaborated in [39]. Most of the histograms

computed on DSSIM maps also take the same shape, but

the modes of a few of them are shifted (e.g., “cup”). Other
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Fig. 4 Histograms of DFLOW, DSSIM, and DSAD maps following processing by (7) on images “cup,” “human,” “lawn,” and “stone.” The red, blue, green,

and black stars correspond to images “cup,” “human,” “lawn,” and “stone,” respectively. a–c DFLOW, DSSIM, and DSAD maps, respectively

than image “lawn,” the histograms of images processed by

DSAD then subjected to DSAD disparity extraction fail to

take a symmetric Gaussian-like shape. As in [39], when the

Gaussian model fails, a generalized Gaussian distribution

(GGD) fit may be attempted:

gx(x;μ, σ
2, γ ) = ae−[b|x−μ|]γ (10)

where μ , σ 2, and γ are the mean, variance, and shape-

parameter of the distribution,

a =
bγ

2Ŵ(1/γ )
(11)

b =
1

σ

√

Ŵ(3/γ )

Ŵ(1/γ )
(12)

and Ŵ(.) is the gamma function:

Ŵ(x) =
∫ ∞

0
tx−1e−tdt, x > 0 (13)

The parameters (σ and γ ) are estimated here using the

method used in [44].

The authors of [39] use the GGD parameters (μ and σ ),

along with the sample standard deviation, skewness, and

kurtosis of these coefficients as 3D features to estimate the

quality of 3D images. Here, we deploy the same features

to model a perceptually processed disparity distribution.

Since the histograms of perceptually processed low qual-

ity disparity maps extracted by low complexity stereogram

algorithms such as DSSIM or DSAD do not result in very

Table 3 Mean SROCC and LCC over 1000 trials on DSAD-based discomfort predictor

SROCCMean SROCCMed SROCCSTD LCCMean LCCMed LCCSTD

UM 0.6793 0.6813 0.0422 0.7067 0.7102 0.0417

NSS 0.6678 0.6699 0.0423 0.6959 0.6964 0.0402

UM+NSS 0.6492 0.6502 0.0519 0.7277 0.7286 0.0456
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Table 4 Mean SROCC and LCC over 1000 trials on DSSIM-based discomfort predictor

SROCCMean SROCCMed SROCCSTD LCCMean LCCMed LCCSTD

UM 0.7102 0.7126 0.0367 0.7424 0.7422 0.0355

NSS 0.6981 0.6983 0.0396 0.7575 0.7608 0.0349

UM+NSS 0.7307 0.7306 0.0360 0.7853 0.7847 0.0341

good fitting results, then the average GGD fitting error is

extracted as a useful feature:

ε =
1

N

∑

x

∣

∣H(x) − fx(x)
∣

∣ (14)

whereN is the number of distributions in histogram,H(x)

is the quantity of pixels at coordinate x, and gx(x) is the fit

result of GGD.

6 Performance evaluation
To summarize our model, we have devised two kinds of

features that are designed to improve the prediction per-

formance of 3D visual discomfort model that rely low

complexity disparity calculation algorithms. These fea-

tures are the uncertainty map (UM) which simulates esti-

mated disparity errors; the best-fit log-normal parameters

(μ and σ ), skewness, and kurtosis of the uncertainty map;

and 3D NSS features that serve as a prior constant on

true disparity including the GGD parameters (μ and σ ),

standard deviation, skewness and kurtosis of perceptually

processed disparity maps, along with the average GGD

fitting error.

The testing that was done is similar to what was

described earlier, but using combinations of these new

features. The test was conducted on the IEEE-SA stereo

image database [35], SVR was deployed as the regression

tool, 1000 iterations of the train-test process were used,

and image database was randomly divided into 80 % train-

ing and 20 % test sets. The performance was measured

using SROCC and LCC between the predicted scores and

the MOS. The operation environment was an Apple com-

puter running Matlab: MacPro 4.1 with Intel xeon cpu

e5520 2.27Ghz and 6 GB of RAM.

Several combinations of the features are selected: UM,

NSS, and (UM+NSS) integrated into the existing predic-

tion framework. Three same disparity calculation were

used.

We obtained the mean, median, and standard devia-

tions of LCC and SROCC of the performance results of

these combinations of features against MOS over all 1000

train-test trials, as tabulated in Tables 3, 4, and 5 for

DSAD, DSSIM, and DFLOW, respectively. Table 6 shows

the performance results of these combinations without

considering the features from disparity. The performance

results of prior models are also tabulated in Table 5. We

tested the models contributed by Park [7], Nojiri [13],

Yano [14], Choi [15], and Kim [16].

From Table 6, it may be observed that 3D NSS and

the UM are predictive of the degree of visual discomfort

induced by 3D images.

By observation of Tables 1 and 3, both kinds of features

contribute to improving the performance of the nom-

inal discomfort prediction framework using DSAD. In

terms of mean SROCC, it is increased significantly from

0.5873 to 0.6793 using UM, and to 0.6678 using NSS. The

combination of these features achieves the best results

with mean SROCC of 0.7100 and LCC of 0.7314. These

results are better than those of Nojiri [13], Yano [14], Choi

[15], and Kim [16], and close to Park [7]. The stability

of the predictive power is also improved in regard to the

standard deviation of SROCC, 0.0493 to 0.0366.

A similar result is attained when using the DSSIM algo-

rithm. The combination of features improves the perfor-

mance of the prediction framework from SROCC 0.6628

to 0.7307 which is better than the result attained on

DSAD. The stability is improved too.

Table 5 Mean SROCC and LCC over 1000 trials on DFLOW-based discomfort predictor and prior methods

SROCCMean SROCCMed SROCCSTD LCCMean LCCMed LCCSTD

Nojiri [13] 0.6108 0.6155 0.0732 0.6854 0.6935 0.0788

Yano [14] 0.3363 0.3384 0.0732 0.3988 0.4045 0.0748

Choi [15] 0.5851 0.5909 0.0798 0.6509 0.6565 0.0703

Kim [16] 0.6151 0.6195 0.0700 0.7018 0.7113 0.0771

Park [7] 0.7831 0.7882 0.0451 0.8604 0.8672 0.0482

UM 0.7626 0.7646 0.0355 0.8408 0.8437 0.0332

NSS 0.7862 0.7883 0.0322 0.8585 0.8594 0.0255

UM+NSS 0.8011 0.8064 0.0354 0.8649 0.8667 0.0285
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Table 6 Mean SROCC and LCC over 1000 trials without considering the features from disparity

SROCCMean SROCCMed SROCCSTD LCCMean LCCMed LCCSTD

UM 0.4753 0.4801 0.0595 0.5418 0.5394 0.0615

NSS 0.6153 0.6219 0.0480 0.6806 0.6839 0.0388

UM+NSS 0.7100 0.7098 0.0366 0.7314 0.7323 0.0408

The new features also improve the performance of pre-

diction framework based on the high complexity algo-

rithm DFLOW, as shown in Table 7. Unlike the results

on DSAD and DSSIM, here NSS contributes the most to

the performance improvement. That may follow because

the uncertainty map may not be able to improve the

models much if the disparities are already accurately esti-

mated. The contribution of NSS is stable over the visual

discomfort models.

Table 7 shows the results of F-tests conducted to

assess the statistical significance of the errors between the

MOS scores and the model predictions on the IEEE-SA

database. (UM+NSS)DF means the model with features

of UM, NSS, and disparity using the DFLOW disparity

calculation method. The residual error between the pre-

dicted score of a model and the correspondingMOS value

in the IEEE-SA database can be used to test the statistical

efficacy of the model against other models. The residual

errors between themodel predictions and theMOS values

are:

R = {Qi − MOSi, i = 1, 2, ...,NT } (15)

where Qi is the ith objective visual discomfort score and

MOSi is the corresponding ith MOS score. The F-test

was used to compare one objective model against another

objective model at the 99.9 % significance level. Table 7

is the result of the F-test. A symbol value of “1” indi-

cates that the statistical performance of the model in

the row is better than that of the model in the column,

while “0” indicates the performance in the row is worse

than that in the column, and “–” indicates equivalent per-

formance. The results indicate that both UM and NSS

features improve the performances of the models with

statistical significance.

Table 7 Results of the F-test performed on the residuals between

objective visual discomfort predictions and MOS values at a

significance level of 99.9 %

Kim Park DFLOW UMDF NSSDF (UM+NSS)DF

Kim – 0 0 0 0 0

Park 1 – 1 1 – 0

DFLOW 1 0 – 0 0 0

UMDF 1 0 1 – 0 0

NSSDF 1 – 1 1 – 0

(UM+NSS)DF 1 1 1 1 1 –

Compared to the computation time of DSAD (3.51 h),

the average computation time of these two features on the

IEEE-SA database was much reduced (0.78 h). Hence, UM

and NSS can efficiently improve visual discomfort models

without much extra computation.

7 Conclusions
We studied the performance differences of 3D discomfort

prediction models that rely on three disparity calculation

algorithms having different complexity levels. The experi-

mental results showed that the predictive power of a nom-

inal prediction model is dramatically reduced when using

a low complexity algorithm instead of a high complex-

ity algorithm. The performance of models under the low

complexity algorithm is also more unstable. Two kinds of

new features were introduced to stabilize low-complexity

results: features of a disparity uncertainty map (UM) and

features of a 3D NSS model. We find that integrating

these features significantly elevates the performance of the

nominal discomfort model using low complexity stereo

algorithms like DSAD or DSSIM. The new features also

improve performance when a high complexity disparity

estimator is used.
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