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ABSTRACT

One of the most accepted geologic models is the relation

between reflector curvature and the presence of open and

closed fractures. Such fractures, as well as other small dis-

continuities, are relatively small and below the imaging

range of conventional seismic data. Depending on the tecton-

ic regime, structural geologists link open fractures to either

Gaussian curvature or to curvature in the dip or strike direc-

tions. Reflector curvature is fractal in nature, with different

tectonic and lithologic effects being illuminated at the 50-m

and 1000-m scales. Until now, such curvature estimates have

been limited to the analysis of picked horizons. We have de-

veloped what we feel to be the first volumetric spectral esti-

mates of reflector curvature. We find that the most positive

and negative curvatures are the most valuable in the conven-

tional mapping of lineations — including faults, folds, and

flexures. Curvature is mathematically independent of, and in-

terpretatively complementary to, the well-established coher-

ence geometric attribute. We find the long spectral wave-

length curvature estimates to be of particular value in extract-

ing subtle, broad features in the seismic data such as folds,

flexures, collapse features, fault drags, and under- and over-

migrated fault terminations. We illustrate the value of these

spectral curvature estimates and compare them to other at-

tributes through application to two land data sets — a salt

dome from the onshore Louisiana Gulf Coast and a fractured/

karsted data volume from Fort Worth basin of North Texas.

INTRODUCTION

The seismic expression of structural and stratigraphic discontinu-

ities such as faults and channels may include lateral variation in

waveform, dip, and amplitude. Estimates of seismic coherence �e.g.,

Bahorich and Farmer, 1995; Marfurt et al., 1998; Gerstzenkorn and

Marfurt, 1999; Marfurt and Kirlin, 2000� provide a quantitative

measure of the changes in waveform across a discontinuity. Esti-

mates of apparent dip �e.g., Dalley et al., 1989; Barnes, 2000; Mar-

furt et al., 1998; Marfurt and Kirlin, 2000; Marfurt, 2006� provide a

measure of change in reflector dip magnitude and azimuth across a

discontinuity.Additionally, estimates of amplitude or coherent ener-

gy-weighted amplitude gradients �e.g., Luo et al., 1996, 2003; Mar-

furt and Kirlin, 2000; Marfurt, 2006� provide a measure of change in

reflector amplitude across a discontinuity. Such discontinuity mea-

sures can highlight the boundaries between fault blocks, stratigraph-

ic units, diagenetic alteration, and hydrocarbon accumulation.

One of the major goals of exploration seismology is the delinea-

tion of fractures. Fractures are found in nearly every reservoir, rock

type, and depth; they may also be found in source rocks, reservoir

rocks, and cap rocks. Petroleum explorationists pay a great deal of

attention to locating these fractures to predict reservoir performance.

Fractures can either advance or hinder our efforts in producing a res-

ervoir. They may be confined to the reservoir or connect to deeper,

water-bearing formations. Locating these fractures and identifying

their orientations can help explorationists benefit from their pres-

ence or avoid their problems.

Using seismic coherence to detect fractures has been investigated

since the first emergence of the coherence cube as a new attribute of

seismic data. Skirius et al. �1999� used seismic coherence in carbon-

ates in North America and the Arabian Gulf to detect faults and frac-

tures. Luo et al. �2002� showed some examples from a SaudiArabian

carbonate field where amplitude gradients helped in delineating

fractures. While coherence and amplitude gradients can often detect

lineaments, reflector curvature is more directly linked to fracture

distribution �Lisle, 1994; Roberts, 2001; Bergbauer et al., 2003�.

Hart et al. �2002� and Melville et al. �2004� have used horizon-based

attributes �including various curvature attributes� to identify struc-

tural features that may be associated with fracture-swarm sweet

spots. Hart and Sagan �2005� have used curvature to delineate strati-

graphic features of interest. Stewart and Wynn �2000� pointed out

that it may be necessary to examine curvature at various scales to ac-

count for different wavelengths, which was later initiated by Wynn

and Stewart �2003� and Bergbauer et al. �2003� on interpreted hori-

zons. While his paper also dealt with curvature computed from inter-
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preted horizons, Roberts �2001� anticipated that volumetric estima-

tion of reflector curvature should be possible.

In the next section, we begin with a summary of alternative esti-

mates of derivatives and show how we can use concepts presented

by Cooper and Cowan �2003� as the building blocks for the multi-

spectral curvature analysis discussed by Stewart and Wynn �2000�.

Next, we show how Roberts’ �2001� measures of reflector curvature

and independent measure of reflector rotation can be calculated di-

rectly from volumetric estimates of reflector dip �e.g., Marfurt,

2006; Barnes 2000�. Finally, we apply these new attributes to data

from onshore areas of Louisiana and Texas and show how long

wavelength estimates of curvature enhance features that are difficult

to see using either short wavelength estimates of curvature or coher-

ence.

EVALUATION OF ALTERNATIVE

DERIVATIVE CALCULATIONS

Luo et al. �1996� showed that lateral changes in reflector ampli-

tude can be enhanced by a simple derivative, or Sobel filter that can

be approximated by convolving the seismic data with the vector

�−1,0, + 1�. Clearly, if this simple approximation to the first deriva-

tive is valuable, we might assume that we can obtain superior results

by replacing our three-sample, second-order accurate ��1,0,�1�

with a longer-length, higher-order accurate approximation of the

first derivative.Alternatively, we may obtain better derivative-based

edge detection by exploiting recent advances made in the 2D image

processing literature �Torreao and Amaral, 2002� and applying them

to 3D seismic data. A third alternative is to modify the fractional-or-

der horizontal derivatives developed and applied to 2D potential

field data by Cooper and Cowan �2003� and modify them to estimate

3D reflector curvature. Such fractional-order horizontal derivatives

should allow us to analyze our data over a range of wavelengths and

thereby delineate different scale features from the same time slice of

3D seismic data.

In this paper, our primary focus is on estimating curvature, rather

than edge detection. Fortunately, even when viewed on time slices,

vector dip is relatively slowly varying when compared to seismic

amplitude. In fact, the lateral variability of vector dip is closer to that

seen in photographic images and potential field data rather than that

seen on seismic amplitude time slices. In the following sections, we

summarize the theory and present the spectral response of each of

our three alternate approaches.

Higher-order approximation to the first derivative

Higher-order accuracy approximations to derivatives are routine-

ly used in numerical modeling of geophysical phenomena �e.g.,

Fornberg, 1987�. What is not intuitively obvious is that we can inter-

pret these approximations as an exact derivative multiplied by a low-

pass filter. It is this low-pass filter framework of the exact derivative

that will allow us to compare and evaluate the three seemingly dis-

parate edge-detection algorithms described in these sections. As an

illustration of the higher-order approximation of the first derivative,

we derive a fourth-order-accurate derivative by expanding a func-

tion u�x ± h� and u�x ± 2h� where h is the separation between traces

in a Taylor series

u�x + h� = u�x� + h
d

dx
u�x� +

h2

2!

d2

dx2
u�x� +

h3

3!

d3

dx3
u�x�

+
h4

4!

d4

dx4
u�x� + O�h5� , �1�

u�x − h� = u�x� − h
d

dx
u�x� +

h2

2!

d2

dx2
u�x� −

h3

3!

d3

dx3
u�x�

+
h4

4!

d4

dx4
u�x� − O�h5� , �2�

u�x + 2h� = u�x� + 2h
d

dx
u�x� +

�2h�2

2!

d2

dx2
u�x�

+
�2h�3

3!

d3

dx2
u�x� +

�2h�4

4!

d4

dx4
u�x� + O�h5� ,

�3�

and

u�x − 2h� = u�x� − 2h
d

dx
u�x� +

�2h�2

2!

d2

dx2
u�x�

−
�2h�3

3!

d3

dx3
u�x� +

�2h�4

4!

d4

dx4
u�x� − O�h5� .

�4�

To obtain the first derivative du/dx, we multiply equations 1–4 by

parameters a1, a2, a3, and a4, respectively, and sum them to obtain

a1u�x + h� + a2u�x − h� + a3u�x + 2h� + a4u�x − 2h�

= �a1 + a2 + a3 + a4�u�x� + e1h
d

dx
u�x� + e2h2

d2

dx2
u�x�

+ e3h3
d3

dx3
u�x� + e4h4

d4

dx4
u�x� , �5�

where e1, e2, e3 and e4 are given by

e1 = a1 − a2 + 2a3 − 2a4,

e2 =
1

2
a1 +

1

2
a2 + 2a3 + 2a4,

e3 =
1

6
a1 −

1

6
a2 +

4

3
a3 −

4

3
a4,

e4 =
1

24
a1 +

1

24
a2 +

2

3
a3 +

2

3
a4. �6�

To express the first derivative only in terms of u�x�, u�x ± h�, and

u�x ± 2h�, we need to choose the coefficients such that e2 = e3 = e4

= 0 and e1 = 1. Doing so gives a1 = + 2/3, a2 = −2/3, a3 =

+ 1/12, and a4 = −1/12, which, when inserted into equation 5, pro-

vides an approximation of the first derivative that is fourth-order ac-

curate:

P42 Al-Dossary and Marfurt



du�x�

dx
=

2

3
u�x + h� −

2

3
u�x − h� −

1

12
u�x + 2h� +

1

12
u�x − 2h�

h
.

�7�

Fornberg �1987� has carried these approximations out for a com-

plete suite of higher-order-accurate operators �Figure 1�. In the limit,

the first-order derivative is approximated by

du

dx
= F−1�ikxF�u�x��� , �8�

where F and F−1 denote the forward and inverse Fourier transforms,

kx is the wavenumber, and i � �−1. In this paper, we interpret Figure

1 as a suite of low-pass filters applied to the exact derivative opera-

tor. Later, in Figure 11, we will show that filtered derivatives that en-

hance the longer wavelength variation of reflector dip provide imag-

es of subtle warping that were previously seen only on manually in-

terpreted surfaces.

Torreao and Amaral’s edge detector

Torreao and Amaral �2002� were not interested in curvature at all,

but rather developed a robust edge detector that has derivative-like

properties. They noticed that on many image-processing applica-

tions, they wanted to detect edges that segment different regions of

smoothly varying signals contaminated by rapidly varying noise.

They therefore chose to estimate signals that had the behavior

ū�x + L� = u�x� + O�x�2 �9�

for all values of x, where u�x + L� is equal to the signal at location

x + L. Using a Taylor series expansion, they rewrite equation 9 as

ū�x� +
L

1!

�ū

�x
+

L

2!

�2ū

�x2
= u�x� . �10�

The Green’s function solution corresponding to equation 10 is

G2�+ x� = 	
0 x � 0

2

L
sin
 x

L
�exp
−

x

L
� x � 0 � . �11�

Next, they modify equation 10 to solve for the signal at x -L. If the

signal is smoothly varying, these limits should be identical. They

therefore form a difference operator

D2�x� =
1

2L
�G2�− x� − G2�+ x�� . �12�

Note that in equation 12, we use the symbol D2 rather than �u/�x.Ac-

cording to equation 10, D2�x� � 0 for both linear and parabolic sig-

nal variation. For information about a higher-order D3 operator and a

hybrid D23 operator by combining D2 and D3 operators, we refer the

reader to Torreao and Amaral �2002�, who find that the D23 operator

is a better edge-detector operator.

We show the frequency response of Torreao and Amaral’s �2002�

D23 operator in Figure 2 for values of L = h, 2h, 3h, 4h, and 5h,

where h is the separation between seismic traces. We note that the

operator for L = h is indistinguishable from the second-order finite-

difference operator shown in Figure 1. Increasing the value of L in-

creases both the number of seismic traces and the low-wavenumber

�long-wavelength� spectral response of the operator. We have found

Torreao andAmaral’s �2002� D23 operator to be the most effective of

the plethora of recently developed image-processing edge detectors

when applied to seismic data. In particular, it produces more robust

edges and curvature estimates than the classic derivatives shown in

Figure 1. We were, however, troubled by the bimodal spectral re-

sponse seen at values of L = 4h and L = 5h in Figure 2. Further-

more, the steep low-frequency slope of the spectra points bears a

similarity to the fractional derivatives presented by Cooper and

Cowan �2003�.

Figure 1. Spectral response of finite-difference approximations to
the first derivative on a discrete grid, with grid increment h. Ideally,
the numerical wavenumber knumerical should equal the true wavenum-
ber ktrue. The three-point, second-order accurate �Sobel filter� algo-
rithm approximates the true wavenumber at low values of ktrue. We
can improve the accuracy of the first-derivative calculation by using
higher-order approximations �and adding more points in the compu-
tation�. Such higher-order approximations increase the high fre-
quency content of the result �after Fornberg, 1987�.

Figure 2. Spectral response of Torreao andAmaral’s �2002� D23 edge
detector for values of L = h, 2h, 3h, 4h, and 5h. The L = 2h operator
has similar spectral content as the Sobel filter �second-order-accu-
rate algorithm� shown in Figure 1.
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Fractional-order derivatives

Cooper and Cowan �2003� applied fractional-order derivatives to

gravity and magnetic data, thereby delineating linear features that

are wavelength dependent. To show the mathematics behind the

fractional derivative, let us assume that we have a function u�x� and

first derivative �u/�x. In the wavenumber domain, the first derivative

is given by

F��u/�x� = − ikxF�u�x�� . �13�

We can therefore define the fractional horizontal derivative in the

wavenumber domain as

F���u/�x� = �− ikx�
�F�u�x�� , �14�

where � is a fractional real number.

Cooper and Cowan �2003� do not present implementation details.

While a fractional derivative may be represented formally as �ikx��

F�kx�, we have found it to be more useful to keep the phase change at

a constant value of i, or 90°. In our implementation, we retain the am-

plitude spectrum weighting of the fractional derivative but keep the

phase spectrum to be that of the conventional first derivative. Fur-

thermore, building on experience in analyzing the efficacy of the

Torreao and Amaral �2002� algorithm, we high-cut each filter by ap-

plying a simple raised cosine taper, T�kx�. The peak of the raised co-

sine taper is at �kNyquist/2, where kNyquist = 1/�2h�. Finally, for scaling

purposes, we find it useful to normalize the energy of each filter to a

constant that is equal to the energy of the filter associated with �

= 1.0 �Figure 3�. Our derivative operator Dx can thus be expressed as

Dx = F1�− i�kx�
�F�u�x��T�kx�� . �15�

In this manner, our approximation of Dx for � = 1.0 is identical to

that of the second-order finite-difference operator and Torreao and

Amaral’s �2002� D23 operator with L = h.

Summarizing the previous discussion, we note that:

1� Increasing the accuracy of a numerical estimate of a derivative

computed on a discrete grid requires a larger analysis window

�more points in the computation�. The major impact of such a

computation is to increase the short-wavelength components of

the results �Figure 1�.

2� Sophisticated edge detectors developed by the image-process-

ing community, represented by Torreao and Amaral’s �2002�

D23 operator, improve over conventional derivative operators

such as the Sobel filter by increasing the long-wavelength with

respect to the short-wavelength components of the image �Fig-

ure 2�.

3� We can derive a simpler long-wavelength-enhanced derivative

operator by low-pass filtering the results of a conventional first-

derivative operator �Figure 3�. By doing so, we retain the visual

advantages of Torreao and Amaral’s �2002� D23 operator, while

producing images that can be directly interpreted as band-

passed estimates of reflector shape.

ALTERNATIVE MEASURES OF

REFLECTOR SHAPE

Seismic reflectors are rarely planar but are usually folded or even

broken. Many regions of the earth’s subsurface can best be described

as chaotic. Most published work in mapping reflector shape has been

restricted to represent interpreted horizons by their curvature �Lisle,

1994; Stewart and Wynn, 2000; Roberts, 2001; Sigismondi and Sol-

do, 2003�. This work in turn has been based on a great deal of litera-

ture on mapping surface topography or terrain �e.g., Mitsova and

Hofierka, 1993; Wood, 1996�. In this paper, we wish to develop an

algorithm that estimates reflector shape on a complete cube of seis-

mic data without the need for prior interpretation. While assigning a

picked reflector surface to each point in a given seismic data volume

proves intractable, assigning a vector dip �or alternative dip magni-

tude and dip azimuth� is not. Barnes �1996, 2000� shows how to cal-

culate reflector dip and azimuth using a 3D generalization of instan-

taneous frequency. Instantaneous frequency � �and wavenumbers kx

and ky� estimates suffer from waveform interference, so consider-

able smoothing needs to be done to stabilize the calculation. We have

found that an estimate of reflector dip based on a multiwindow co-

Figure 3. �a� Spatial operators and �b� their corresponding spectra
used in the fractional derivative D�, given by equation 14. By design,

our first-order derivative �� = 1.00� has similar spectral content as
the second-order accurate finite-difference operator �Sobel filter�
shown in Figure 1 and Torreao and Amaral’s �2002� filter, shown in
Figure 2. As we decrease the value of �, we also decrease the higher
frequencies, thereby shifting the bandwidth toward the longer wave-
lengths �lower values of kx�.
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herence scan �Marfurt, 2006� produces both stable and high lateral

resolution results. The examples shown in this paper will use this lat-

ter technique as input; however, we have found that long-wave-

length �low-wavenumber� estimates of reflector shape using enve-

lope-weighted estimates of instantaneous dip and azimuth �Barnes,

2000� as input also produce good results.

Given a cube of estimated vector dip

u�z,x,y� = p�z,x,y�x̂ + q�z,x,zy�ŷ , �16�

where p and q are the components of dip and where x̂ and ŷ are unit

vectors along the Cartesian axes, we can mathematically decompose

them into two parts:

div�u� = ��p/�x + �q/�y� �17�

and

rz = ��p/�y − �q/�x� . �18�

In principal, any arbitrary vector field can be expressed by some lin-

ear combination of equations 17 and 18. Equation 17 is the diver-

gence of the vector dip, which for the case p = q = 0 at the analysis

point, is proportional to Roberts’ �2001� definition of mean curva-

ture, kmean. Equation 18, which we will say the reflector rotation rz is

the vertical component of the curl of the vector dip. The vertical

component of curl �u� is nonzero when the dip estimates are noisy or

when there is a strike/slip component of deformation. The other

components of the rotation vector correspond to acquisition rather

than �approximately� depositional axes; we have not found them to

be particularly useful. Other than some preliminary work by Marfurt

and Kirlin �2000�, we have not seen any published literature using

this measurement on interpreted surfaces.

In contrast, there is a great deal of relevant literature published on

the use of curvature. Following the notation of Roberts �2001�, we

can represent a reflector surface z�x,y� by a quadratic surface:

z�x,y� = �x2 + by2 + cxy + dx + ey + f . �19�

Afixed depth �or time� slice through this surface will be

an ellipse, if c2 − 4ab � 0, �20�

a hyperbola, if c2 − 4ab � 0, �21�

or

a parabola, if c2 − 4ab = 0. �22�

Using our input estimates of reflector dip, p and q, the coefficients in

equation 19 become at x = y = 0:

Dx�Dxz� = 2a = Dxp ,

Dy�Dyz� = 2b = Dyq ,

Dxq + Dyp = 2c ,

and

e = q , �23�

where the operators Dx and Dy can be any of the numerical approxi-

mations to the first derivative that was discussed in the previous sec-

tion. We should note that by construction, equation 19 does not ex-

press any rotational component, since

rz = DyDxz − DxDyz = c − c = 0. �24�

When the coefficient c in equation 19 is nonzero, the quadratic sur-

face z�x,y� is said to be rotated with respect to its principal axes. To

find the maximum and minimum �or principal� curvatures kmin and

kmax, we need to rotate the coordinate system to another frame. De-

tails can be found in Roberts �2001� as well as in advanced mathe-

matics books on solid geometry and 3D computer graphics. We will

use the terminology �and equations� presented by Roberts �2001�

and calculate the mean curvature kmean,

kmean = �a�1 + e2� + b�1 + d2� − cde�/�1 + d2 + e2�1/2;

�25�

the Gaussian curvature kGauss,

kGauss = �4ab − c2�/�1 + d2 + e2�2; �26�

the maximum and minimum curvatures kmax and kmin,

kmax = kmean + �kmean
2 − kGauss�

1/2, �27a�

kmin = kmean − �kmean
2 − kGauss�

1/2; �27b�

the most positive curvature kpos,

kpos = �a + b� + ��a − b�2 + c2�1/2; �28�

the most negative curvature kneg,

kneg = �a + b� − ��a − b�2 + c2�1/2; �29�

the dip curvature,

kdip = 2�ad2 + be2 + cde�/��d2 + e2��1 + d2 + e2�3/2�;

�30�

the strike curvature kstrike

kstrike = 2�ae2 + bd2 − cde�/��d2 + e2��1 + d2 + e2�1/2�;

�31�

the curvature C,

C = ��kmax
2 + kmin

2 �/2�1/2; �32�

the shape index s,

s =
2

�
tan−1 kmin + kmax

kmin − kmax

�; �33�

and finally, the azimuth of the maximum curvature �,

� = �tan−1�c/�a − b�� if a � b

�/4 if a = b
� . �34�

The maximum and minimum �also called principal curvatures�

kmax and kmin measure the maximum and minimum bending of the

surface at each point �Lisle, 1994�. Sigismundi and Soldo �2003�

show that the maximum curvature allows one to easily determine the

relative movement of fault blocks from time slices. In Figure 4, we

show reflector shapes as a function of the sign of the most positive
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and most negative curvature. The Gaussian curvature kGauss is posi-

tive for bowls and domes, negative for hyperboloids and zero for

planes everywhere. The Gaussian curvature kGauss, sometimes re-

ferred to as the total curvature, is named after Gauss and his Theo-

rema Egregium or “wonderful theory” �Roberts, 2001�. Lisle �1994�

suggested Gaussian curvature as a method of predicting fractures.

Robert �2001� found Gaussian curvature to be a poor delimiter of

faults because faults are generally expressed as linear features on at-

tribute maps. Linear features tend to have values of kmin that fluctuate

around zero. Consequentially, kGauss will also be zero. We will show

later in Figures 13c and 14c that kGauss is a good estimate of elliptical-

shaped collapse features.

We find the most positive and most negative curvatures kpos and

kneg to be the most useful in delineating faults, fractures, flexures, and

folds. These two measures consistently show the same polarity for a

given geologic feature, allowing one to better track it, either visually

or with computer software. Furthermore, a simple dual gradational

color bar allows us to interpret negative values of most positive cur-

vature as bowls and postive values of most negative curvature as

domes �Figure 4�. We find the “reflector rotation” attribute, rz, to be

more sensitive to acquisition footprint than other reflector shape

measures �at least for land data where there is a strong azimuthal and

offset bias on output lines�. At present, we use reflector rotation pri-

marily as a measure of the quality of our input dip and azimuth esti-

mates. We expect that there are more robust expressions of “tears” in

the reflector surface; however, we leave this analysis for future work.

APPLICATION

To illustrate the value of our method, we calculate curvature and

rotation attributes for two data sets — a salt dome from the onshore

Louisiana Gulf Coast and a fractured/karsted data volume from the

Fort Worth basin of North Texas. We begin by comparing a suite of

time slices through attribute cubes generated for Vinton Dome, Lou-

isiana, at 1.0 s. As a baseline, we plot a time slice through the princi-

pal component coherence volume in Figure 5. Zones of low coher-

ence correspond to lateral changes in waveform, rather than in

changes of amplitude, dip, or curvature. We note that the faults seen

in line AA� in Figure 6 do not all show up on the coherence time slice

at 1.0 s seen in Figure 5. In some places, the fault appears to have

some drag.At other places, the reflector terminations appear to be in-

completely focused.

In Figure 7, we display the most negative curvature, most positive

curvature, and rotation images corresponding to the coherence im-

age shown in Figure 5. We have calculated these images using a

short-wavelength approximation of curvature using Dx and Dy corre-

sponding to � = 1.00. We judge the value of these images as poor,

primarily because of the poor focusing of the prestack time migra-

tion used in imaging what we know to be a structurally complex area.

In Figure 8 we show the corresponding long wavelength images cal-

culated using a value of � = 0.25. Here, the most positive and nega-

tive curvature time slices more clearly delineate the radial faults

about the salt dome. Note that each of the faults indicated on Figure

8a and b are indicated on the vertical time slice in Figure 6. The rota-

tion time slice in Figure 8c shows what we interpret to be faults with

a rotation about them �white arrows�. There is a lake over the crest of

the salt dome, giving rise to low fold, poor data quality, and poor esti-

mates of dip/azimuth at this time slice �black arrow�, resulting in un-

reasonably large values of rotation rz.

Figure 4. Classification of quadratic shapes based on most negative
and most positive curvature �modified from Bergbauer et al., 2003�.

Figure 5. Principal component coherence through a survey acquired
over Vinton Dome, Louisiana, USA. The arrows correspond to the
faults shown in Figures 6–8. Data courtesy of OPEX.

Figure 6. A vertical section through the seismic data corresponding
to line AA� shown in Figure 5. The arrows depict faults indicated by
the arrows in Figures 5, 7, and 8. Note that some of these faults ap-
pear to be discrete discontinuities, while others appear to be folds, ei-
ther from drag along the fault or from inaccurate migration. Faults
having a folded appearance show up more clearly in the curvature
volumes.
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Next, we turn our attention to a time slice at t = 0.8 s through the

Fort Worth basin survey that is roughly at the Caddo/Atoka horizon.

In Figure 9 we display the coherence, while in Figure 10, we display

line BB� through the input seismic data volume, and note the col-

lapse features that begin at the basement level �indicated by arrows�.

To better understand the spectral nature of our curvature estimates,

we display a suite of negative curvature images kneg in Figure 11 cor-

responding to values of � = 2.00, 1,50, 1.00, 0.75, 0.50, and 0.25.

We confirm Stewart and Wynn’s �2000� observation that multispec-

tral analysis brings out different features — highly localized faults

and fracture swarms for larger values of � �Figure 11c� and more re-

gional warping and flexures for smaller values of � �Figure 11f�.

In Figure 12, we examine a deeper time slice at t = 1.2 s that cuts

across the Ellenburger and Marble Falls Formations. Collapse fea-

tures seen in Figure 10 cut both of these horizons �Sullivan et al.,

2006� and appear as elliptical zones of lower coherence in Figure 12.

We display the most negative, most positive, and Gaussian curvature

time slices in Figures 13 and 14, calculated using values of � = 1.00

and � = 0.25. Most negative and most positive curvature measure-

ments are independent of each other and in general provide mathe-

matically uncorrelated images. Here we note that the lineaments

seen in the shallower section in Figure 11f are more highly devel-

oped, indicating that collapse features are structurally controlled

�Sullivan et al., 2006�. The bowl-shaped collapse features them-

selves �as well as a few domal features� show up clearly on the

Figure 7. Short-wavelength �� = 1.00� estimates of �a� most nega-
tive curvature kneg, �b� most positive curvature kpos, and �c� reflector
rotation rz, corresponding to the same time slice shown in Figure 5.

Figure 8. Long-wavelength �� = 0.25� estimates of �a� most nega-
tive curvature kneg, �b� most postive curvature kpos, and �c� reflector
rotation rz, corresponding to the same time slice shown in Figures 5
and 7. White arrows depict faults that are not as clearly seen on the
coherence time slice shown in Figure 5. Gray arrows correspond to
faults where reflectors have significant rotation about the fault plane.
Such rotations are not represented by the quadratic surface used in
curvature calculations. The black arrow indicates noisy, low-fold ar-
eas of the data.
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Gaussian curvature as positive-value white circles in Figures 13c

and 14c. We do not see the lineations in the Gaussian curvature imag-

es. For completeness, we display the dip and strike curvature in Fig-

ure 15. In a compressional terrain, Hart et al. �2002� predict that large

values of kstrike will be correlated to open versus closed fractures. In a

tensional terrain such as the Austin Chalk �Schnerk and Madeen,

2000�, others find that dip curvature correlates with open fractures

�Mark Stevenson, Geotexture, personal communication�. We leave

the study of which curvature attributes best correlate to fractures and

production in this Fort Worth basin survey for a future paper. Suffice

it to say that these images are significantly different from each other

and merit their own geostatistical analysis.

Finally in Figure 16, we display the shape index and curvature at

both the t = 0.8 s and t = 1.2 s levels using a 2D color bar. We plot

the shape index against hue and curvature against lightness, such

that shapes having little or no curvedness appear to be black, indicat-

ing a planar shape. In the shallow time slice in Figure 16b, we note

our channel in the northwest has a valley shape �in cyan�. To the

southeast we see a yellow ridge feature that corresponds to the black

arrow in Figure 10. In the deeper time slice shown in Figure 16c, we

can unambiguously see the collapse features �seen in blue and cyan�.

These collapse features are separated from each other by ridges �yel-

low� and saddles �green�. There are only a few dome features �red� at

this level.

Figure 9. Principal component coherence at t = 0.8 s �approximate-
ly the Caddo/Atoka level� through a survey from the Fort Worth ba-
sin, Texas, USA. Data courtesy of Devon Energy.

Figure 10. Line BB� through the seismic data cube. White arrows in-
dicate collapse features that appear to be basement controlled. Black
arrow indicates a ridge that can be seen in Figure 16b. Gray arrow in-
dicates a dome that can be seen on Figure 16c.

Figure 11. Time slice at t = 0.8 s corresponding to Figure 9, show-
ing most negative curvature kneg, computed using fractional deriva-
tives with values of � = �a� 2.00, �b� 1.50, �c� 1.00, �d� 0.75, �e� 0.50,
and �f� 0.25.

Figure 12. Principal component coherence at t = 1.2 s �approxi-
mately the Ellenburger level shown in Figure 10� through the same
survey shown in Figure 9.

P48 Al-Dossary and Marfurt



Figure 13. Short-wavelength �� = 1.00� curvature values at t = 1.2 s corresponding to Figure 12 of �a� most negative curvature kneg, �b� most
positive curvature kpos, and �c� Gaussian curvature kGauss.Arrows indicate elongated collapse feature that appears to be structurally controlled.

Figure 14. Long-wavelength �� = 0.25� curvature values at t = 1.2 s corresponding to Figure 12 of �a� most negative curvature kneg, �b� most
positive curvature kpos, and �c� Gaussian curvature kGauss. By examining Figure 4, we see that positive values of kneg in �a� correspond to domes
while negative values of kpos in �b� correspond to bowls. White arrows indicate through-going northeast-southwest lineaments that appear to off-
set northwest-southeast lineaments indicated by gray arrows. These lineaments are much more clearly seen than in Figure 13.

Figure 15. �a� Dip curvature kdip, and �b� Strike curvature kstrike, corresponding to the time slices in Figure 14. While we find these images less use-
ful than kneg and kpos in interpreting faults and flexures, Hart et al. �2002� and others, find these measures more closely correlated to open fractures.

Figure 16. �a�A 2D color table used to display the shape index against curvature. Planar features will have a curvature near zero and will be dis-
played black. Highly curved features will be plotted as a pure color, allowing us to differentiate between reflector shapes. We plot curvature c,
and shape index s, calculated using equations 32 and 33, using this 2D color table at �b� t = 0.8 s corresponding to Figures 9 and 11 and �c� t
= 1.2 s corresponding to Figures 12–15. Note that the shallow section is less contorted, yielding a darker image. The cyan “valley” indicated by
arrows in �b� corresponds to a channel. The yellow ridge indicated by the black arrow corresponds to the ridge seen in Figure 10. Other cyan val-
ley and yellow ridge lineaments correspond to deformation about faults and joints. In contrast, �c� is dominated by collapse features in the Ellen-
burger Formation. Collapse features appear as blue circles, such as the one indicated by the blue arrow, ringed by yellow ridges and green sad-
dles. Red arrows indicate two domal features, one of which corresponds to the dome indicated by the gray arrow seen in Figure 10.
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CONCLUSIONS

We have developed a means by which powerful seismic attributes

that could previously be applied only to interpreted horizons can

now be applied to the entire uninterpreted volume of seismic data.

These attributes, which include measures of reflector rotation and

curvature, are independent of, and complementary to, the popular

measures of seismic coherence. We find reflector rotation to be a

good indicator of data quality as well as scissor movement along a

fault. We find the most negative and most positive curvatures to be

the most easily interpreted of the curvature images in highlighting

faults and folds. In addition, domes will appear as positive anomalies

on most negative curvature, while bowls will appear as negative

anomalies on most positive curvature. Although the images may ap-

pear somewhat “busy,” the maximum curvature can allow one to vi-

sualize the direction of fault throw on a time slice. The Gaussian cur-

vature shows what it was designed to show — surfaces that exhibit

an elliptical bowl or dome component — and appears to be a good in-

dicator of karst infill. Gaussian curvature, which is the product of the

two principal curvatures, is not a good indicator of faults. Faults are

typically curvilinear features for which one of the principal curva-

tures tends towards zero. The shape index, when corendered with

curvedness, allows one to visualize 3D reflector morphology on sim-

ple time slices. In addition to highlighting lineations, structural geol-

ogists have theoretical and empirical evidence linking Gaussian,

dip, and strike curvatures to fracture density. We are now able to

make such predictions through a complete, uninterpreted data cube.

We agree with Stewart and Wynn �2000� that measurements of re-

flector shape, such as curvature and rotation, are fractal in nature,

rendering them amenable to multispectral analysis such as shown in

Figure 11. We have found that the long-wavelength estimates of cur-

vature are particularly valuable in extracting information that was

previously difficult or impossible to see. While we do indeed see in-

dividual large-scale joints and fractures �such as in Figures 11 and

14�, we do not expect to visualize individual fractures below the lim-

its of seismic resolution. Rather, our workflow would be to mimic

Lisle’s �1994� outcrop work and statistically correlate subseismic

resolution fractures measured on well logs and inferred through pro-

duction data to curvature measurements seen at the seismic scale.

This calibration effort is currently the major focus of our research.

Curvature and rotation �and other possible measures of reflector

shape� are mathematically independent of coherence and seismic

amplitude. The relationship between fractures and curvature is well

established in the structural geology community. While we expect

the impact of 3D volumetric estimates of reflector shape to be every

bit as big as the impact of coherence on seismic interpretation, we

also anticipate a good workflow to include all of these geometric at-

tribute tools.

This work is in its infancy. Thus, we see a need to quantitatively

calibrate the features seen in curvature and rotation to direct mea-

sures of fractures through both horizontal image logs and microseis-

micity epicenter location during frac tests. We also see a need to

qualitatively calibrate these curvature and rotation features directly

to production data.

If there is a major limitation to this technology, it is in the calcula-

tion itself. The vector dip is a true 3D calculation that follows the best

reflector, which includes the analysis point. However, since we wish

to calculate curvature even when there are only piecewise continu-

ous reflectors available, we calculate the derivatives of dip on time

slices. For steeply dipping horizons and long-wavelength estimates,

we expect these measures will undesirably mix geology of different

formations. Predictions of fracture intensity will no longer be linked

to thin plate theory but rather to some more complicated composite

plate deformation. While we anticipate near-term improvements in

our estimates to better follow the local dip, we know such improve-

ments will not be trivial to implement.
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