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Across a plethora of social situations, we touch others in natural and intuitive ways to share
thoughts and emotions, such as tapping to get one’s attention or caressing to soothe
one’s anxiety. A deeper understanding of these human-to-human interactions will require,
in part, the precise measurement of skin-to-skin physical contact. Among prior efforts,
each measurement approach exhibits certain constraints, e.g., motion trackers do not
capture the precise shape of skin surfaces, while pressure sensors impede skin-to-skin
contact. In contrast, this work develops an interference-free 3D visual tracking system
using a depth camera to measure the contact attributes between the bare hand of a
toucher and the forearm of a receiver. The toucher’s hand is tracked as a posed and
positioned mesh by fitting a hand model to detected 3D hand joints, whereas a receiver’s
forearm is extracted as a 3D surface updated upon repeated skin contact. Based on a
contact model involving point clouds, the spatiotemporal changes of hand-to-forearm
contact are decomposed as six, high-resolution, time-series contact attributes,
i.e., contact area, indentation depth, absolute velocity, and three orthogonal velocity
components, together with contact duration. To examine the system’s capabilities and
limitations, two types of experiments were performed. First, to evaluate its ability to discern
human touches, one person delivered cued social messages, e.g., happiness, anger,
sympathy, to another person using their preferred gestures. The results indicated that
messages and gestures, as well as the identities of the touchers, were readily discerned
from their contact attributes. Second, the system’s spatiotemporal accuracy was validated
against measurements from independent devices, including an electromagnetic motion
tracker, sensorized pressure mat, and laser displacement sensor. While validated here in
the context of social communication, this system is extendable to human touch
interactions such as maternal care of infants and massage therapy.
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INTRODUCTION

Social and emotional communication by touch is important to human development in daily life. It
contributes to brain and cognitive development in infancy and childhood (Cascio et al., 2019), and
plays a role in providing emotional support (Coan et al., 2006), and forming social bonds (Vallbo
et al., 2016). For example, being touched by one’s partner mitigates one’s reactivity to psychological
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pressure, as observed in decreased blood pressure, heart rate, and
cortisol levels (Gallace and Spence, 2010). Behaviors such as
compliance, volunteering, and eating habits are also positively
improved (Gallace and Spence, 2010). Moreover, several works
now indicate that particular social messages and emotional
sentiments can be readily recognized from touch alone
(Hertenstein et al., 2006; Hertenstein et al., 2009; Thompson
and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021).
Despite their importance and ubiquity, we have just begun to
quantify the exact nuances in the underlying physical contact
interactions used to communicate affective touch.

To decompose how physical contact interactions evoke sensory
and behavioral responses, most prior studies employ highly
controlled stimuli, which vary a single factor at a time. In
particular, mechanical and thermal interactions are typically
delivered to a person’s skin using robotically driven actuators
(Löken et al., 2009; Essick et al., 2010; Ackerley et al., 2014a;
Tsalamlal et al., 2014; Bucci et al., 2017; Teyssier et al., 2020;
Zheng et al., 2020). For example, brush stimuli swept along an
arc have been widely adopted to mimic caress-like stroking, while
controlling their velocity, force, surface material, and/or
temperature. Using such stimuli, C-tactile afferents are shown to
be preferentially activated at stroke velocities around 1–10 cm/s,
which align with ratings of pleasantness (Löken et al., 2009; Essick
et al., 2010; Ackerley et al., 2014a). Beyond experiments to examine
brush stroke, more complex interactions have been delivered via
humanoid robots and robot hands (Teyssier et al., 2020; Zheng et al.,
2020). However, device-delivered stimuli do not fully express the
natural and subtle complexities inherent in human-to-human touch.
This can result in disconnect with the everyday, real-world
interactions for which our sensory systems are finely tuned.

Measuring and quantifying free and unconstrained human-to-
human touch interactions is complex and challenging. In
particular, the physical interactions are unscripted,
unconstrained, and individualized with rapid and irregular
transitions. Indeed, multiple contact attributes often co-vary
over time, e.g., lateral velocity, contact area, indentation depth.
Therefore, in moving toward quantification, the initial efforts
used qualitative, manual annotation to describe touch gestures,
and their contact intensity and duration (Hertenstein et al., 2006;
Hertenstein et al., 2009; Yohanan and MacLean, 2012;
Andreasson et al., 2018). While adaptable to a wide range of
touch interactions and settings, qualitative methods are
constrained by the time required to analyze the data, the
potential subjectivity of human coders, and a courser set of
metrics and classification levels. For instance, contact intensity
is typically classified in only three levels as light, medium, strong.
As a result, automated techniques have been introduced, such as
electromagnetic motion trackers (Hauser et al., 2019a; Lo et al.,
2021) and sensorized pressure mats (Silvera-Tawil et al., 2014;
Jung et al., 2015), with each their own capabilities and limitations.
For instance, electromagnetic trackers capture the movement of
only a handful of points, thus unable to monitor complex surface
geometry, and can emit electromagnetic noise incompatible with
sensitive biopotential recording equipment. Pressure sensors and
mats inhibit direct skin-to-skin contact, when even thin films are
shown to attenuate touch pleasantness (Rezaei et al., 2021).

Three-dimensional optical tracking methods have also been
employed, such as infrared stereo techniques (Hauser et al.,
2019a; Hauser et al., 2019b; McIntyre et al., 2021), motion
capture systems (Suresh et al., 2020), and stereo cameras with
DeepLabCut (Nath et al., 2019). While these methods are
specialized in tracking joint positions of hands and limbs, they
do not capture the shape and geometry of body parts, since the
infrared cameras lack sufficient accuracy on depth, motion
capture systems only track pre-attached markers, and stereo
matching of multiple cameras often fail with texture-less
surfaces. In contrast, depth cameras can provide high spatial
resolution point clouds and allow shape extraction of texture-less
body parts, such as a forearm. Depth cameras, as well, are more
readily set up without calibration, afford minimum magnetic
interference, and can be located at a larger distance from the area
of interest. While depth cameras have been used in hand tracking
and 3D reconstruction (Rusu and Cousins, 2011; Taylor et al.,
2016), they have not been used to measure contact interactions in
human-to-human touch.

While defined to a degree, we are still deciphering those
physical contact attributes vital to social touch
communication. In such settings, human touch interactions
tend to include gesture, pressure/depth, velocity, acceleration,
location, frequency, area, and duration (Hertenstein, 2002;
Hertenstein et al., 2006; Hertenstein et al., 2009; Yohanan and
MacLean, 2012; Silvera-Tawil et al., 2014; Jung et al., 2015;
Andreasson et al., 2018; Hauser et al., 2019a; Hauser et al.,
2019b; Lo et al., 2021; McIntyre et al., 2021). To understand
the functional importance of specific movement patterns, certain
attributes such as spatial hand velocity have been further
decomposed into directions of normal and tangential (Hauser
et al., 2019a) or forward-backward and left-right (Lo et al., 2021).
Moreover, simultaneous tracking of multiple contact attributes is
needed for understanding naturalistic, time-dependent neural
output of peripheral afferents. For example, a larger contact
area should recruit more afferents, larger force or indentation
should generate higher firing frequencies, and optimal velocity in
tangential direction should evoke firing of C-tactile afferents
(Johnson, 2001; Löken et al., 2009; Hauser et al., 2019b).

Herein, we develop an interference-free 3D visual tracking
system to quantify spatiotemporal changes in skin-to-skin
contact during human-to-human social touch communication.
Human-subjects experiments evaluate its ability to discern
unique combinations of contact attributes used to convey
distinct social touch messages and gestures, as well as the
identities of the touchers. Moreover, the system’s
spatiotemporal accuracy is validated against measurements
from independent devices, including an electromagnetic
motion tracker, sensorized pressure mat, and laser
displacement sensor.

HUMAN-TO-HUMAN CONTACT TRACKING
SYSTEM

This work introduces a 3D visual tracking system and data
processing pipeline, which used a high-resolution depth
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camera to quantify contact attributes between the bare hand of a
toucher and the forearm of a receiver. As illustrated in Figure 1,
the tracking system captured the 3D shape and movements of the
toucher’s hand and the receiver’s forearm independently but
simultaneously within the same camera coordinate system.
Physical skin contact was detected between the hand and
forearm based on interactions of their 3D point clouds. Seven
contact attributes were derived over the time course of touch,
which were contact area, indentation depth, contact duration,
overall contact velocity, and its three orthogonal velocity
components.

3D Shape and Motion Tracking With Depth
Camera
The tracking procedure extracts the detailed 3D shape of the
touch receiver’s forearm. By merging the camera’s RGB and
depth information, an RGB-D image was derived and then
converted into a dense point cloud per frame. The point cloud
was cropped and downsampled to balance information and
computation costs. To obtain a clean point cloud of the
forearm without background, neighboring points around the
forearm were first removed. Two removal methods were used
alternatively based on the experimental setup (Figure 1). If the
receiver’s forearm was placed on a flat surface, such as a table, the
points within that flat surface could be removed in a shape-based
manner using the plane model segmentation algorithm provided
by the Point Cloud Library (PCL) (Rusu and Cousins, 2011). In
the second case, if a monochromatic holder was set underneath
the forearm, such as a cushion, then the points of that holder
could be removed by color-based segmentation in the HSV color
space. Next, the 3D region growing segmentation algorithm
(Rusu and Cousins, 2011) was applied to separate the rest
point cloud into multiple clusters according to the smoothness
and distance between points. Since neighboring points around the
forearm were removed in advance, points farther away in the
background were assigned to separate clusters instead of being
blended with the arm. Finally, by setting a relatively large

smoothness threshold, all arm points could be grouped into
one cluster despite the curvature of the forearm shape.

In human-to-human touch scenarios, the receiver’s forearm is
frequently occluded by the toucher’s hand. Given that a blocked
arm region is nearly impossible to capture, only the shape of the
forearm prior to the contact was extracted. More specifically, the
forearm point cloud was extracted before the beginning of each
contact interaction to update its shape and position. During the
contact, its position was refreshed in real-time according to the
3D position of the color marker on the arm, though its shape was
not updated during the contact. Once the forearm was shape
updated, the normal vector niarm of each arm point piarm was
calculated and updated as well to facilitate further contact
detection and measurement.

The hand tracking procedure was developed to capture the
posture and position of the toucher’s hand by combining depth
information with a monocular hand motion tracking algorithm
(Zhou et al., 2020). The algorithm is robust to occlusions and
object interactions, which is advantageous in hand-arm contact.
The monocular tracking algorithm contains two neural network
modules to predict the 3D location and rotation of all 21 hand
joints. In the first module of the hand joint detection network,
features extracted from the 2D RGB image were first fed into a 2-
layer convolutional neural network (CNN) to detect the
probability of the 2D position of all joints. Then, another two
2-layer CNN was used to predict the 3D position of hand joints
based on 2D features and 2D joint position estimates. In the
second module of the inverse kinematic network, a 7-layer fully
connected neural network was designed to derive the 3D rotation
of each joint. Finally, the parametric MANO hand model
(Romero et al., 2017) was employed to incorporate 3D joint
rotations to animate the hand mesh following the shape and pose
of the toucher’s hand.

The rendered hand mesh was expressed in the local hand
coordinate without the spatial information of the hand position.
Therefore, depth information is incorporated here to locate the
hand mesh in the camera coordinate, according to the movement
of any hand joint or the color marker on the back of the hand

FIGURE 1 | 3D visual tracking setup and data workflow. The toucher’s hand and receiver’s forearm are tracked using one depth camera (Microsoft Azure Kinect).
Forearm shape is extracted as a point cloud while the hand mesh is animated by the gestures and movements of the toucher’s hand.
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(Figure 1). Specifically, the 2D position of the color marker was
detected in the in the HSV, while the 2D position of the joint was
retrieved from the detected 2D hand. The depth value of the hand
joint or marker was derived by transforming the depth image to
the RGB coordinate, which was then used to obtain its 3D
position following the camera projection model. By identifying
the corresponding point of that marker or joint in the hand mesh
model, the posed hand mesh was moved in real-time following
the toucher’s hand movements.

Definition of Contact Attributes
Hand-arm contact was measured in a point-based manner
(Figure 2), which afforded higher resolution compared with a
geometry-based method (Hauser et al., 2019a). First, a contact
interaction between the hand and forearm was detected when at
least one vertex point of the hand mesh was underneath the arm
surface. More specifically, for each hand vertex point pihand, its
nearest arm point piarm was found first. Then, as detailed in Eq. 1,
if the angle between the vector pihand − piarm and the normal vector
niarm of arm point piarm is larger than or equal to 90°, this hand
vertex is marked as underneath the arm surface.

Fcontact � { 1 ∀(pihand − piarm) · ni
arm ≤ 0

0 ∃(pihand − piarm) · ni
arm > 0 (1)

Physical contact attributes were calculated when hand-arm
contact was detected. Indentation depth is measured as Eq. 2. In
particular,NC is the number of hand vertex points contactedwith the
forearm. For each contacted hand point pihand, its indentation depth
di is approximated as half the distance between pihand and its nearest
arm point piarm. The half scale was used because the line between two
points might not be perpendicular to the arm surface. The overall
indentation d deployed by the hand to the forearm is defined as the
average indentation depth of all NC contacted hand points:

Depth � ∑NC
i�1
����pihand − piarm

����2
2NC

. (2)

Contact area is measured as the summed area of all contacted
arm points. As shown in Eq. 3, the unit area Si for one arm point
is calculated as a sphere whose radius is the average neighbor
distance, and π is round to 3. Within the arm point cloud of Nall

points, the average neighbor distance linbr is calculated as the
average distance of all points to their nearest neighbor points:

Area � 3NC
⎛⎝∑Nall

i�1 l
i
nbr

Nall

⎞⎠2

. (3)

In addition to cutaneous contact attributes, the velocity of
hand movement was quantified when contact was detected. The
absolute contact velocity Vabs is measured as the modulus of the
spatial hand velocity vHand:

Vabs �
∣∣∣∣∣∣∣∣p

t
Hand − pt−1Hand

△ t

∣∣∣∣∣∣∣∣. (4)

In Eq. 4, hand position pHand is represented by the position of
the middle metacarpophalangeal joint. By defining another

coordinate on the receiver’s forearm (Figure 2C), spatial hand
velocity vHand is further decomposed in the arm coordinate as
three velocity componentsVvt,Vlg,Vlt parallel with its axis of the
arm coordinate (Figure 2C). The vertical axis ivt of the arm
coordinate is aligned with the vertical direction pointing upright.
It could be obtained as the normal vector of a point on a
horizontal surface, like a table, or the normal vector of a point
on the top of the receiver’s forearm. Vertical velocity Vvt is the
hand velocity component in this direction:

Vvt � vHand · ivt. (5)
The longitudinal axis ilg is aligned with the direction of the

arm bone, pointing from elbow to wrist. To derive this axis,
the camera was orientated to display the forearm vertically in
the 2D image. Then, the direction of the arm bone in the 2D
image was set to be parallel with the y axis of the image
coordinate. By projecting the y axis y of the camera
coordinate onto the perpendicular plane of the vertical axis
nvt, the longitudinal axis follows the direction of the projected
vector:

ilg � y − (y · ivt)ivt����y − (y · ivt)ivt����2. (6)

Vlg � vHand · ilg. (7)
Lastly, the lateral axis ilt is perpendicular to the plane of

longitudinal and vertical axis, following the right-hand rule:

ilt � ilg × ivt. (8)
Vlt � vHand · ilt. (9)

Compared with the overall hand velocity, these velocity
components can quantify the directional nature of the hand
movements.

Moreover, contact duration is measured as a scalar value for
each hand-arm touch interaction, which is the sum of time over
which contact was detected. Given the recording frequency f of
the camera is 30 Hz and Nf is the number of frames per
interaction, the contact duration is measured as:

Duration � ∑Nf

i�1Fcontact

f
. (10)

EXPERIMENT 1: HUMAN-TO-HUMAN
AFFECTIVE TOUCH COMMUNICATION

The first experiment was designed with the task of human-to-
human emotion communication. Touchers was instructed to
deliver cued emotional messages, e.g., happiness, sympathy,
anger, to the touch receiver at the receiver’s forearm using
preferred gestures, e.g., tapping, holding, stroking. Recorded
contact attributes were then used to differentiate delivered
messages, utilized gestures, and individual touchers. Contact
analysis was conducted on the platform with the Intel Core i9-
9900 CPU, 3.1 GHz, 64 GB RAM, and a NVIDIA GeForce RTX
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2080 SUPER GPU. The same platform was used for the second
experiment.

Cued Emotional Messages and Gesture
Stimuli
Seven emotions of anger, attention, calm, fear, gratitude,
happiness, and sympathy were selected as cued messages for
touchers to express (Table 1). Those messages were adopted from
prior studies and have been observed to be recognizable through
touch alone (Hertenstein et al., 2006; Hertenstein et al., 2009;
Thompson and Hampton, 2011; Hauser et al., 2019a; McIntyre
et al., 2021). Among them, gratitude and sympathy are prosocial
expressions that are more effectively communicated by touch
compared with those self-focused. Anger, happiness, and fear are
universal expressions that are commonly communicated by
facial, vocal, and touch expressions. Attention and calm are
also preferred messages in touch interactions and can be
correctly interpreted significantly better than chance. For each
of the cued messages, three commonly used gestures were
adopted from prior studies (Hertenstein et al., 2006;
Thompson and Hampton, 2011; Hauser et al., 2019a;
McIntyre et al., 2021) (Table 1). Holding and squeezing were
combined into one since they share a similar hand gesture and
hand motion. Similarly, hitting was combined with the tapping
gesture, but only for the message of anger.

Participants
The human-subjects experiments were approved by the Institutional
Review Board at the University of Virginia. Ten participants were
recruited as touchers, including five males and five females (mean
age = 23.8, SD = 5.0). Another five participants were recruited as
touch receivers with three males and two females (mean age = 24.0,
SD = 4.4). Five experimental groups were randomly assembled,
where each group consisted of onemale toucher, one female toucher,
and one receiver. Each group performed two experimental sessions
with one session conducted by the male toucher and another one
conducted by the female toucher. Written informed consent was
obtained from all participants.

Experimental Setup
To avoid visual distractions during the experiment, touchers and
receivers sat at opposing sides of an opaque curtain. They were
instructed to not speak to each other. As shown in Figure 2A, a
cushion was set on the table at the toucher’s side upon which the
receiver rested her or his left forearm. Cued emotional messages
and corresponding gestures were displayed to the toucher on the
computer screen. The toucher could select the gesture and
proceed to the next message using the computer’s mouse.
Cued messages and the toucher’s selection of gestures were
also recorded. As illustrated by a snapshot of the experiment
recoding by depth camera (Figure 2A), the camera was set in
front of the cushion and orientated towards it.

FIGURE 2 | Definition of contact attributes. (A) Color image from video recorded by depth camera. Two color markers were placed on the toucher’s hand and the
receiver’s forearm respectively to support motion tracking. (B) 3D forearm point cloud and hand mesh. Short black line segments represent the norm vector of arm
points; red points on the forearm represent the region contacted by the hand. In the arm coordinate, the vertical axis (blue) is designated along the vertical direction
pointing right upward, the longitudinal axis (green) is parallel with the arm direction from elbow to wrist, and the lateral direction is perpendicular to the two axes
pointing to the internal side of the forearm. (C) Six time-series attributes include absolute velocity, which is the absolute value of spatial contact velocity; three orthogonal
velocity components corresponding to the three axes of the arm coordinate; contact area, which is the overall area on the forearm being contact; and the indentation
depth as the average depth applied on the forearm by the hand.

TABLE 1 | Available gestures for each cued emotional message in touch communication task.

Cued emotional messages

Anger (Ag) Attention (At) Calm (C) Fear (F) Gratitude (G) Happiness (H) Sympathy (S)

Gestures Hit/Tap Tap Hold/Squeeze Squeeze/Hold Hold/Squeeze Shake Stroke
Squeeze/Hold Shake Stroke Shake Shake Tap Tap
Shake Squeeze/Hold Tap Tap Tap Stroke Squeeze/Hold
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Experimental Procedures
In each session, seven cued emotional messages were communicated
with each repeated six times. The 42 message instructions were
provided in random order. In each trial, one message was displayed
on the screen with three gestures listed below. Touchers had 5 s to
choose a gesture and report it on the computer display. For each
cued message, the three provided gestures were identical but their
order was randomized trial by trial. After that, the toucher delivered
the message, by touching the receiver’s forearm from elbow to wrist,
using the right hand. Within each trial, only the chosen gesture was
used. The use of other gestures or a combination of gestures was not
allowed. For the same cued message across trials, touchers were free
to use the same gesture or change to another gesture. A gesture could
be deployed in any pattern of contact deemed appropriate by the
toucher. No constraints or instructions were given for delivering the
gesture, such as its duration, hand region employed, intensity, or
repetition. At the end of a trial, by clicking the “Next” button on the
bottom of the computer display, the toucher initiated the next trial
with a new message word and corresponding three gestures.

Data Analysis
Overall, 420 trials were performed in ten experimental sessions.
Twelve trials were excluded from analysis as contact interactions

were not properly recorded. Statistical and machine learning
analyses were performed to examine the measured contact
attributes.

To identify the contact pattern between touch gestures, paired-
sample Mann–Whitney U tests were applied across gestures per
contact attribute. For time-series attributes, the mean value was
used. Since longitudinal velocity, lateral velocity, and vertical
velocity are signed variables, the mean was derived from the
absolute value of those variables. Contact duration as a scalar
variable was directly compared across gestures. To evaluate which
of the contact attributes could best identify or describe a certain
type of touch gesture, the importance of each attribute in
predicting that gesture was identified using a random forest
classifier. The mean values of time-series attributes together
with the scalar attribute served as inputs. For example, in
predicting the stroking gesture, all trials were labeled in a
binary fashion as delivering or not delivering this gesture,
instead of being labeled as the four gesture types. Seventy-five
percent of trials were randomly assigned as the training set and
those remaining were assigned as the test set. The permutation
method was used to derive the importance of attributes. The value
was obtained as the average of 100 repetitions of classification,
with 10 permutations per classification.

TABLE 2 | Experiment procedure for validating contact velocity.

Test gesture Moving direction Velocity levels Repeated trials
per level

Trials in
total

1 Stroking Longitudinal Low, Medium, High 3 9
2 Stroking Lateral Low, Medium, High 3 9
3 Tapping Vertical Low, Medium, High 3 9
4 Holding None None 1 1 (long duration)
5 Shaking Irregular Irregular 1 1 (long duration)

TABLE 3 | Experiment procedure for validating contact area.

Test gesture Force levels Repeated trials per level Trials in total

1 Single-finger pressing Low, Medium, High 3 9
2 Multiple-finger pressing Low, Medium, High 3 9
3 Holding Low, Medium, High 3 9
4 Shaking Irregular 1 1 (long duration)

TABLE 4 | Experiment procedure for validating indentation depth.

Validation with laser sensor

Test gesture Force levels Repeated
trials per level

Trials in total

1 Multiple-finger tapping Low, Medium, High 3 (4 taps per trial) 9
2 Palm tapping Low, Medium, High 3 (4 taps per trial) 9

Validation with Pressure Mat

Test Gesture Force Levels Repeated Trials per Level Trials in Total

1 Single-finger pressing Low, Medium, High 3 9
2 Multiple-finger pressing Low, Medium, High 3 9
3 Holding Low, Medium, High 3 9
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Further classification analyses were performed regarding the
discrimination of touch gestures, emotional messages, and
individual touchers, respectively, using the random forest
algorithm. Contact attributes were fed into classifiers in three
different formats, including the mean value of each time-series
attribute, multiple relevant features extracted from each time-
series attribute, and the original time-series attributes. In
particular, multiple features were extracted to quantify the
amplitude, frequency, and dynamic characteristics of the time-
series signal (Christ et al., 2018). For example, time-domain
features included mean, maximum, quartiles, standard deviation,
trend, skewness, entropy, energy, etc. Frequency domain features
included autocorrelations and partial autocorrelations with different
lags, coefficients of wavelet and Fourier transformations, mean,
variance, skew of Fourier transform spectrum, etc. From all
extracted features, relevant ones were selected for classification by
significance tests in predicting the classification target and the
Benjamini Hochberg multiple test (Christ et al., 2018). When
time-series data were used, all attributes were concatenated into
one variable as input (Löning et al., 2019). To identify attributes that
could better encode social affective touch, the importance of
individual attributes was ranked for each classification task. More
specifically, based on themean - value classification, the permutation
method was repeated multiple times to derive the average
importance values.

Results
Physical Contact Attributes in Human-to-Human
Touch
Human-to-human physical contact interactions between social
messages, gestures, and individual touchers were quantified by

their contact attributes. As shown in Figure 3, exemplar data for
the four touch gestures (shake, tap, hold, and stroke) exhibit
distinct patterns across the contact attributes, consistent with
expected hand movements per gesture. In particular, the stroking
gesture was characterized by regular patterns in longitudinal
velocity, which implies slow and repetitive movements along
the direction of the forearm. For the shaking gesture, velocity
attributes depicted large changes in frequency and relatively lower
amplitude. Meanwhile, velocities in all three directions changed
simultaneously, indicating a spatial direction in the movement of
the toucher’s hand. The tapping gesture was quantified as
discontinuous, large-amplitude spikes of short contact
duration. Compared with other touch gestures, holding gesture
exhibited relatively stable contact with minimal changes. With
further inspection into each gesture, contact patterns with subtle
differences could also be captured across emotional messages.
Such as in the shaking gesture, happiness was delivered with
higher velocities compared with the expression of fear. Within the
tapping gesture, shorter but more intensive contact was recorded
when expressing anger compared with attention.

As shown in Figure 4A, the four touch gestures were
statistically differentiable according to several of their contact
attributes. For instance, absolute contact velocity can differentiate
all gesture pairs except for that of stroking and shaking. With the
contact attribute of longitudinal velocity, stroking was
differentiable from shaking as it afforded higher longitudinal
velocity. This also aligns with hand movements during stroking
that are typically along the direction of the forearm. Both shaking
and tapping gestures exhibited significantly higher longitudinal
velocities than the holding gesture. With the lateral velocity,
significant differences were derived among all four gestures,

FIGURE 3 | Time-series recordings of each contact attribute across touch gestures and delivered messages. Distinct contact patterns were captured by the
spatiotemporal changes of those attributes. The Contact variable represents the status of the being contacted or not. Vabs denotes the absolute contact velocity (cm/s),
Vlg denotes the longitudinal velocity (cm/s), Vlt denotes the lateral velocity (cm/s), Vvt denotes the vertical velocity (cm/s), Area denotes the contact area (cm2), and Depth
denotes the indentation depth (mm).
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where tapping and shaking gestures afforded higher amplitudes
than stroking and holding. As for the vertical velocity, the tapping
gesture was associated with significantly higher velocities than
others, which aligns with its up-down movements. Across all
velocity attributes, the holding gesture was significantly distinct
from other ones.

For the contact area attribute, shaking and holding gestures
exhibited significantly higher values than the stroking gesture,
and then tapping. Indeed, participants generally used the whole
hand to deliver holding and shaking, while only the finger digits
for stroking and the fingertips for tapping. Moreover, with
indentation depth and contact duration, tapping was distinct
amongst the gestures with significantly lower depth and shorter
duration. Note the handmotion with the tapping gesture could be
faster than the recording frequency of the camera, where one trial
of contact might not be entirely captured and thus lead to a lower
estimation of indentation depth.

In Figure 4B, the contact attributes that were salient in
identifying or describing a specific touch gesture were further
analyzed according to their importance in predicting that gesture.
From the importance ranking, longitudinal velocity appears to be
the most useful attribute in describing the stroking gesture. The
shaking gesture did not have a single salient attribute, perhaps
because it was delivered from multiple directions and varied
velocities. The attributes of contact area, contact duration, and
longitudinal velocity were relatively more important. The holding
gesture could be identified by longitudinal and absolute velocities
with both lower amplitudes. For the tapping gesture, contact

duration could be important in identifying it, which should be
shorter than other gestures.

Classification Amidst Gestures, Messages, and
Individuals
In Figure 5, the contact attributes are shown to robustly classify
touch gestures, delivered messages, and individual touchers at
accuracies better than chance, which is 25%, 14.3%, and 10%
respectively. For gesture prediction, the accuracy was 87% when
the mean values of contact attributes were used as predictors
(Figure 5A). The prediction accuracy slightly increased to 92%
when all relevant features were used as more information was
included, and was around 86% when predicted by the time-series
data. In classifying delivered emotional messages, the accuracy
was 54%, 57%, and 55%, for the three respective feature classes
(Figure 5C). Moreover, in classifying the individual touchers, the
accuracies were 56%, 72%, and 77%, respectively. For the
importance ranking of the contact attributes, those of
longitudinal velocity, contact duration, and contact area were
typically more important.

EXPERIMENT 2: TECHNICAL
VALIDATION ON THE VISUAL TRACKING
METHOD
The second experiment was designed to validate the effectiveness
of the 3D visual tracking system in measuring controlled human

FIGURE 4 | (A) Comparison of contact attributes across the four touch gestures. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 were derived by paired-sample
Mann–Whitney U tests. (B) Importance of certain contact attributes in identifying each touch gesture using random forest classification. Diamonds denote means; points
denote importance values of 100 repetitions of classification.
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movements against those from independent devices, including an
electromagnetic motion tracker, sensorized pressure mat, and
laser displacement sensor. These techniques are used commonly
in haptics studies (Silvera-Tawil et al., 2014; Jung et al., 2015;
Hauser et al., 2019a; Xu et al., 2020; Lo et al., 2021; Xu et al.,
2021a). In this experiment, the observed contact attributes were
compared within controlled touch conditions, e.g., stroking in
different directions at preset velocities, pressing with different
parts of the hand varying in contact area, and tapping at different
depth magnitudes.

Contact Velocity Validation Using
Electromagnetic Tracker
Experimental Setup
Measurements of the directional components of contact velocity,
including absolute velocity, longitudinal velocity, lateral velocity,
and vertical velocity were validated against those of an
electromagnetic (EM) motion tracker (3D Guidance, Northern
Digital, Canada. 6 DOF, 20–255 Hz, 1.4 mm RMS position
accuracy, 78 cm range; 0.5° RMS orientation accuracy, ±180°

azimuth and roll, ±90° elevation range). Both tracking systems
were operated simultaneously to capture controlled movements

of the human hand touching the forearm. The transmitter of the
3D Guidance EM tracker was oriented to be aligned with the arm
coordinate (Figure 6A). The sensor of the EM tracker was
attached to the toucher’s back of the hand near the middle
metacarpophalangeal joint.

Experimental Procedures
Given velocity components were defined in different directions,
five test gestures were designed in total, as listed in Table 2. The
first two test gestures were stroking contact along the forearm in
longitudinal and lateral directions, respectively. The third test
gesture involved tapping vertically to the surface of the forearm.
The fourth gesture was holding without movement. The fifth
gesture was shaking, which was delivered in an irregular and
arbitrary way with different directions and velocities included.
For the first three test gestures, each one was performed in three
levels of velocities, from low to medium to high. Each velocity
level was repeated for three trials. For example, the longitudinal
stroking gesture was performed as three trials of stroking in the
longitudinal direction with lower velocity, followed by three trials
of stroking with medium velocity, and concluded by three trials of
stroking with higher velocity. The direction of hand movement
and level of velocity were behaviorally controlled by the trained

FIGURE 5 | Classification of touch gestures, delivered messages, and toucher individuals using the mean value, all relevant features, and time-series data of
contact attributes, respectively. The accuracy in prediction of (A) touch gestures, (C) delivered messages, (E) toucher individual are shown, as well as the importance of
particular contact attributes in classifying (B) touch gestures, (D) delivered messages, (F) toucher individual. Numbers and colors in confusion matrices represent the
prediction percentage. In the importance plots, the diamonds denote means; points denote importance values from 100 repetitions of classification.
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toucher, who performed all three validation experiments. Shaking
and holding gestures were performed only once but lasted for a
longer time to collect enough amount of data for validation
analysis.

Data Analysis
Similar to the 3D visual tracking system, the four velocity attributes
captured by the EM tracker were derived from the original time-
series position data. For either tracking system, the absolute mean
value of each velocity attribute was calculated per test gesture.
Mann–Whitney U tests were conducted across the test gestures
based on mean velocity collected by the visual tracking system.
Measurement errors between the two tracking systems were derived
per attribute and test gesture. Since the sampling rates of the two
systems differ, i.e., 30 Hz for the Azure Kinect camera and 60 Hz for
the EM tracker, data collected from the EM tracker was resampled to
be synchronized. More specifically, the EM tracking data was first
interpolated and sampled according to the timestamps of the 3D
visual tracking data. Then, the error was calculated for each time
point between the velocities from the two systems.

Results
In Figure 6, velocities measured by the 3D visual tracking system
were accurate when compared with the EM tracker. The time-
series data from the two systems well overlaped amidst touch
gestures (Figure 6C) and the average velocities of the gestures
were comparable between the two systems (Figure 6D). Shaking
delivered high velocities in all three directions, while velocity in a
certain direction was significantly higher for hand movements

along that direction. All four velocity attributes were significantly
lower when the holding gesture was performed. As shown in
Figure 6E, the measurement error was 1–2 cm/s for the first four
gestures and relatively higher at around 5 cm/s for the shaking
gesture.

Contact Area Validation Using Sensorized
Pressure Mat
Experimental Setup
Contact area was measured simultaneously with the 3D visual
tracking system and a sensorized pressure mat (Conformable
TactArray SN8880, Pressure Profile Systems, United States, 7 cm
× 14 cm, 12 × 27 sensing elements, 0.002 psi pressure resolution,
3.05 psi pressure range, 29.3 Hz). Note that contact was evaluated
between the toucher’s hand and the surface of the pressure mat
which was overlaid on top of the bare forearm, for which it had
been custom-designed (Figure 7A). Based on pilot tests with the
pressure mat, its measurement of contact area could be inaccurate
due to the creases caused by pressing when the mat was put on the
forearm. To attenuate this effect, a piece of single-face corrugated
cardboard was placed between the forearm and themat to generate a
smooth and stiffer curved surface following the shape of the forearm.

Experimental Procedures
Four test gestures were employed, as listed in Table 3. The first
test gesture was single-finger pressing with the index finger. The
second gesture was multiple-finger pressing with all fingers except
for the thumb. The third gesture was holding and the fourth

FIGURE 6 | Validation of contact velocity measurements using EM tracker. (A) Experimental setup. (B) Five test gestures. (C)Velocity (cm/s) over time by the two
tracking systems. For the first three test gestures, one trial is shown per force level, i.e., low, medium, and high force. (D)Mean values of velocities (cm/s) per test gesture.
****p < 0.0001 were derived by paired-sample Mann–Whitney U tests. (E) Errors (cm/s) of measured velocities between the two systems for each test gesture.
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gesture was shaking. For the first three test gestures, three levels of
force were applied from low to medium to high, to generate
different levels of contact area within a gesture. Each force level
was repeated for three trials. Per trial, the toucher’s hand moved
downward into the receiver’s forearm and maintained pressure/
hold at that force level for more than 3 s. For example, the single-
finger pressing gesture was conducted for three trials of pressure
using the index finger at a low force level, followed by three trials
of pressure at a medium force level, and three trials of pressing
with a higher force level. The shaking gesture was conducted for
one trial with a long duration. Any patterns of shaking could be
applied in an irregular and arbitrary manner including different
directions, velocities, etc.

Data Analysis
The average contact area per gesture was calculated for both
measurement systems. Significance tests were performed across
gestures based on average areas from the visual tracking system.
The measurement differences between the two systems were
derived from time-series recordings per gesture. To overcome
the time discrepancy of sampling, data collected by the sensorized
pressure mat was resampled to be synchronized with the visual
tracking system.

Results
In Figure 7B, the time-series contact areas captured by the 3D
visual tracking system and the sensorized pressure mat well

overlapped with each other across test gestures and force
levels. While single-finger pressing (SfP) afforded the smallest
contact area, larger multiple-finger pressing (MfP) was
significantly smaller than holding (H) and shaking (Sk)
(Figure 7C). As shown in Figure 7D, the measurement
differences between the two systems were around 2 and 6 cm2

for SfP and MfP, while increased to 11 cm2 for holding and
shaking.

Indentation Depth Validation Using Laser
Sensor
Experimental Setup
Indentation depth was first validated using a laser displacement
sensor (optoNCDT ILD 1402-100, Micro-Epsilon, Germany,
100 mm range, 10 µm resolution, 1.5 kHz). The sensor was
mounted on a customized stand with the beam pointing
downward. Given its capability of measuring the displacement
of one point in only the vertical direction (Figure 8A), a limited
set of tapping gestures was evaluated in this setting. Other
gestures were then tested with a separate validation procedure
using the sensorized pressure mat (Figure 8E).

Experimental Procedures
Two test gestures were examined with the laser sensor, as listed in
Table 4. The first gesture was multiple-finger tapping, where the
movement of the tip of the middle finger was tracked. The second

FIGURE 7 | Validation of contact area measurements using sensorized pressure mat. (A) Experimental setup. (B)Contact area (cm2) over time by the two systems.
For the first three test gestures are shown one trial per force level, i.e., low, medium, and high force. (C)Mean values of contact area (cm2) per test gesture. ****p < 0.0001
were derived by paired-sample Mann–Whitney U tests. (D) Differences of measured contact area (cm2) between the two systems per test gesture. (E) Visualization of
hand-arm contact in top view (left) and bottom view (top right) with heatmaps of contact pressure tracked by sensorized pressure mat across force levels (bottom
right).
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gesture was tapping with the palm, measured at one point on the
back of the hand. Holding, shaking, and stroking gestures were
not examined here since these gestures are typically not
conducted in the vertical direction. Within each gesture, three
force levels were employed, i.e., low, medium, high, and each
repeated in three trials. The toucher quickly tapped for four times
within one trial. For example, the palm tapping gesture was
conducted for three trials of four taps with the palm at a low force
level, followed by three trials of four taps at a medium force level,
and three trials of four taps at a high force level. The raw data
collected by laser sensor contained displacements of both
indentations into the skin and movements in the air.
Therefore, the toucher conducted a “zero contact” touch to the
forearm at a minimally perceptible force prior to each test gesture.

Within the setting of sensorized pressure mat, the three test
gestures performed were single-finger pressing, multiple-finger
pressing, and holding (Table 4). Each gesture was performed in
three force levels, where each level was repeated for three trials.

Data Analysis
For the validation with laser sensor, average indentation depth at
each force level was obtained by aggregating the two tapping
gestures. Significance tests were conducted across force levels
based on the average depth collected by the visual tracking
system. Measurement errors between the two systems were
derived from time-series recordings at each force level. The
data from the laser sensor was resampled according to the 3D
visual tracking system’s results. For quick tapping gestures, slight

temporal discrepancies between the two recordings could derive
large differences. Therefore, the dynamic time warping method
was used to match tracked movements. The measurement errors
were obtained by comparing each pair of matched points from
the two recordings.

Though no depth data could be captured by the pressure mat,
the overall contact force was measured for correlation with
indentation depth measured by the visual tracking system. By
aggregating all test gestures, the average depth derived per force
level was then calculated and compared.

Results
In Figure 8, the patterns of indentation depth measured by the
two systems were very similar especially for the temporal changes
(Figure 8B). Though differences could be observed between their
overall amplitudes, their increasing trends were maintained
across force levels (Figure 8C). Therefore, the 3D visual
tracking system affords the sensitivity to track slight changes
in indentation depth, while the amplitude of changes is
proportionally mitigated. Moreover, contact with different
force levels could be easily differentiated by indentation depth
amongst a variety of touch gestures. (Figures 8C,G).

DISCUSSION

To better understand human-to-human touch interactions
underlying social emotional communication, an interference-

FIGURE 8 | Validation of indentation depth measurements using laser displacement sensor and sensorized pressure mat. (A) Experimental setup with laser
displacement sensor. (B) Indentation depth (mm) over time by the either system. For the two test gestures shown is one trial per force level, i.e., low, medium, and high
force. (C) Mean values of indentation depth per test gesture. ****p < 0.0001 were derived by paired-sample Mann–Whitney U tests across force levels. (D) Errors of
measured indentation depth between systems per force level. (E) Experimental setup with sensorized pressure mat. (F) Indentation depth (mm) collected by the 3D
visual tracking system overlaps with overall force (N) collected by the sensorized pressure mat. Per test gesture, one trial per force level is shown i.e., low, medium, and
high force. (G)Mean value of indentation depth per force level recorded by the 3D visual tracking system. ****p < 0.0001 were derived by paired-sampleMann–Whitney U
tests across force levels.
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free 3D visual tracking systemwas developed to precisely measure
skin-to-skin physical contact by time-series contact attributes.
The system was validated to capture and readily distinguish
naturalistic human touches across delivered emotional
messages, touch gestures, and individual touchers according to
contact attributes. Compared with standard tracking techniques,
similar accuracy of spatiotemporal measurements was achieved
by this system, while multivariate attributes can be obtained
simultaneously within one concise setup.

Deciphering Affective Touch
Communication by Contact Attributes
As human affective touch is prone to be impacted by social and
individual factors, such contact differences could be readily
captured by this system via contact attributes. First of all,
touch gestures can be differentiated with high accuracy as
their contact attributes were significantly different from each
other (Figure 4A). Measurements of this system also align with
prior reports of gesture quantification with similar amplitudes.
Such as the velocity for stroking in social touch is around 10 cm/s
(Lo et al., 2021), and the average contact area of holding gesture is
around 30 cm2 (Hauser et al., 2019a). In addition, the
characterized contact pattern of each gesture align well with
the general sense of how we deliver that gesture. For example,
tapping is associated with higher vertical velocities, stroking is
delivered with higher longitudinal velocities, and holding is
commonly applied with lower velocities and larger contact
areas (Figure 4A).

Moreover, delivered emotional messages can be
differentiated by contact attributes much better than chance
(Figure 5C). The accuracy of 54%, 57%, 55% was achieved
when predicted by three different levels of information derived
from contact attributes (Figure 5C). Note that human
receivers only achieve a comparable recognition correctness
around 57% when a similar pool of messages were tested
(Hauser et al., 2019a; McIntyre et al., 2021). It indicates
that some contact information human receivers rely on in
identifying emotional messages can be captured by this
tracking system. Meanwhile, certain messages that were
difficult to be discriminated by contact attributes might
indeed be very similar in their social meanings and touch
behaviors. Such as sympathy and calm, which are supposed to
be close in the terms of contact quantification.

Furthermore, this tracking system can capture individual
differences in affective touch as individual touchers were also
easily distinguished. Prior studies highlighted that touch behavior
in social communication could be influenced by many factors,
such as age (Cascio et al., 2019), gender (Hertenstein et al., 2009;
Russo et al., 2020), cultural backgrounds (Hertenstein et al., 2006;
Suvilehto et al., 2019), relationship (Thompson and Hampton,
2011), or personalities (McIntyre et al., 2021). While the personal
information is easy to obtain via questionnaires, the uniqueness
of their contact performance is always challenging to collect. Prior
attempts on individual difference typically focused on contact
with engineered stimuli like silicone-elastomers (Xu et al., 2021b),
grooved surfaces in grating orientation tasks (Peters et al., 2009),

or the contact with robots (Cang et al., 2015). In those settings,
contact can be well-recorded by built-in or attached sensors,
which in contrast is impractical or interferential for human-to-
human touch. As individual difference indeed plays a role in
social emotion communication, this system could help bridge the
gap by inspecting the differences from the aspect of skin contact
quantification.

Improved Skin-to-Skin Contact
Measurement by 3D Visual Tracking
The measurement accuracy of this system was validated by
several standard tracking techniques. As shown in Figures
6–8, time-series recordings of contact attributes aligned well
with the data collected from independent devices, i.e., contact
velocities from an EM motion tracker, contact area from a
sensorized pressure mat, and indentation depth from a laser
sensor. Those standard tracking methods typically afford high
accuracy or resolution of measurements but are specialized for
limited types of contact attributes. Therefore, when different
attributes are needed at the same time, a complex combination
of multiple devices is usually required. In contrast, the proposed
tracking system captures most of those attributes simultaneously
with a concise setup without calibration.

Moreover, the proposed 3D visual tracking system is
compatible with wider applications as many limitations of
standard tracking methods were overcome or avoided. More
specifically, compared with the EM tracker, this system is free
of electromagnetic interference and provides shape
information instead of tracking the position of only few
points. Compared with infrared motion trackers like the
Leap Motion sensor, it covers a larger range of tracking and
captures any 3D shapes in addition to hands and several basic
geometric shapes. The motion capture system is superior in
tracking movements but is expensive to set up and constrained
by pre-attached markers. Sensorized pressure mat and other
force sensors always block the direct contact and might not be
reliable in area measurement due to spatial resolution
constraints and the increasing zero drift over time
(Figure 4B). While the proposed tracking system is free of
those issues mentioned above, limitations still exist. In
particular, the attribute of contact force and pressure are
unavailable although they contribute to contact interactions
(Essick et al., 2010; Huang et al., 2020; Teyssier et al., 2020; Xu
et al., 2020). Due to the constraint of recording frequency, fast
movements might fail in tracking since the hand image could
be blurred. Meanwhile, the forearm needs to be recorded
parallel with the y-axis of the color image coordinate. In so
doing, the spatial hand velocity can be decomposed into the
three orthogonal directions without additional markers to
define the arm coordinate.

Further Applications in Human-to-Human
Touch Interaction
Human touch each other with different intentions and a wide
range of emotional states. In the classic theory of emotion, three
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dimensions of valence, arousal, and dominance, are typically
employed for emotion assessments (Russell and Mehrabian,
1977; Russell, 1980). Indeed, using machine-controlled brush
stimuli, the valence rating was reported to be tuned by the
tangential stroking velocity (Löken et al., 2009; Essick et al.,
2010; Ackerley et al., 2014a; Ackerley et al., 2014b; Croy et al.,
2021). In the scenario of naturalistic human touch, our
measurements could further facilitate the quantitative analysis
regarding other correlates between contact attributes and the
three emotional dimensions.

From the perspective of neurophysiology, changes in the skin’s
mechanics caused by physical contact could elicit different responses
of peripheral afferents (Johnson, 2001; Yao and Wang, 2019; Xu
et al., 2021a). For example, the firing frequency of C-tactile afferents
is associated with the stroking velocity in an inverted-U shape
relationship (Löken et al., 2009; Ackerley et al., 2014a;
Liljencrantz and Olausson, 2014). Other Aβ afferents are
suggested to support the identification of distinct emotional
messages delivered by touch (Hauser et al., 2019b). Moving
forward into this direction, measurements of naturalistic human
contact can aid in uncovering how exactly afferents respond to such
contact and contribute to different emotional percepts.

Affective touch is also believed to impact physiological arousal
such as blood pressure, heart rate, respiration, ECG, EEG, and
hormone level (Gallace and Spence, 2010; Sefidgar et al., 2016).
Especially for infants, touch delivered by caregivers contributes to
their social, cognitive, and physical development (Hertenstein,
2002; Van Puyvelde et al., 2019), where the underlying contact
details would be meaningful to quantify. Additionally, many
physical therapies, such as massage, rely on specific
manipulation of the muscle and tissue of patients delivered by
professional therapists. Those therapies create health benefits
including relieving stress and pain, promoting blood
circulation, and boosting mental wellness (Moyer et al., 2004).
While the underlying mechanism is waiting to be further
explored with the aid of physical skin contact tracking.
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