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Abstract This paper describes a method for estimating the vehicle global position 
in a network of roads by means of visual odometry. To do so, the ego-motion of 
the vehicle relative to the road is computed using a stereo-vision system mounted 
next to the rear view mirror of the car. Feature points are matched between pairs 
of frames and linked into 3D trajectories. Vehicle motion is estimated using the 
non-linear, photogrametric approach based on RANSAC. This iterative technique 
enables the formulation of a robust method that can ignore large numbers of outliers 
as encountered in real traffic scenes. The resulting method is defined as visual 
odometry and can be used in conjunction with other sensors, such as GPS, to produce 
accurate estimates of the vehicle global position. The obvious application of the 
method is to provide on-board driver assistance in navigation tasks, or to provide a 
means for autonomously navigating a vehicle. The method has been tested in real 
traffic conditions without using prior knowledge about the scene nor the vehicle 
motion. We provide examples of estimated vehicle trajectories using the proposed 
method and discuss the key issues for further improvement. 

Keywords 3D visual odometry • Ego-motion estimation • Navigation assistance • 
RANSAC • Non-linear least squares 
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1 Introduction 

The use of video sensors for vehicle navigation has become a research goal in the 
field of Intelligent Transportation Systems and Intelligent Vehicles in the last years. 
Accurate estimation of the vehicle global position is a key issue, not only for devel-
oping useful driver assistance systems, but also for achieving autonomous driving. 
Using stereo-vision for computing the position of obstacles or estimating road lane 
markers is a usual technique in intelligent vehicle applications. The challenge now is 
to extend stereo-vision capabilities to also provide accurate estimation of the vehicle 
ego-motion with regard to the road, and thus to compute the vehicle global position. 
This is becoming more and more tractable to implement on standard PC-based 
systems nowadays. However, there are still open issues that constitute a challenge 
in achieving highly robust ego-motion estimation in real traffic conditions. These are 
discussed in the following lines. 

1) There must exist stationary reference objects that can be seen from the cam-
eras position. Besides, the reference objects must have clearly distinguishable 
features that make possible to unambiguously perform matching between two 
frames. Accordingly, the selection of features becomes a critical issue. 

2) Information contained on road scenes can be divided into road feature points 
and background feature points. On the one hand, roads have very few feature 
points, most of then corresponding to lane markings, or even no points in the 
case of unmarked roads. On the other hand, information corresponding to 
the background of road scenes may contain too many feature points. Robust 
matching techniques are then needed to avoid false matching. 

3) Typical road scenes may contain a large amount of outlier information. This 
includes non-stationary objects such as moving vehicles, pedestrians, and car 
wipers. All these artifacts contribute to false measurements for ego-motion esti-
mation. Possible solutions to overcome this problem are two fold: to deploy some 
outlier rejection strategy; to estimate feature points motion using probabilistic 
models in order to compensate for it in the estimation process. 

In this paper, we propose a method for ego-motion computing based on stereo-
vision. The use of stereo-vision has the advantage of disambiguating the 3D position 
of detected features in the scene at a given frame. Based on that, feature points are 
matched between pairs of frames and linked into 3D trajectories. The idea of esti-
mating displacements from two 3-D frames using stereo vision has been previously 
used A common factor of these works is the use of robust estimation 

and outliers rejection using RANSAC a so-called firewall mechanism is 
implemented in order to reset the system to remove cumulative error. Both monocu-
lar and stereo-based versions of visual odometry were developed , although the 
monocular version needs additional improvements to run in real time, and the stereo 
version is limited to a frame rate of 13 images per second. a stereo system 
composed of two wide Field of View cameras was installed on a mobile robot to-
gether with a GPS receiver and classical encoders. The system was tested in outdoor 
scenarios on different runs under 150 m. trajectory estimation is carried out 
using visual cues for the sake of autonomously driving a car in inner-city conditions. 

In the present work, the solution of the non-linear system equations describing 
the vehicle motion at each frame is computed under the non-linear, photogrametric 



approach using RANSAC. The use of RANSAC allows for outliers rejection in 2D 
images corresponding to real traffic scenes, providing a method for carrying out 
visual odometry onboard a road vehicle. A clear contribution of this work is the 
optimization of the RANSAC parameters. Exhaustive experimentation has been 
conducted in this aspect in order to yield the really optimal RANSAC parameters. 
Indeed, a genetic algorithm was off-line run to set a comparison between the 
optimized RANSAC parameters achieved on-line by our method and the same 
parameters obtained off-line by an evolutionary algorithm performing exhaustive 
global search. The results were extremely similar. The optimization of RANSAC 
parameters allows the use of very few feature points, thus reducing the total compu-
tation time of the visual odometry method. The possible applications of this method 
are twofold: on the one hand, the visual odometry system can serve to complement 
a GPS-based global navigation system. On the other hand, visual odometry can be 
used for simultaneous localization and mapping tasks (SLAM). Several examples are 
provided in order to show the trajectories estimated in real traffic conditions using 
the described method. A general layout of the system is depicted in Fig. 1. 

The rest of the paper is organized as follows: in Section 2 the feature detection and 
matching technique is presented; Section 3 provides a description of the proposed 
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non-linear method for estimating vehicle ego-motion and the 3D vehicle trajectory; 
implementation and results are provided in Section 4; finally, Section 5 is devoted to 
conclusions and discussion about how to improve the current system performance in 
the future. 

2 Features Detection and Matching 

In each frame, Harris corners are detected, since this type of point feature has 
been found to yield detections that are relatively stable under small to moderate 
image distortions . . distortions between consecutive frames can 
be regarded as fairly small when using video input . In order to reduce the 
computation time and to remove irrelevant features that move in the central part of 
the image, the method is only run in the lower left and right parts of the image, where 
significant features are most frequently located. The feature points are matched at 
each frame, using the left and right images of the stereo-vision arrangement, and 
between pairs of frames. Features are detected in all frames and matches are allowed 
only between features. A feature in one image is matched to every feature within a 
fixed distance from it in the next frame, called disparity limit. For the sake of real-
time performance, matching is computed over a 7 x 7 window. 

Among the wide spectrum of matching techniques that can be used to solve 
the correspondence problem we implemented the zero mean normalized cross 

correlation because of its robustness. The normalized cross correlation between 
two image windows can be computed as follows. 

ZMNCCO?, p') 

where A and B are defined by 

(i) 
n n n n 

\ i=—n j=—n i=—n j=—n 

A=(l(x + i,y + j)-I(x,yj) (2) 

B = (/ ' (x< + i, y< + j) - I>(x>, y')) (3) 

where I(x, y) is the intensity level of pixel with coordinates (x, y), and I(x, y) is 
the average intensity of a (2M + 1) X (2M + 1) window centered around that point. 
As the window size decreases, the discriminatory power of the area-based crite-
rion gets decreased and some local maxima appear in the searching regions. On 
the contrary, an increase in the window size causes the performance to degrade 
due to occlusion regions and smoothing of disparity values across boundaries. In 
consequence, the correspondences yield some outliers. According to the previous 
statements, a filtering criteria is needed in order to provide outliers rejection. In order 
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Fig. 2 a The upper row depicts feature detection results using Harris detector in several images in 
urban environments. Detection is constrained to a couple of regions of interest located in the lateral 

areas of the image below the horizon line, b The bottom left image shows an example of features 
matching in a stereo image, c The bottom right image depicts an example of feature tracking in two 
consecutive frames. ZMNCC and mutual consistency check is used both for feature detection and 
feature tracking 

to minimize the number of outliers, mutual consistency check is used, as described 

Accordingly, only pairs of features that yield mutual matching are accepted as a 

valid match. The accepted matches are used both in 3D feature detection (based on 

stereo images) and in feature tracking (between consecutive frames). Figure 2 depicts 

an example of features detection and tracking using Harris detector and ZMNCC 

matching technique. 

The complete description of the feature detection and matching method can be 

found where a similar method was used for pedestrian detection purpose. 

3 Visual Odometry Using Non-linear Estimation 

The problem of estimating the trajectory followed by a moving vehicle can be defined 

as that of determining at frame i the rotation matrix Ri-\j and the translational vector 

Tt-ij that characterize the relative vehicle movement between two consecutive 

frames. The use of non-linear methods becomes necessary since the nine elements of 

the rotation matrix can not be considered individually (the rotation matrix has to be 

orthonormal). Indeed, there are only three unconstrained, independent parameters, 

i.e., the three rotation angles 9X, 9y and 9Z, respectively. The system's rotation can be 

expressed by means of the rotation matrix R given by Eq. 4. 

(
cycz sxsycz + cxsz — cxsycz + sxsz \ 

—cysz — sxsysz + cxcz cxsysz + sxcz I (4) 

sy —sxcy cxcy I 

where ci = cosOi and si = sinOi for i = x, y, z- The estimation of the rotation angles 

must be undertaken by using an iterative, least squares-based algorithm that 



yields the solution of the non-linear equations system that must compulsorily be 
solved in this motion estimation application. Otherwise, the linear approach can lead 
to a non-realistic solution where the rotation matrix is not orthonormal. 

3.1 RANSAC 

RANSAC (random sample consensus) is an alternative to modifying the 
generative model to have heavier tails to search the collection of data points S 

for good points that reject points containing large errors, namely "outliers". The 
algorithm can be summarized in the following steps: 

1) Draw a sample s of n points from the data S uniformly and at random. 
2) Fit to that set of n points. 
3) Determine the subset of points Si for whom the distance to the model s is bellow 

the threshold Dt. Subset Si (defined as consensus subset) defines the inliers of S. 

4) If the size of subset Si is larger than threshold T the model is estimated again 
using all points belonging to Si. The algorithm ends at this point. 

5) Otherwise, if the size of subset Si is below T, a new random sample is selected 
and steps 2, 3, and 4 are repeated. 

6) After N iterations (maximum number of trials), draw subset SiC yielding the 
largest consensus (greatest number of "inliers"). The model is finally estimated 
using all points belonging to £;c. 

RANSAC is used in this work to estimate the rotation matrix R and the trans-
lational vector T that characterize the relative movement of a vehicle between two 
consecutive frames. The input data to the algorithm are the 3D coordinates of the 
selected points at times t and t + 1. Notation to and ti = to + 1 is used to define the 
previous and current frames, respectively, as in the next equation. 

+ T0,i; i = 1,... ,n (5) 

After drawing samples from three points, in step 1 models i?o,i and fo,i that best 
fit to the input data are estimated using non-linear least squares. Then, a distance 
function is defined to classify the rest of points as inliers or outliers depending on 
threshold Dt. 

inlier e < t ,,. 

outlier e ^ t ^ ' 

In this case, the distance function is the square error between the sample and the 
predicted model. The 3D coordinates of the selected point at time t\ according to the 
predicted model are computed as: 

+ T0,i; i=l,...,n (7) 



The error vector is computed as the difference between the estimated vector and 

the original vector containing the 3D coordinates of the selected points (input to the 

algorithm): 

e
y 

e7 

l
y (8) 

Zi) \
l
Zi) 

The mean square error or distance function for sample i is given by: 

e = |e|2 = e' e (9) 

In the following subsections, justification is provided for the choice of the different 

parameters used by the robust estimator. 

3.1.1 Distance Threshold Dt 

According to this threshold samples are classified as "inliers" or "outliers". Prior 

knowledge about the probability density function of the distance between "inliers" 

and model St is required. If the measurement noise can be modelled as a zero-mean 

Gaussian function with standard deviation a, St can then be modelled as a chi-square 

distribution. In spite of that, distance threshold is empirically chosen in most practical 

applications. In this work, a threshold of Dt = 0.005 m2 was chosen. 

3.1.2 Number of Iterations N 

Normally, it is non viable or unnecessary to test all the possible combinations. In 

reality, a sufficiently large value of N is selected in order to assure that at least one 

of the randomly selected s samples is outlier-free with a probability p. Let a> be the 

probability of any sample to be an inlier. Consequently, e = 1 — a> represents the 

probability of any sample to be an outlier. At least, N samples of s points are required 

to assure that (1 — af)
N = 1 — p. Solving for N yields: 

N=
 l 0 g ( l

-
p ) (10) 

log(l - (1 - e)0 V J 

In this case, using samples of three points, assuming p = 0.99 and a proportion 

of outliers e = 0.25 (25%), at least nine iterations are needed. In practice, the final 

selected value is N = 10. 

3.1.3 Consensus Threshold T 

The iterative algorithm ends whenever the size of the consensus set (composed of 

inliers) is larger than the number of expected inliers T given by e and n: 

T=(l-e)n (11) 



3.2 Non-linear Least Squares 

Given a system of n non-linear equations containing p variables: 

' fi(xux2, ...,xp) = bi 

f2(xi,x2,...,xp) = b2 / N 

. (12) 

. f„(xi,x2, ...,xp) = b„ 

where /;, for i = 1,...,«, is a differentiable function from M
p to Dt. In general, it can 

be stated that: 

1) If n < p, the system solution is a (p — n)-dimensional subspace of ffl. 

2) If n = p, there exists a finite set of solutions. 
3) If n > p, there exists no solution. 

As can be observed, there are several differences with regard to the linear case: 
the solution for n < p does not form a vectorial subspace in general. Its structure 
depends on the nature of the /; functions. For n = p a finite set of solutions 
exists instead of a unique solution as in the linear case. To solve this problem, an 
underdetermined system is built (n > p) in which the error function E{x) must be 
minimized. 

N 

E(x) 4 ^ ( / ; ( x ) - bd
2 (13) 

The error function E : 9t
p —• 'St can exhibit several local minima, although in 

general there is a single global minimum. Unfortunately, there is no numerical 
method that can assure the obtaining of such global minimum, except for the case 
of polynomial functions. Iterative methods based on the gradient descent can find 
a global minimum whenever the starting point meets certain conditions. By using 
non-linear least squares the process is in reality linearized following the tangent 
linearization approach. Formally, function /;(x) can be approximated using the first 
term of Taylor's series expansion, as given by Eq. 14. 

ft(* + &) = /Kx) + &xi^(x) + . . . + 

+ Sx M ( I ) + OQSx\)
2 « /Kx) + V/Kx) • Sx (14) 

dxp 

where V/;(x) = ( | | - , . . . , |^-) is the gradient of /; calculated at point x, neglecting 

high order terms <9(|5x|)2. The error function E(x + S\) is minimized with regard to 
Sx given a value of x, by means of a iterative process. Substituting Eq. 14 in Eq. 12 
yields: 

N 

E(x + Sx) = J](/Kx + &) - bd2
 « 

i=i 

N 

w J](/Kx) + V/Kx) • Sx - bd
2
 = \J8x - C|2 (15) 



where 

dx\ 

V 9*1 

(x) 

(x) 

— (x) * 
dxp 

dx„ 
(x) 

(16) 

and 

(17) 

After linearization, an overdetermined linear system of n equations and p vari-

ables has been constructed (n < p): 

J&x = C, (18) 

The system given by Eq. 18 can be solved using least squares, yielding: 

Sx = ( J ' J r ^ C = ^ C . (19) 

where P stands for the pseudoinverse matrix of J. In practice, the system is solved in 

an iterative process, as described in the following lines: 

1) An initial solution xo is chosen 

2) While (£(Xj) > emin and i < jmax) 

- 5x; = J(x i)
tC(x i) 

- x i + i = xj + 5xj 

- £(x i + 1) = ^(Xi + 5x0 = |J(Xi)5xi - C(Xi) |2 

where the termination condition is given by a minimum value of error or a maximum 

number of iterations. 

3.3 3D Trajectory Estimation 

Between instants fo and t\ we have: 

Ro,i yi + T0,i; ( = 1. N (20) 

Considering Eq. 4 it yields a linear six-equations system at point i, with six 

variables w = [9X, 6y, 9Z, tx, ty, tzf: 

1
xi = cycz • °Xi + (sxsycz + cxsz) • °)>i+ 

+ (-cxsycz + sxsz) • °Zi + tx 

l
yt = - cysz • °Xi + (sxsysz + cxcz) •

 0
yt+ 

+ (cxsysz + sxcz) • °Zi + ty 

l
Zi = sy • °Xi - sxcy •

 0
yt + cxcy • °Zi + tz 



At each iteration k of the regression method the following linear equations system 

is solved (given the 3D coordinates of N points in two consecutive frames): 

J(wk)5xk = C(xk) (21) 

with: 

/JIM 

J\,2\ 

J\,3\ 

J(*0 

•^1,12 ^ 1 , 1 3 

•^1,22 ^ 1 , 2 3 

•^1,3 2 ^ 1 , 3 3 

•^1,14 

•^1,24 

•^1,34 

•^1,15 

•^1,25 

•^1,35 

•^1,16 \ 

•^1,26 

•^1,36 

•^2,11 ^ 2 , 1 2 ^ 2 , 1 3 ^ 2 , 1 4 ^ 2 , 1 5 ^ 2 , 1 6 

Jl,2\ 

•^2,31 

/?..?.?. / 2 . 2 3 J?..?A J 2,22 ^2,23 

•^2,3 2 ^2,33 

2,24 ^2,25 

•^2,34 ^2,3 5 

•^2,26 

•^2,36 

•̂ JV,11 JN,12 /jV,13 JN,14 JN,15 JN,16 

JN,21 JN,22 JN,23 -^V,24 JN,25 JN,26 

\JN,31 JN,32 JN,33 JN,34 JN,35 JN,36/ 

Sxk = [&0x,k, &&y,k, &&z,k, &tx,k, &ty,k, &tz,k\ 

C(x k ) = [ C U , Ci>2, C U , . . . , CJV,1, cNa, CN,3]' 

Let us remark that the first index of each Jacobian matrix element represents 

the point with regard to whom the function is derived, while the other two indexes 

represent the position in the 3 x 6 sub-matrix associated to such point. Considering 

Eq. 16 the elements of the Jacobian matrix that form sub-matrix Jj for point i at 

iteration k are: 

Yi + (sxksykczk + cxkszk) • °Z , 

2 = sykcik -°Xi + sxkcykczk • °Y; - cxkcykczk • °Z; 

3 = -cykszk • °Xi + (sxksykszk + cxkczk) • °F; + (cxksykszk + sxkczk) • °Z, 
= 1 

11 = (cxksykczk - sxkszk) 

12 = sykczk -°Xi + sxkcykczk • °Y; - cxkcykczk 
n 

1 

14 

15 = 0 

16 = 0 

2 

22 = sykszk 

i = -{cxksykszk + sxkczk) • °F; + (sxksykszk + cxkczk) • °Z , 

" Xi - sxkcykszk • °Yi + cxkcykszk • °Z ; 

-cykczk • °Xi - (sxksykczk + cxkszk) • °F; + (cxksykczk - sxkszk) • °Z, 

,24 = 0 

, 2 5 = 1 

,26 = 0 

si = -cxkcyk 

32 

33 

34 

35 

36 

^Yi-sxkcyk^Zi 

- cxksyk = cyk-°Xi+sxksyk-°Yl 

0 

0 

0 

1 

}z, 



Independent terms of the coefficients vector c are computed at iteration k as 

follows: 

c u =
 l

Xt- cykcikXi - (sxksykczk + cxkszk)°Yi + (cxksykczk ~ sxkszkfZi ~ tx,k, 

Q,2 =
 l

Yt + cykszkXi + (sxksykszk - cxkczkfYi - (cxksykszk + sxkczkfZi - ty,k, 

ci,3 =
 l

Z t - syk°Xi+sxkcyk°Yi - cxkcyk°Yi - tz,k. 

Once the jacobian matrix J and vector c have been computed at iteration k system 

(21) is solved, solution v/k+i = v/k + &v/k is updated, and the previously explained 

iterative process is resumed in the next iteration (k = k + 1). On completion of the 

process (after imax iterations as maximum) the algorithm yields the final solution 

w = [9x,9y,9z, tx, ty, tzf that describes the relative vehicle movement between two 

consecutive iterations at to and t\, respectively. 

3.4 2D Approximation 

Under the assumption that only 2D representations of the global trajectory are 

needed, like in a bird-eye view, the system can be dramatically simplified by consid-

ering that the vehicle can only turn around the y axis (strictly true for planar roads). 

It implies that angles 9X and 9Z are set to 0, being 9y estimated at each iteration. 

Solving for the rotation matrix in Eq. 4 yields: 

( cosBy 0 — sin6 y \ 

0 1 0 . (22) 

sm9y 0 cos9y I 

In the following, the rotation matrix obtained in Eq. 4 is used as the approximate 

rotation matrix in the mathematical development explained in the previous section 

for 3D motion estimation. Given Eqs. 20 and 22, the new equations system is: 

' l
Xi = cos9y • °Xi - sm9y • °Zi + tx 

•
 1

Yi = °Yi + ty ; i=l,2,...,N 
l
Zt = sm9y • °Xi + cos9y • °Z ; + tz 

As observed, a non-linear equation with four unknown variables w = [9y, tx,ty, tzf 

is obtained. Thus, at least two points are needed to solve the system (or more than 2 

points to solve the system using non-linear least squares). For each iteration k of the 

regression method, the following linear system has to be solved: 

J(wfc)5wfc = C(wfe). (23) 



where: 

J(wk) 
h 

\
J
NJ 

( J\,\\ J\,\2 ^1,13 J\,\4 \ 

•^1,21 ^1,22 ^1,23 ^1,24 

•^1,31 ^1,32 ^1,33 ^1,34 

•^2,11 ^2,12 ^2,13 ^2,14 

•^2,21 ^2,22 ^2,23 ^2,24 

•^2,31 ^2,32 ^2,33 ^2,34 

JN,\\ JN,\2 JN,13 JN,14 

^V,21 ^V,22 ^V,23 ^V,24 

\JN,31 ^V,32 ^V,33 ^V,34 / 

C(Wfe) = [ C U , Ci , 2 , Ci , 3 , . . . , CN,1,CN,2, CN,3]'-

In this case, the Jacobian submatrix J;, associated to point i, has a dimension of 
3x4. The coefficients of J; can be computed as: 

A n = -sintfjgt- °Xi - cos9y,k -°Zi, /;,i2 = 1, /,,i3 = 0, 7 U 4 = 0. 

^,21 = 0, /,,22 = 0, /;,23 = 1, A, 2 4 = 0, 

Jtfi=cos6y<k-
0
Xi-sm6y<k-

0
Zi, /;,32 = 0 /;,33 = 0, / ; 3 4 = 1. 

The vector of independent terms c(w^) yields: 

c^i =
 1

Xi- cos 9y,k -°Xi + sin 6 ^ -°Zi- tx^, 

Ci,2 =
 1

Yl-°Yl-ty,k, 

Q,3 =
 1

Zi- sin 6 ^ • °Xi - cos 6 ^ • °Z ; - fz>fe. 

After computing the coefficients of J; at iteration k, system (23) is solved and 
the iterative process is resumed. On completion of the process (after imax iterations 
as maximum) the algorithm yields the final solution w = [9y, tx, ty, tz]' that describes 
the relative vehicle movement between two consecutive iterations. 

3.5 Data Post-processing 

This is the last stage of the algorithm. Some partial estimations are discarded, in an 
attempt to remove as many outliers as possible, using the following criteria. 

1) High root mean square error e estimations are removed. 
2) Meaningless rotation angles estimations (non physically feasible) are discarded. 

Accordingly, a maximum value of e has been set to 0.5. Similarly, a maximum 
rotation angle threshold is used to discard meaningless rotation estimations. In such 



cases, the estimated vehicle motion is maintained according to motion estimated in 
the previous frame. Removing false rotation estimations is a key aspect in visual 
odometry systems since false rotation estimations lead to high cumulative errors. 
This is a remarkable contribution of this work. 

3.6 Trajectory Representation 

The trajectory can be defined as the set of points {Po, P i , . . . , P̂ v} that represent 
the position of the camera with respect to the a stationary inertial reference system 
whose origin is the position of the camera at the starting time: Oc(to). In summary, 
given the global position of the vehicle at the starting time (that can be provided by 
a GPS receiver), the vehicle position and orientation are updated at each iteration of 
the algorithm. By integrating the successive estimations the complete trajectory can 
be retrieved in real time. 

Accordingly, point P^ in the trajectory is the origin of the reference frame for one 
of the cameras (left camera, in this case) denoted in coordinates of the reference 
system (Fo) (starting time to): 

Vk =
 0

Oc(tk) = {°Xtk,
0
Ytk,°Ztk)

t (24) 

for the case of 3D representation. For the simplified 2D representation case it yields 
("bird-eye view"): 

Vk = °Oc(tk) = (
0
Xtk,°Ztky (25) 

After observing Fig. 3, it can be deduced that the camera position at a given time 
(or point in the trajectory) is computed by integrating the translational vector: 

k-\ 

Vk = To^£ = To_»(A:-l) + T(£_i)^£ = 2_^ Ty_+(y+i) = Tk_\ + T(fc_l)_^ (26) 
7=0 

where it must be remarked that all translational vectors are denoted in coordinates 
of the reference system (F0). The visual odometry system estimates the rotation 
matrix ^ R and the translational vector k

Tk^(k-i) that describe the relative vehicle 
movement between two consecutive iterations (k — 1 and k). 

k
V = k

k
_xK

 k
-

l
V +

 k
Tk^k_ly (27) 

Fig. 3 Theoretical trajectory P3 



Points Vk in the trajectory corresponding to the vehicle position at time tk must 

be represented as a function of motion parameters estimated at that time ( ^ R 

and k
Tk^(k-i)) and those corresponding to the previous (k — 1) estimations. For 

this purpose, translational vectors are expressed as a function of the parameters that 

are known: 

OT1 0 I > I T 1 l n t I T 

J-O-s-1 = i * l o ^ l = — o K J-l-s-C 

O T On 2'T' Oij l i j 2rr' l i j t 2f»t 2rr' 2f»t 2rr' 
J-l-s-2 — 2 K i U 2 - ~ 1 K 2 K ^ 2 ^ 1 — ~ o K 1 K J-2-s-l — — 0 K 12^1 

0 T _ On 3 T _ l n t 2 n t 3Rt 3 T _ 2 n t 3Rt 3 T _ 3Rt 3 T 

1-2^3 — 3» l2->-3 — — o K 1 K 2 K 13^2 — — o K 2 K 13^2 — — o K *3^-2 

fk-1 

°T(fc-i)-^ = ^R k
T(k-i)^k = - I Yi'j

 R* I kT
k^(k-i) 

o R fc-iR Tfc^(fc_i) = - 0 R Tk^(k-i) (28) 

where basic transformation properties are applied, yielding the following value for 

the k
th point in the trajectory: 

Pk = Pfe-l + T(k-l)^k = 

= Pfe-i — o R T^^(fe_i) = 

= P n - Y R t ^ i R ' *T^(^ i ) (29) 

Coordinates of point P^ are computed based on the coordinates of the previous 

point Pk-i by subtracting a term that contains the cumulative value of the variation 

of orientation and the variation of position between two consecutive samples k— 

1 y k, considering that the term QR' = ^ R * ^ R * represents the orientation at time 

k and k
Tk^<k-i) represents motion in that direction between times k — 1 and k. 

The orientation term QR' is given as function of vehicle orientation \
 1

R
t at time 

k — 1 (cumulative rotation matrix) multiplied by the variation of orientation ^ R 1 

between times k — 1 and k [rotation matrix between systems (Fk-i) and (Fk)]- As can 

be observed, the cumulation of orientation is carried out by multiplying the different 

rotation matrices. 

Thus, trajectory {Po, P i , . . . , PAT} is computed by means of the following recursive 

process (as a function of the rotation matrix and the translational vector relative to 

each interval): 

i) J R ^ V R V I R 1 

2) Pt = P^i-*Rt*Tt^(^i); k=l,2,...,N 



being: 

Po = 0 

°R« = I (30) 

4 Implementation and Results 

The visual odometry system described in this paper has been implemented on a 
Pentium IV at 1.7 GHz running Linux Knoppix 3.7 with a 2.4.18-6mdf kernel version. 
The algorithm is programmed in C using OpenCV libraries (version 0.9.7). A stereo 
vision platform based on Fire-i cameras (IEEE1394) was installed on a prototype 
vehicle. After calibrating the stereo vision system, several sequences were recorded 
in different locations including Alcala de Henares and Arganda del Rey in Madrid 
(Spain). The stereo sequences were recorded using no compression algorithm at 30 
frames/s with a resolution of 320 x 240 pixels. All sequences correspond to real traffic 
conditions in urban environments. In the experiments, the vehicle was driven bellow 
the maximum allowed velocity in cities, i.e., 50 km/h. 

4.1 2D Visual Odometry Results 

The general 3D visual odometry method described in this paper can be simplified in 
order to yield a 2D visual odometry system in which only the yaw angle is estimated, 
under the flat terrain assumption. The simplified 2D method is very useful in practice 
for trajectory estimation in short runs. 

The results of a first experiment are depicted in Fig. 4. The vehicle starts a 
trajectory in which it first turns slightly to the left. Then, the vehicle runs along a 
straight street and, finally, it turns right at a strong curve with some 90° of variation 
in yaw. The upper part of Fig. 4 shows an aerial view of the area of the city (Alcala 
de Henares) were the experiment was conducted (source: http://maps.google.com). 
The bottom part of the figure illustrates the 2D trajectory estimated by the visual 
odometry algorithm presented in this paper. 

As can be observed, the system provides reliable estimations of the path run by 
the vehicle in almost straight sections. As a matter of fact, the estimated length 
of the straight section in Fig. 4b is 162.37 m, which is very similar to the ground 
truth (165.86 m). The estimated vehicle trajectory along the straight street is almost 
straight, similar to the real trajectory described by the vehicle in the experiment. 
Nonetheless, there are still some problems to estimate accurate rotation angles in 
sharp bends (90° or more). Rotation angles estimated by the system at strong curves 
tend to be higher than the real rotation experimented by the vehicle. This problem 
does not arise in the first left curve conducted by the vehicle, where the estimated 
rotation and the real rotation are very similar, as can be observed in Fig. 4. Figure 5 
depicts the values of intermediate variables during the whole experiment. Figure 5a 
represents the cumulative estimated vehicle's yaw rate in a sequence of 1,200 frames 
acquired at a frame rate of 30 frames/s (thus, a duration of 40 s). Figure 5b shows 
the number of outliers, i.e., the number of feature points rejected at each frame. In 
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Fig. 4 a Aerial view of the 
area of the city were the 
experiment was conducted. 
b Estimated trajectory using 
visual odometry 
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Fig. 5c the mean-square-error of the estimation is illustrated, while Fig. 5d shows 
all discarded frames throughout the analysis of the sequence (1 stands for discarded 
frame, 0 stands for non-discarded frame). Sharp bends can be easily identified from 
observation of Fig. 5a, since they correspond to high values of the estimated yaw 
angle. Thus, from frame 0 to frame 75, approximately, the vehicle is turning to the 
left (negative yaw values), while from frame 800 to frame 1,000 the vehicle is turning 
sharply to the right. Similarly, the observation of Fig. 5b reveals that most of the 
times the number of outliers per frame remains low (below 6). Frames containing 
a high number of outliers (up to 13) are sporadic and isolated. This means that the 
feature extraction method is quite effective. The number of discarded frames in this 
experiment was 147, i.e., 12.25% of the total number of frames in the sequence. 
This can be considered a reasonable figure since the remaining frames still provide 
sufficient information for reliable position estimation. A remarkable point is the fact 
that discarded frames are rarely consecutive in time, allowing for robust interpolation 
using prediction from previous frames. System performance allows for algorithm 
execution at frame rate since the whole sequence (40 s of duration) was analyzed 
by the system in 37.56 s, including acquisition time. 



a 

4 I' 

0 200 400 «)0 900 1000 1200 0 500 *00 600 800 1000 1200 

Fig. 5 a Cumulative estimated yaw rate, b Number of outliers per frame, c Mean square error. 
d Discarded frames after postprocessing 

In a second experiment, the car started turning slightly right and then left to 
run along an almost straight path for a while. After that, a sharp right turn is 
executed. Then the vehicle moves straight for some metres until the end of the street. 
Figure 6 illustrates the real trajectory described by the vehicle (a) and the trajectory 
estimated by the visual odometry algorithm (b). In this case, the estimated trajectory 
reflects quite well the exact shape and length of the real trajectory executed by the 
vehicle. The system estimated a distance of 189.89 m in a real run of 194.33 m. As 
in the first experiment, Fig. 7 depicts the values of intermediate variables during 
the whole experiment. Figure 7a represents the cumulative estimated vehicle's yaw 
rate in a sequence of some 1,200 frames acquired at a frame rate of 30 frames/s 
(with a duration of 35.33 s). Figure 7b shows the number of outliers per frame. In 
Fig. 7c the mean-square-error of the estimation is illustrated, while Fig. 7d shows all 
discarded frames throughout the analysis of the sequence. Again, the observation 
of Fig. 7b reveals that most of the times the number of outliers per frame remains 
low (below 4). Frames containing a high number of outliers (up to 17) are again 



Fig. 6 a Aerial view of the 
area of the city were the 
experiment was conducted. 
b Estimated trajectory using 
visual odometry 
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sporadic and isolated. The number of discarded frames in this experiment was 
18.14% of the total number of frames in the sequence. Once more, discarded frames 
are rarely consecutive in time, allowing for robust interpolation using prediction from 
previous frames. The whole sequence was analyzed by the system in 35.04 s including 
acquisition time. Algorithm execution at frame rate is then preserved. 

4.2 3D Visual Odometry Results 

The general 3D visual odometry method described in this paper was implemented 
and tested using the same road sequences recorded for 2D trajectory estimation. 
Most of the sequences were recorded during car runs on almost-planar roads in 
urban environments. A real experiment is graphically documented in this section 
as illustrated in Fig. 8. In the first part of the experiment, the car performs an 
almost straight trajectory along the street. Then, the driver rounds a corner right 
and resumes straight for a while. At a given moment, the trajectory turns slightly 
right in order to follow the street curvature. Finally, the car comes to a stop. 

Figure 8a depicts the aerial view of the area of the city were the experiment 
was conducted. In Fig. 8b the simplified 2D estimated trajectory is shown. As can 
be observed, there exists great similarity in terms of shape between the estimated 
trajectory and the real one. Figure 8c illustrates the estimated 3D trajectory using 
the general method. The shape of the estimated 3D trajectory reflects quite well the 
real shape of the trajectory followed by the car in the experiment. The car ran a 
real distance of 276.79 m while the system estimated a distance of 272.52 m, which 
can considered as quite an accurate visual estimation. Nonetheless, the 3D visual 
odometry method yields an altitude change of 2 m during the car's run, which is 
not a realistic figure since the trajectory described by the vehicle is almost planar. 
The number of discarded frames in this experiment was 27.01 % of the total number 
of frames in the sequence. Once more, discarded frames are rarely consecutive in 
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Fig. 7 a Cumulative estimated yaw rate, b Number of outliers per frame, c Mean square error. 
d Discarded frames after postprocessing 

time, allowing for robust interpolation using prediction from previous frames. The 
whole sequence lasted 50.83 s and was analyzed by the system in 53.19 s including 
acquisition time. It can then be stated that algorithm execution at frame rate is 
practicely preserved also for the general 3D estimation case. 

4.3 Discussion 

After observation of the results provided in the previous section, it can be stated 
that the 3D visual odometry described in this paper provides approximate trajectory 
estimations that can be useful for enhancing GPS accuracy, or even for substituting 
GPS in short outage periods. Nonetheless, the system provides estimations that 
exhibit cumulative errors. Thus, it can not be realistically expected that a 3D visual 
odometry system be used as a standalone method for global positioning applications. 
Apart from this obvious fact, other problems arise especially in altitude estimation. 
The reason for this stems from the fact that estimations of pitch and roll angles 
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Fig. 8 a Aerial view of the area of the city were the experiment was conducted, b Estimated 2D 
trajectory, c Estimated 3D trajectory 

become complex using visual means, since variations of these angles in usual car 
displacements are really small and difficult to measure in the 2D image plane. These 
difficulties produce a non-real altitude change in estimated 3D trajectories. Besides, 
the estimation of pitch and roll angles leads to a decrease in the accuracy of yaw 
angle estimation with regard to the 2D simplified method. As a consequence of that 
a greater error in estimated distance occurs. In addition, the 3D visual odometry 
method needs higher computational requirements to maintain performance at frame 
rate. Another problem arises when features corresponding to non-stationary objects 
are detected and used by the system. Non-stationary features lead to unrealistic 
motion estimation. This effect is observed with greater magnitude when the car is 
not moving. So, for instance, if the car is stopped at an intersection or a traffic signal, 
and other cars or pedestrians appear in the scene, the visual odometry method tends 
to produce unreal motion estimation in a direction that is contrary to the objects' 
movements. Though small, this is an upsetting effect that must be removed in future 
developments. 



Finally, considering the possibility of a future commercial implementation of a 
visual odometry system for GPS enhancement, the simplified 2D estimation method 
described in this paper is a realistic, viable option that can help increase conventional 
GPS accuracy or even support GPS in short outage periods. Video sequences show-
ing the results obtained in several experiments in urban environments can be anony-
mously retrieved from ftp://www.depeca.uah.es/pub/vision/visualodometry. The 
videos show a compound image in which the original input image and the estimated 
car trajectory image are synchronized and depicted together for illustrative purpose. 

5 Conclusions and Future Work 

We have described a method for estimating the vehicle global position in a network 
of roads by means of visual odometry. To do so, the ego-motion of the vehicle relative 
to the road is computed using a stereo-vision system mounted next to the rear view 
mirror of the car. Feature points are matched between pairs of frames and linked 
into 3D trajectories. The resolution of the equations of the system at each frame is 
carried out under the non-linear, photogrametric approach using least squares and 
RANSAC. This iterative technique enables the formulation of a robust method that 
can ignore large numbers of outliers as encountered in real traffic scenes. Fine grain 
outliers rejection methods have been experimented based on the root mean square 
error of the estimation and the vehicle dynamics. The resulting method is defined as 
visual odometry and can be used in conjunction with other sensors, such as GPS, to 
produce accurate estimates of the vehicle global position. 

A key aspect of the system is the features selection method and tracking stage. For 
that purpose, a set of points has been extracted using Harris detector. The searching 
windows have been optimized in order to achieve a trade-off between robustness 
and execution time. Real experiments have been conducted in urban environments 
in real traffic conditions with no a priori knowledge of the vehicle movement nor 
the environment structure. We provide examples of estimated vehicle trajectories 
using the proposed method. Although preliminary, first results are encouraging 
since it has been demonstrated that the system is capable of providing approximate 
vehicle motion estimation in non-sharply bended trajectories. Nonetheless, further 
improvements need to be accomplished in order to accurately cope with 90° curves, 
which are very usual in urban environments. 

As part of our future work we envision to develop a method for discriminating 
stationary points from those which are moving in the scene. Moving points can 
correspond to pedestrians or other vehicles circulating in the same area. Vehicle 
motion estimation will mainly rely on stationary points. The system can benefit from 
other vision-based applications currently under development and refinement in our 
lab, such as pedestrian detection [10] and ACC (based on vehicle detection). The 
output of these systems can guide the search for really stationary points in the 3D 
scene. The obvious application of the method is to provide on-board driver assistance 
in navigation tasks, or to provide a means for autonomously navigating a vehicle. For 
this purpose, fusion of GPS and vision data will be accomplished. 
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