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The usage of vortex-labyrinth fields and Talbot lattices as optical dipole traps for
neutral atoms is considered for the wavelength of trapping radiation in the range
0.98–2.79mm. The square vortex lattices generated in high Fresnel number
solid-state microchip lasers are studied as a possible realization. The distribution
of light field is obtained via a nonstationary computational model based
on Maxwell–Bloch equations for a class-B laser, discrete Fox–Lee map
with relaxation of inversion and a static model based on superposition
of copropagating Gaussian beams. The spatial patterns obtained numerically
and observed experimentally previously are interpreted as nonlinear
superposition of vortices with helicoidal phase dislocations. The distribution of
light field is approximated analytically by a sum of array of vortex lines and
an additional parabolic subtrap. The separable optical trapping potential is
proposed with similar intensity distribution. The factorization of the macroscopic
wavefunction has led to the solution of the Gross–Pitaevsky equation for an
ensemble of quantum particles trapped in a vortex labyrinth formed by a spatially
periodic array of Laguerre–Gaussian beams.

1. Introduction

Optical dipole traps for neutral atoms (1) are a subject of considerable interest.

A certain amount of proposals of increasing the complexity of trapping the EM field

appeared recently. Apart from relatively simple geometrical patterns like standing

plane-wave gratings (2), evanescent wave mirrors (3), toroidal traps which utilize the

intensity distribution of Laguerre–Gaussian (LG) beams in the beam waist (4), several

proposals were made which utilize the arrays of Gaussian beams, both phase-locked

(5, 6) and unlocked ones (7). The interference inherent to phase-locking provides

multiply connected configurations of intensity distribution, phase gradients and

electromagnetic (EM) momentum density (8, 9). The winding EM momentum

distribution is the cause of the angular momentum transfer to macroscopic bodies

(e.g. dielectric ball) (10) and to trapped BEC as well (11).

The EM field configuration under consideration is based upon properties

of self-imaging optical fields (12, 13). The difference between a phase-locked array
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of zero-order Gaussian beams and a phase-locked array of optical vortices (OV) obtained

experimentally in the near field of a solid-state microchip laser (14) is that the latter

consists of an array of parallel vortex lines with opposite circulations and topological

charges ‘EM (TC) (Figure 1) (5). In contrast to earlier proposals where individual loading

and addressing of trapping sites was considered (7), this OV array has a sophisticated

configuration of intensity (5) and EM momentum density of the trapping field. Due to this

configuration the BEC trapped in the EM field might have a macroscopic wavefunction of

complex form composed of an array of superfluid vortices (SFV). The cause of SFV

formation is a light-induced torque experienced by an isolated resonant atom which

interacts with a Laguerre–Gaussian beam having phase singularity. It was show by

Figure 1. Conceptual view of the near-field optical trap. Upper plot: transverse (in the XOY plane)
distribution of the intensity in the near field of a solid-state microchip laser (5). Middle: the
longitudinal scale extends to six Talbot lengths. The z axis is directed along the optical axis of a
microchip laser resonator (bottom). Additional tightly confined parabolic well keeping the BEC
cloud localized in the z direction is depicted via the potential V(z)� (z�z0)2. Such a potential is
assumed to be superimposed by the other microchip laser beam with a cylindrical focusing lens at a
slightly different wavelength of the radiation from the range 0.98–2.79 mm, in order to avoid
interference. The Fresnel number has a value of Nf � N2

vortices ¼ 64.
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Allen et al. (8) that the value of the torque at the saturation limit is T¼ h�‘EM�. The origin

of this torque is due to a nonzero azimuthal EM momentum component. The azimuthal

Doppler shift corresponding to such a motion had been observed (9). This torque might

have an appreciable value even in the nonresonant case, although it is significantly reduced

by a multiple of (D/�)2, where D is the detuning and � is the linewidth (8). As a result an

azimuthal component of EM momentum is transferred to an atom in such a way that it

will move around the phase singularity – the direction of rotation is fixed by TC of the

trapping beam. This is the cause of the circular motion of BEC confined in an isolated

toroidal trap.

In the current paper the maximally transparent and simple analytical description

presented describes the transfer of angular momentum from an optical vortex array (OVA)

to a trapped BEC. As a first step in section 2, the distribution of light intensity and phase

in the near field of a solid-state microchip laser are computed. The configuration of the

intensity and the phase of an EM field of OVA has a complicated, multinode structure. In

sections 3 and 4 the spatially periodic arrays of Gaussian and Laguerre–Gaussian beams of

the first order are compared. Next, in section 5, in order to get an analytic solution for the

macroscopic wavefunction C trapped by an optical vortex array, a special optical

pancake-like potential (Figure 1) will be constructed. In this trapping potential the

separation of variables in the Gross–Pitaevsky Equation (2) becomes possible. Next the

procedure applied previously to an elongated sech2-profile optical trap (15) will be used.

Due to a special adjustment of the potential, it is possible to capture an analytic

approximation for C in the form of a superposition of the elementary equispaced vortices.

The topological charges and angular momenta of adjacent vortices are counter-directed in

contrast to a ‘rotating bucket’ trap where angular momenta of SFV in a bucket are

co-directed (16, 17). The numerical modelling via a split-step FFT technique will be

performed to check this approximate formula. The obtained spatial distribution of the C

modulus and argument will be used for the analysis of a classical field of velocities of a

trapped atom. The complex form of the constructed macroscopic wavefunction C trapped

by an optical vortex array might be interesting from the point of view of diminishing the

decoherence induced by the environment in topological quantum computing (18).

2. Square vortex lattices

Recent advances in controlling the dynamics of solid-state microchip lasers (14) offer the

possibility of reliable control of spatiotemporal optical patterns. Compared

to semiconductor lasers the host medium composed of dielectric crystal doped

by neodimium Ndþ3 or other rare earth ions (Erþ3, Tmþ3, Hoþ3, Ybþ3) have smaller

gain and smaller self-phase modulation. Because of smaller nonresonant losses the heating

of the host crystal by radiation is not dramatic. The changes of the geometry and

birefrigence of host crystals, curvature and reflectivity of output couplers and spatial

distribution of optical pumping give efficient control over the mode structure. The square

vortex lattices (SVL) observed in the quasi-plane parallel cavity (14) are of special interest.

These lattices demonstrate a high degree of spatial coherence: the relaxation oscillations of

a class-B high Fresnel number solid-state microchip laser (14) with Fresnel number in the
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range Nf � 100�1000 are characterized by a single peak at a frequency about [(T1 �c)
1/2]�1

(0.3�1.2MHz). This is firm evidence of a single-longitudinal and single transverse mode

behaviour. The former theoretical analysis was based on a parabolic equation, resulting

from adiabatic elimination of polarization from a standard set of Maxwell–Bloch

equations (19):

@Eðr, tÞ

@t
þ

Eðr, tÞ

�c
þ

ic

2k
D?Eðr, tÞ ¼

�cN0LaEðr, tÞð1þ i�!T2Þ

2Lr ð1þ �T1c�0jEj
2=�h!Þ

, ð1Þ

where �c is the photon lifetime in the cavity, k¼ 2�/� is the wavenumber, � is

the stimulated emission cross-section, �! is the detuning of the lasing frequency from the

center of the gain line, N0 is the density of inverted resonant atoms per unit volume, T1 is

the inversion lifetime (longitudinal relaxation lifetime), La is the thickness of the active

medium, Lr is the length of the resonator, c is the speed of light, �0 is the dielectric

constant, and D? ¼ r2
? (20). When finite gain linewidth T2

�1 is taken into account in the

framework of the Swift–Hohenberg equation:

@Eðr, tÞ

@t
þ

Eðr, tÞ

ð�c þ T2Þ
þ

i�cc

2kð�c þ T2Þ
D?Eðr, tÞ

�
T2

2

�cð�c þ T2Þ
2

�cc

k
D? þ �!T2

� �2

Eðr, tÞ ¼
�cN0LaEðr, tÞð1þ i�!T2Þ

2Lr ð1þ �T1c�0jEj
2=�h!Þ

; ð2Þ

the square vortex lattices were obtained numerically (21). The additional term with the

square of the transverse laplacian is responsible for the transverse mode selection due

to finite gain linewidth. An alternative model with discrete time step equal to �¼ 2 Lr/c

(time of bouncing of radiation between mirrors) utilizes the standard rate equations of the

class-B laser written at the nth step for the electric field (5, 22):

Enþ1ðrÞ ¼ fðEnðrÞÞ ¼
�LaNnðrÞEnðrÞð1þ i�!T2Þ

2
þ EnðrÞ, ð3Þ

inversion:

Nnþ1ðrÞ ¼ NnðrÞ þ
N0ðrÞ �NnðrÞ

T1

� �NnðrÞc�0jEnj
2=�h!

� �

2Lr

c
, ð4Þ

and nonlocal integral mapping evaluating the field via fast Fourier transform at each

timestep:

Enþ1ðrÞ ¼

ð1

�1

ð1

�1

Kðr� r0Þ f ðEnðr
0ÞÞ d2r0: ð5Þ

The kernel K for the nearly plane-parallel Fabry–Pérot cavity of microchip laser with

transverse filtering via aperture D (r0) has the form (12):

Kðr� r0Þ ¼
ikDðr0Þ

2�Lr

exp½ikðr� r0Þ2=2Lr�: ð6Þ

The following parameters were chosen for the numerical simulation: T1¼ 2� 10�4 s,

Lr¼ 1mm, for Ndþ3-doped crystals, �¼ (1.2� 0.6)� 10�20 cm2, N0¼ 1016 cm�3,

244 A. Yu Okulov
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�!T2 ¼ 0.1. In the numerical evaluation of Equation (5) via the split-step FFT method (23)

the mesh size in the X,Y plane was 512� 512 points. The ‘guard bands ratio’ (24) was set

equal to 8. The main part of the field C was located inside the central part of a mesh of

64� 64 size – the ‘image area’. The tolerance of the energy spillover was kept within

�1¼ 0.001. The ‘windowing’ in wavenumber space after FFT at each timestep was

performed by use of the ‘Fermi–Dirac’ smoothed step function (23). The dissipation

inherent to ‘windowing’ in the split-step FFT method was compensated by the nonlinear

gain. The initial conditions for field En were taken as the multimode random field (23).

Just near the lasing threshold the radiation mode has a distribution of intensity as a

rectangular grating of bright and dark spots: the latter are vortex cores. The nonlocal

integral mapping proved to be successful in computation of the near field distribution

as well. Quite unexpectedly in most runs the parallel vortex lines were obtained

(Figure 1) (5) rather than a periodic array of bright and dark spots, typical to the

Talbot phenomenon (12). The origin of parallel vortex lines is interpreted as the

nonlinear superposition of vortices with helicoidal phase dislocations. In the next

section and section 4 the possibility of an approximation of this nonlinear optical

vortex lattice by a linear equivalent will be outlined.

3. Talbot lattices

Consider a phase-locked rectangular lattice of zero-order Gaussian beams located at sites

rjx, jy (12) separated by period p, where jx, jy are the discrete indices corresponding to the x

and the y coordinate of a given site. Let us assume for simplicity that polarization is linear,

thus the spin of light is zero. At the z¼ 0 plane the electric field E is given by the expression

Eðr; 0Þ ¼ E0

X

jx, jy

exp½�jr� rjx, jyj
2=ð2d2Þ�: ð7Þ

After paraxial propagation of distance z the electric field E(r, z) is transformed into

Eðr, zÞ ¼ E0

i exp½ikz�

ð1� iz=kd 2Þ

X

jx, jy

exp �
jr� rjx, jyj

2

2d 2ð1� iz=ðkd 2ÞÞ

� �

: ð8Þ

The constructive interference between adjacent beams produces periodic interference

patterns in different z-spaced planes. The initial periodical pattern is reproduced at

so-called Talbot distances zt¼ 2 p2/�. In the intermediate planes zt/4m the coarser

lattices with periods p/m are produced (23, 24). As a result a 3D lattice of bright spots is

formed (Figure 2).

Each spot could serve as a potential well for neutral atoms (1, 2, 5, 6), because

the intensity gradient will attract or repulse the atomic dipoles depending on the sign of the

detuning of the radiation frequency from resonance. At low frequencies (red-detuning)

the atomic dipole oscillates in-phase with the trapping field and tries to align parallel to the

electric field. Thus, the potential energy of the dipole U¼�p �E(r)/2 is lower in the local

maxima of the intensity and the atoms are collected at bright spots. On the other hand, at

frequencies above the resonance (blue-detuning), the atomic dipole oscillates out-of-phase

Journal of Modern Optics 245
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and it has the tendency to align anti-parallel to the electric field. In this blue-detuned case the

potential energy of the dipole is higher in the local maxima of the intensity and atoms are

repelled into the dark regions.

Such geometry of trapping in integer and fractional Talbot planes based on

superposition of co-propagating zeroth-order Gaussian beams was considered earlier (5)

including the possibility of the manipulation of optical lattice geometry via mutual

polarization (6) of constituting beams.

Figure 2. Diffractive self-imaging of a two-dimensional lattice of 8� 8 Gaussian beams with
period p¼ 28mm. The longitudinal cross-section at the y¼ 0 plane of the intensity distribution
I(x, y, z) is presented. The lattice is self-reproduced at the Talbot distance, spatial period division
occurs at a quarter Talbot distance and the central lobe forms outside the Rayleigh range.

246 A. Yu Okulov
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4. Artificial vortex labyrinth

Consider now the periodic array of Laguerre–Gaussian vortex beams with helicoidal phase

dislocations (Figure 3):

Eðr, z ¼ 0Þ � E0

X

jx, jy

ðjr� rjx, jyjÞexp ð�jr� rjx, jyj
2=d2Þ

� exp ð�jrj2=D2Þ exp½i‘EM Argðr� rjx, jyÞ þ i�ð jxþ jyÞ�: ð9Þ

The topological charge ‘EM is assumed to be unity, the neighbouring beams

(components of the sum (9)) are �-shifted. The apodization function exp (�jrj2/D2) is

added in order to suppress the maximum of the interference pattern at the edge of array.

The beam centers are placed in the center of the rectangular grid rjx, jy of period p whose

axes are parallel to X,Y. The overlapping beams produce an interference pattern formed

by two arrays of bright and dark spots rotated at a 45� angle with respect to the initial

array of LG beams. The dark spots are of two kinds: one lattice of spots coincides with a

lattice of initial vortices (9), the other one is produced by interference and it is shifted at

distance p/21/2 along the diagonal of the initial lattice. The resulting interferogram has an

apparent 45� tilt compared to the lattice of the initial vortices (Figure 3).

Figure 3. Intensity distribution in the transverse plane of an artificial Laguerre–Gaussian vortex
array. The vortices (dark holes) are at the nodes of a rectangular chessboard-like grid. Letters ‘EM
denote vortices with alternating topological charges, changing sign from one site of the lattice to
another.

Journal of Modern Optics 247
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The topological charges of dark spots (vortices) flip from one site to another.

The interesting feature of this interference pattern is the distribution of the angular

momentum (13). The initial array of LG beams carries unit circulation and the

corresponding angular momentum at each site. Such a chessboard-like interferogram

(Figure 3) contains an additional array of vortices with alternative charges. The net

angular momentum tends to be close to zero, because at the central part of the array each

positively directed TC ‘EM is compensated by four adjacent negative ones having charge

�‘EM. The elementary cell of such a lattice consists of two �-shifted initial vortices with

co-directed charges ‘EM located at diagonal and two counter-directed charges �‘EM
(�-shifted too) placed at the other diagonal of the cell. The period p of the initial pattern in

the numerical recipes (5) was taken as 30 mm while the width of each initial beam was set to

wLG¼ 22 mm in order to provide significant mutual overlapping of the vortices.

The longitudinal distribution of the intensity of the optical vortex array is composed of

periodically spaced (with period p) hollow tubes – vortex cores (Figure 4). Apart from

Talbot gratings which are reproduced by diffraction at the zt¼ 2p2/� planes with

corresponding period division in between the planes, the vortex array under consideration

keeps its shape within the Rayleigh range, i.e. at distances z<D2/�. Within this distance

the diameter of the cores is kept constant along z by virtue of the interference of the

adjacent vortices, whose helical wavefronts are perfectly matched within the elementary

cell (Figure 5).

Consider now the interaction of individual atoms with a single optical beam carrying a

topological charge. The gradient force will attract the ‘red’-detuned atomic dipole to the

intensity maximum of an isolated first-order Laguerre–Gaussian beam – ‘doughnut’ beam

(Figure 5), i.e. to the ring-shaped area around the phase singularity. As a result the cloud

of the cold atoms will be accumulated near the maximum of the intensity or ‘doughnut’, as

follows from the variational solution of the Gross–Pitaevsky equation (GPE) (2):

i �h
@Cðr, tÞ

@t
¼ �

�h2

2m
�Cðr, tÞ þ VextðrÞCðr, tÞ

þ
4��h2a

m
Cðr, tÞjCðr, tÞj2, ð10Þ

with trapping potential Vext of the form

VextðrÞ ¼
m!z

2z2

2
�Re ½�ð!Þ�jE0j

2½r2 expð�r2=ð2wLG
2ÞÞ�, ð11Þ

where �(!) is the polarizability of the atom (1), m is the mass of the particle and a is the

scattering length.

The approximate variational solution of the GPE for the ground state macroscopic

wavefunction is the Laguerre–Gaussian function (11):

�ðr, tÞ ¼ jrj expð�jrj2=ð2wr
2Þ � z2=ð2wz

2Þ þ i‘BEC�Þ, ð12Þ

where ‘BEC is the topological charge of this vortex C solution. Hence, the probability

distribution jC(r, t)j2 of finding an atom somewhere near the point r¼ (x, y, z) at the

moment t is similar to the intensity distribution of the trapping field as pointed out in (11).

248 A. Yu Okulov
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More information could be obtained from the study of the phase structure of the

wavefunction and comparison of the topological charges of the trapping field and the BEC

vortex. It is easy to realize using the Madelung transform

�ðr, tÞ ¼ ½	ðjrj, �, tÞ�1=2 expði
ðjrj, �, tÞÞ, ð13Þ

that there exists flow of ‘probability fluid’ with velocity v proportional (parallel) to the

phase gradient lines:

vðr, tÞ ¼
�h

m
r
ðr, tÞ: ð14Þ

Such ‘flow of wavefunction’ occurs around the z axis (beam axis). The ‘flow’ described

by (12) is potential and conservative as it should be for a superfluid. This picture is

complicated by the vorticity of the EM momentum, inherent to LG beams (9). Strictly

speaking the rotation of the classical dipole around the core is accelerated by the

nonconservative torque induced by the azimuthal force circulating around the vortex core.

For a two-level atom the value of the torque T is given by the following expression

obtained by Babiker et al. (8):

T ¼ �h‘EM�
IL

1þ IL þ D
2=�2

� �

, ð15Þ

Figure 4. Longitudinal section of the vortex array in the near field in the x–z plane at the y¼ 0
section. The vortex lines are parallel, and the topological charges ‘EM are flipping from one vortex
line to another. The wavelength �¼ 1 mm and the period p of the lattice both in the x and the y
directions is 30mm.
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where IL is the normalized trapping field intensity, D¼!�!0 is the detuning of

the trapping field frequency ! from the resonant frequency !0 of the dipole.

In the saturation limit T is simply: T¼ h�‘EM�. In the nonresonant case this torque

reduces as �2/D2. At trapping frequencies of the Ndþ3 laser D¼ 1014 Hz and for the GaAs

laser with D¼ 1013 Hz and the D-line doublet of 85Rb with linewidth �¼ 5� 106 Hz (1),

the torque is reduced by a factor depending on the laser intensity IL. Thus, due to trade-off

between the saturation and detuning, the torque exists both near and at large detuning

from the resonance. Consequently the loop integral of the azimuthal force over the circular

trajectory around the core
H

(Ft� r) � dl is nonzero (Figure 5).

In the classical picture because of this torque, the dipole placed in the doughnut beam

will move ‘upwards’ on the helicoidal phase staircase, i.e. it will rotate around the

LG-beam axis. The direction of rotation is determined by the topological charge ‘EM of

the trapping beam (Figure 5). Qualitatively the classical dipole is pushed by the azimuthal

periodic electric field – it happens because the phase of the electric field oscillations at each

point in the circle around the center of the beam is shifted with respect to the

Figure 5. (a) Helicoidal phase surface of the Laguerre–Gaussian beam. An atomic dipole having
‘red’ detuning moves along the phase gradient. The trajectory is located at the maximum of the
intensity. St is the component of the Pointing vector tangential to the helix. The major component of
Sz is directed parallel to the beam propagation, i.e. along the z axis. (b) Helicoidal phase surface of
the Laguerre–Gaussian beam array. The elementary cell consists of four vortices. The adjacent
vortices have alternating topological charges ‘EM and alternating angular momenta. In the classical
picture the atomic dipole moves along the phase gradient of a given vortex; next it jumps to
another one.
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neighbouring points. Thus, classical dipole placed at the maximum of the intensity of the

GL beam will feel the ‘plane-wave-like’ nonresonant pressure of the light field. The

associated azimuthal Doppler shift of the moving atom was observed experimentally

recently (26). Outside the resonance, the origin of the torque T is interpreted in a similar

way: the Pointing vector has a component S(r)t tangential to the helix and the local flux of

the electromagnetic momentum pushes the dipole along the phase gradient, i.e. in the

azimuthal direction. The local density of the EM momentum g¼S/c2 is proportional to

the components of the Pointing vector (9):

SðrÞt ¼
�0!‘EMc2

r
jEðrÞj2

SðrÞz ¼ �0cjEðrÞj
2, ð16Þ

where S(r)t is the tangential component of the Pointing vector, S(r)z is the axial one, j(r)j is

the distance from the optical vortex core, and ! is the frequency of the trapping field. The

existence of the tangential component of the Pointing vector became visible when the

macroscopic dielectric ball with radius larger than the LG-beam core and comparable to

the ‘doughnut’ radius is placed in the center of the LG-beam. The rotation of the particle is

induced via such a torque and the corresponding transfer of the angular momentum (10).

When loaded in the optical vortex lattice (Figure 6) the atomic dipole will move

around the adjacent vortex core with acceleration. The radius of the rotation will increase

until the dipole approaches the separatrices of the velocity fields. Next, after a certain

amount of rotations around the vortex core, it could jump to another vortex using the

bright areas between the vortices as a bridge (Figure 3). This qualitative picture is

complicated by the azimuthally inhomogeneous distribution of the intensity around

each core.

Our aim now is to show that the just described classical motion has a quantum

mechanical counterpart. The transfer of the angular momentum results in the specific form

of the macroscopic wavefunction C maintaining coherence all over the trapping array:

CðrÞ �
X

jx, jy

ðjr� rjx, jyjÞ expð�jr� rjx, jyj
2=d2Þ

� expð�jrj2=D2Þ exp½i‘BEC Arg ðr� rjx, jyÞ þ i�ð jxþ jyÞ� : ð17Þ

The next section presents the method for the solution of the Gross–Pitaevsky equation

with the vortex trapping field E(r) in the form (9).

5. Separable vortex array potential for BEC

In order to get a closed form solution for macroscopic C it is worth mentioning that the

azimuthal accelerating force has a very small value, falling as D
�2 under detuning from

resonance (8). Next let us introduce the optical potential Vext as a square modulus of the

trapping field E(r?, z) (1). The torque T will be taken into account as a ‘selection’ rule for

choosing the distribution of the topological charges lBEC in the resulting solution.
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It was shown recently (15) that the Gross–Pitaevsky equation (2) in a 3D configuration:

i �h
@Cðr, tÞ

@t
¼ �

�h2

2m
�Cðr, tÞ þ VextðrÞCðr, tÞ

þ
4��h2aðBÞ

m
Cðr, tÞjCðr, tÞj2, ð18Þ

admits the application of the standard method of separation of the variables widely used

for the solution of a linear partial differential equation, e.g. in quantum mechanics. The

separation of the variables means that the wavefunction is factorized:

Cðr, tÞ ¼ C?ðr?, tÞCjjðz, tÞ ð19Þ

provided the Hamiltonian is the sum of two components. The first component depends on

a longitudinal variable z and the second component depends upon the transverse

variables r?.

Following (15) in order to separate the variables and factorize the wavefunction, let us

choose a trapping potential in the following form, as a sum of components depending on

Figure 6. The argument of macroscopic wavefunction C and corresponding field of velocities
obtained via the Madelung transform. The superfluid vortices form the lattice with alternating
topological charges ‘BEC¼�1. The elementary cell consists of four BEC vortices whose locations are
identical to the vortices of the trapping EM field. The horizontal pair has the same charges ‘BEC
which are �-shifted with respect to each other, the vertical pair has �-shifted �‘BEC charges.
The alternating charges ‘BEC make the field of velocities continuous.
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the longitudinal coordinate z and the transverse coordinates r? separately:

Vextðr?, zÞ ¼ Vz þ V
?
¼

m!z
2z2

2
�Re ½�ð!Þ�jEðr?Þj

2

þ
m!?

2jðr?Þj
2

2
, ð20Þ

where �(!) is the atomic polarizability (1):

�ð!Þ ¼ 6��0c
3 �=!0

2

ð!2
0 � !2 � ið!3=!0

2Þ�Þ
: ð21Þ

The �(!) is assumed to be real due to the large negative (‘red’) detuning from the atomic

resonance at frequency !0¼ 2.4� 1015 Hz. The imaginary part of the denominator under

detuning D¼! � !0 for
85Rb atoms trapped by the EM field at �¼ 0.808�1.06 mm is (3 �

4.7) � 108 times smaller than the real part, so the permittivity of the atom �(!) is real with

good accuracy (1). The trapping field E(r?) is assumed to be a periodic function of the

transverse variables r?¼ (x, y), composed of the LG beams placed at the nodes ( jx, jy) of a

rectangular grid of period p (9).

The additional parabolic well with frequency !? is introduced in (20) to get an

analytical solution for the one trapping vortex. In order to avoid the interference between

Figure 7. The distribution of the square modulus of the macroscopic wavefunctionC obtained via
numerical modelling. The location of adjacent counter-rotating vortices ‘BEC are shown.
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the different trapping beams, the use of different carrier frequencies is recommended for

the longitudinal parabolic well m!z
2 z2/2, the vortex array beam E(r) and the parabolic

subtrap in (20). The characteristic scales of the potential in the longitudinal direction and

transverse direction are chosen to form a ‘pancake trap’: !z�!? (Figure 1). The opposite

case of the elongated trap with !z 	 !? and the ‘solitonic’ longitudinal potential

Vz� sech2 (z) was considered earlier using an analogous procedure (15).

The longitudinal part of the wavefunction Ck(z, t) is obtained as a ground state of the

1D harmonic oscillator:

i �h
@Cjj

@t
¼ �

�h2

2m

@2Cjj

@z2
þ
m!z

2z2

2
Cjj, ð22Þ

Cjj ¼
m!z

��h

� �1=4

exp½�m!zz
2=ð2�hÞ � i!zt�: ð23Þ

The transverse part of the wavefunction C? (r?, t) is to be obtained by solving the

‘transverse’ GPE:

i �h
@C?

@t
¼ �

�h2

2m
D?C? þ V?ðr?ÞC?

þ
4��h2aðBÞ

m
C?jC?j

2

ð1

�1

jCjjðz; tÞj
4 dz

� �� ð1

�1

jCjjðz; tÞj
2 dz

� �

; ð24Þ

where

V? ¼
m!?

2jr?j
2

2
�Re ½�ð!Þ�jEðr?Þj

2: ð25Þ

Because of normalization

ð1

�1

jCjjðz, tÞj
4dz ¼ 1=2 and

ð1

�1

jCjjðz, tÞj
2dz ¼ 1: ð26Þ

The following 2D GPE results from separation of variables for the ‘pancake’ trap:

i �h
@C?

@t
¼ �

�h 2

2m
D?C? þ V?ðr?ÞC? þ

2��h 2a ðBÞ

m
C?jC?j

2: ð27Þ

The scattering length a as a function of the magnetic field is

aðBÞ ¼ abg 1þ
DB

B� BR

� �

, ð28Þ

where DB is a width of the Feshbach resonance, BR is the resonant magnetic field and

abg is the background scattering length (2).

Formally the separation of the variables is applicable each time when the Hamiltonian

is a sum of the components depending on the different groups of variables, but this method

has additional physical meaning for asymmetric potentials. The examples are elongated in

the z direction trap (15) and the ‘pancake’ 2D trap (Figure 1) as in the current case.
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The dynamics of C in the 2D traps has been considered in a large number of papers,

including the geometries of the periodic potentials, Bessel lattices etc. In the current case,

the SFV lattice under consideration has some features, qualitatively described above in the

discussion of classical motion of the dipole around the phase singularity.

The continuous transfer of the angular momentum from the optical vortex

to the BEC with wavefunction C might induce vortices in an initially nonrotating

BEC. Because the direction of rotation of the classical particle is determined by

the distribution of TC of the optical vortices ‘EM of the trapping beam, the distribution

of TCs in a quantum superfluid lattice ‘BEC will be set identical to those of the trapping

field.

The possible solution of Equation (27) presumes the identical spatial distributions for

fields C?(r?, t) and E(r?). It means that C is also a sum of LG functions with

alternating topological charges ‘BEC (see Equation (17)). Unfortunately, the

effective diameter of the core b is much larger than the effective size of the LG-beam

bottleneck (4–10 mm). However, this discrepancy does affect the basic features of the

solution because of the logarithmic dependence of the vortex energy on the vortex

dimensions (17).

The correlation K of two complex spatially inhomogeneous fields C?(r?, t) and E(r?)

is expected to be equal to unitary:

K ¼
j
Ð

C?E

ðr?Þ d

2r?j
2

½
Ð

jC?j
2 d2r?�½

Ð

jEðr?Þj
2 d2r?�

¼ 1: ð29Þ

The key point is in adjusting the parameters in C?(r?, t) and E(r?) in such a way that

the two last terms in (24) cancel each other. This might happen when the following

condition is imposed upon the coefficients:

Re ½�ð!Þ�jE0j
2 ¼

2��h2aðBÞ

m
: ð30Þ

The mutual compensation of these two terms could be achieved via tuning of the magnetic

field B near the Feshbach resonance.

Consider first the case of a single vortex trap collocated with a single parabolic

subtrap:

V? ¼
m!?

2r 2

2
�Re ½�ð!Þ�jE0j

2r 2 exp½�r 2=d 2�: ð31Þ

The following exact solution for the 2D harmonic oscillator is known:

C? ¼
2

�

� �1=2
m!?

�h

h i3=2

r exp �
m!?

2r 2

2�h
þ i� ‘BEC � i 2!?t

� �

, ð32Þ

which is similar to the variational solution for the ‘transverse’ wavefunction (12) (11). Note

in our case the exact wavefunction of the transversal GPE is found, rather than the

variational one (12). The stability analysis will be published elsewhere. The angular
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momentum per particle is given by

h‘̂i ¼

ðð

C


?ð�i �hÞ

@C?

@�
d2r? ¼ �h ð33Þ

where � is the azimuthal angle (Figure 5). Again SFV carries the angular momentum h� per

particle and kinetic energy of the whole vortex line Ekin¼ 	 � h�2
� ln ( b̃ /ã )/m (17).

Consider now the trapping of the BEC by phase-locked Gaussian–Laquerre beams placed

at the nodes ix, jx of a rectangular grid of period p (see Equation (9)).

Let us assume for simplicity that the optical wavelength � is equal to the de Broglie

wavelength �db:

� ¼ �db ¼
�h

ð2mkBT Þ1=2
: ð34Þ

The corresponding BEC temperature for 85Rb atoms is

T ¼ 1:7�7 K: ð35Þ

After imposing compensation condition (26) the residual part of transverse GPE (27)

corresponds to free-space evolution:

i �h
@C?

@t
¼ �

�h2

2m
D?C? þ

m!?
2r2

2
C?: ð36Þ

The free space propagation (Figure 1) equation for the EM field will be of similar form:

@E

@z
¼ �

i

2 k
D?Eþ

kr 2

2 f cavity
E , ð37Þ

where fcavity is the effective focal length of the laser cavity (Figure 1) induced

by the thermal lens collocated with the inhomogeneity of the optical pumping.

Because of the linearity of the equation and the superposition principle, the solution of

(37) will be the sum of free-space modes including zero-order Gaussian functions,

Gaussian–Hermit or Laguerre–Gaussian modes located at sites rjx, jy (12) separated by

period p. The axes of such an optical array are parallel to X,Y. In order to solve

numerically Equation (27) the split-step FFT method (23) was used. The mesh size in the

X,Y plane was 512� 512 points; the ‘guard bands ratio’ (24) was chosen equal to 8. So the

main part of the field C was located inside the central part of a mesh which was 64� 64 in

size – the ‘image area’. The tolerance of the energy spillover was kept within �1¼ 0.0001.

The windowing in wavenumber space after FFT at each timestep was performed by use of

the ‘Fermi–Dirac’ smoothed step function (23). The dissipation inherent to the split-step

FFT method has led to a decrease of the total ‘amount of particles’
Ð Ð

jCj2 dxdy within

the ‘image area’ at a speed of 10�3 per timestep. The special initial conditions of the

‘preselected’ SFV array in the form (17) superimposed upon the homogeneous background

gave the spatial distribution (Figure 7) of the ‘transverse’ wavefunction C? well correlated

(K � 0.7) with the OVA array distribution – the array of the phase-locked
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Gaussian–Laguerre wavepackets of the first order:

C? ¼
2

�

m!?

�h

h i3=2X

jx, jy

ðjr� rjx, jyjÞ expð�jrj2=D2Þ exp

"

�
m!?

2jr� rjx, jyj
2

2�h

þ i‘BEC Arg ðr� rjx, jyÞ þ i�ð jxþ jyÞ � i2!?t

#

: ð38Þ

Thus, the numerical solution for C? of the GPE proved to be very close to the linear

combination of the Gaussian–Laguerre functions. Nevertheless, this solution takes into

account the interference between wavefunctions of the ‘subvortices’, because the

‘doughnut’ radius is set to be a bit more than the distance between the lattice nodes.

The arising interference pattern is well correlated with the interference pattern produced

by the Laguerre–Gaussian OVA jE(r?)j
2 (Figure 3) with the same geometrical parameters

and wavelength �. This solution proved to be stable with respect to small harmonic

perturbations.

Each SFV carries angular momentum h� per particle and rotational kinetic

energy Ekin¼ 	� h� 2
�ln(b̃/ã)/m, where b̃ is the diameter of the vortex core, ã is

the interatomic distance and � is the length of the vortex which is roughly equal to the

thickness of the ‘pancake’ (17). The energy associated with the superfluid vortices is of

order 10�(19–20)J or 0.1–1 eV at the density of dilute 85Rb gas 	� 1016–18 cm�3. In contrast

to a superfluid in a rotating bucket where the angular momenta of the vortices are co-

directed (16), the BEC vortices trapped by an optical vortex array are counter-directed

from site to site. Consequently in the net sum of the angular momenta each vortex of

positive topological charge is compensated by the term with negative charge and the total

angular momentum tends to zero. Nevertheless, the mutual subtraction of angular

momenta (vectorial) of adjacent vortices in the net sum does not mean the mutual

subtraction of rotational energies, which are the positive scalars. The ground state carries a

substantial amount of rotational kinetic energy of the condensate which contains N

particles of mass m per unit volume, namely Erot¼Nvortices	�h�
2
� ln (b̃ / ã)/m.

6. Conclusion

The optical vortex arrays emitted by a solid-state microchip laser were analysed from the

point of view of the application to optical dipole traps. Firstly the numerical modelling of

a thin slice microchip Fabry–Pérot solid-state laser resonator gave transverse field

distributions (Figure 3) well correlated with that experimentally observed previously. The

longitudinal intensity distribution consists of a periodically spaced array of parallel hollow

tubes which slowly diverge while propagating along the z axis (Figure 4). The array of

phase-locked Gaussian–Laguerre beams equispaced at the nodes of a rectangular lattice

proved to be a reasonable approximation for the experimental as well as the numerical

results.

For macroscopic wavefunctionC of a BEC trapped in such a complex optical field, the

analytical solutions of the Gross–Pitaevsky equation were found. These solutions are
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based upon the separation of variables and mutual compensation of the vortex component

of an external trapping field via the nonlinear term of the GPE. The obtained

wavefunctions have perfect correlation with the trapping field, including distribution of

the topological charges, which form an ‘antiferromagnetic-like’ lattice. Within the

framework of this particular model the ‘antiferromagnetic’ lattice of the BEC vortices

carries a total angular momentum close to zero while the net rotational kinetic energy of

the SFV lattice tends to be equal to the sum of the rotational energies of the vortices.

Geometrically such a BEC cloud looks like a ‘pancake’ perpendicular to the z axis.

The field of classical velocities, i.e. the field of phase gradients, obtained via the

Madelung transform, forms a ‘labyrinth’ structure. It means that the trapped atoms move

in the ‘pancake’ plane, i.e. the x–y plane. The rotation of an atom around some vortex core

is accelerated by the EM torque. The radius of the rotation is gradually increased. When

the particle reaches the separatrix, it comes to another vortex area. The trajectory of the

particle in the transverse plane (x–y plane) is Mobius-like: because the number of optical

vortices is finite, in the classical picture the particle will return to the initial vortex

eventually after roaming for some time inside a trapping ‘labyrinth’.

In the quantum picture represented via the analytic solution of the GPE for one

trapping vortex and the numerical solution for an optical vortex array, the coherent

macroscopic wavefunction extends all over the OV trapping array with a transverse spatial

dimension of several hundred microns. The complex field of velocities, rotational energy

and high degree of correlation of the SFV wavefunction with the OV trapping field

promise more resistance to the decoherence.

The qualitative analytic solution supports the basic feature related to the trapping of

macroscopic particles and to BEC trapping: the transfer of OAM from an optical field to a

superfluid. The proposed OVA trap might be interesting from the point of view of studies

of the quantum classical correspondence.

The mechanism of imposing the topological charges to BEC vortices by means of

manipulating the vorticity of a trapping optical array could result in the demonstration of

macroscopic quantum interference phenomena. Evidently there are four possible

topologically equivalent combinations of the parameters of solution (38) of the OV

charges (‘EM¼�1) and their relative phases (��). Thus, there exist four wavefunctions C

having an identical probabability jCj2 distribution and different orientation of the SFL

vortices with respect to the physical axes x, y of the trapping setup, characterized by ‘BEC
and their relative phases. The transformation of one C into another one which has a

different phase structure is equivalent to a 90� rotation around the z axis.
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