
CHAPTER 14

3D WAVELET-BASED COMPRESSION OF

HYPERSPECTRAL IMAGERY

James E. Fowler and Justin T. Rucker

Department of Electrical & Computer Engineering
GeoResources Institute
Mississippi State University

14.1 INTRODUCTION

Since hyperspectral imagery is generated by collecting hundreds of contiguous
bands, uncompressed hyperspectral imagery can be very large, with a single image
potentially occupying hundreds of megabytes. For instance, the Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) sensor is capable of collecting several
gigabytes of data per day. Compression is thus necessary to facilitate both the
storage and the transmission of hyperspectral images. Since hyperspectral imagery
is typically collected on remote acquisition platforms, such as satellites, the trans-
mission of such data to central, often terrestrial, reception sites can be a critical
issue. Thus, compression schemes oriented to the task of remote transmission are
becoming increasingly of interest in hyperspectral applications.

Although there have been a number of approaches to the compression of hy-
perspectral imagery proposed in recent years—prominent techniques would include
vector quantization (VQ) (e.g., [1, 2]) or principal component analysis (PCA) (e.g.,
[3, 4]) applied to spectral pixel vectors, as well as 3D extensions of common image-
compression methods such as the discrete cosine transform (DCT) (e.g., [5])—
most of the approaches as proposed are not particularly well-suited to the image-
transmission task. That is, in many applications involving the communication of
images, progressive transmission is desired in that successive reconstructions of the
image are possible. In such a scenario, the receiver can produce a low-quality repre-
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sentation of the image after having received only a small portion of the transmitted
bitstream, and this “preview” representation can be successively refined in quality
as more and more of the bitstream is received. In many hyperspectral compression
techniques, such progressive transmission is not supported, and, if the bitstream
is not received in its entirety, no dataset can be reconstructed. In this case, the
bits that are received are generally useless in the application. It is anticipated that
progressive-transmission capabilities will be of increasing interest, particularly for
hyperspectral applications involving satellite-to-ground communications which are
inherently susceptible to transmission failure due to high noise levels and limited
bandwidth.

Wavelet-based compression schemes have garnered significant attention in re-
cent years in part due to their widespread support for progressive transmission.
Wavelet-based compression techniques typically implement progressive transmis-
sion through the use of embedded coding. An embedded coding of a dataset can be
defined as any coding such that 1) any prefix of length N bits of an M -bit coding
is also a valid coding of the entire dataset, 0 < N ≤ M ; and 2) if N ′ > N , then the
quality upon reconstructing from the length-N ′ prefix is greater than or equal to
that associated with the length-N prefix. Figs. 14.1 and 14.2 illustrate the differ-
ence between transmission of typical nonembedded and embedded codings. With
an embedded coding, applications may be able to process partially reconstructed
datasets—for example, in the case of a bitstream being truncated prematurely due
to a communication failure—whereas the nonembedded bitstream is generally of
little use unless received in its entirety.

In this chapter, we overview embedded wavelet-based algorithms as applied to
the compression of hyperspectral imagery. First, we review the major components
of which modern wavelet-based coders are composed in Sec. 14.2 as well as various
measures of compression performance in Sec. 14.3. We then overview specific com-
pression algorithms in Sec. 14.4. In Sec. 14.5, we consider several issues concerning
encoder design for JPEG2000 [6–8], perhaps the most prominent wavelet-based
coder used for hyperspectral compression. We follow with a body of experimen-
tal results in Sec. 14.6 that compares the relative compression performance of the
various wavelet-based approaches considered. Finally, we make some concluding
observations in Sec. 14.7.

14.2 EMBEDDED WAVELET-BASED COMPRESSION OF 3D IMAGERY

The general philosophy behind embedded coding lies in the recognition that each
successive bit of the bitstream that is received improves the quality of the recon-
structed image by a certain amount. Consequently, in order to achieve an embedded
coding, we must organize information in the bitstream in decreasing order of impor-
tance, where the most important information is defined to be that which produces
the greatest increase in quality upon reconstruction. Although it is usually not
possible to exactly achieve this ordering in practice, modern embedded compres-
sion algorithms do come close to approximating this optimal embedded ordering.
Embedded wavelet-based coders are based upon four major precepts: a wavelet
transform; significance-map encoding; successive-approximation coding, i.e., bit-
plane coding; and some form of entropy coding, most often arithmetic coding.
These components are described in detail below.
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Figure 14.1. Transmission of a nonembedded coding.

Embedded Bitstream

Embedded Bitstream

Figure 14.2. Transmission of an embedded coding.
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14.2.1 Discrete Wavelet Transform (DWT)

Transforms aid the establishment of an embedded coding in that low-frequency
components typically contain the majority of signal energy and are thus more im-
portant than high-frequency components to reconstruction. Wavelet transforms are
currently the transform of choice for modern 2D image coders, since they not only
provide this partitioning of information in terms of frequency but also retain much
of the spatial structure of the original image. Wavelet-based coders for hyperspec-
tral imagery extend the 2D transform structure into three dimensions.

A 2D discrete wavelet transform (DWT) can be implemented as a filter bank
as illustrated in Fig. 14.3. This filter bank decomposes the original image into
horizontal (H), vertical (V ), diagonal (D), and baseband (B) subbands, each being
one-fourth the size of the original image. Wavelet theory provides filter-design
methods such that the filter bank is perfectly reconstructing (i.e., there exists a
reconstruction filter bank that will generate exactly the original image from the
decomposed subbands H, V , D, and B), and such that the lowpass and highpass
filters have finite impulse responses (which aids practical implementation). Multiple
stages of decomposition can be cascaded together by recursively decomposing the
baseband; the subbands in this case are usually arranged in a pyramidal form as
illustrated in Fig. 14.4.

For hyperspectral imagery, the 2D-transform decomposition of Fig. 14.4 is ex-
tended to three dimensions to accommodate the addition of the spectral dimension.
A 3D wavelet transform, like the 2D transform, is implemented in separable fash-
ion, employing 1D transforms separately in the spatial-row, spatial-column, and
spectral-slice directions. However, the addition of a third dimension permits sev-
eral options for the order of decomposition. For instance, we can perform one
scale of decomposition along each direction, then further decompose the lowpass
subband, leading to the dyadic decomposition, as is illustrated in Fig. 14.5. This
dyadic decomposition structure is the most straightforward 3D generalization of
the 2D dyadic decomposition of Fig. 14.4. However, in 3D, we can alternatively
use a so-called wavelet-packet transform, in which we first decompose each spectral
slice using a separable 2D transform and then follow with a 1D decomposition in
the spectral direction. With this approach, we employ an m-scale decomposition
spatially, followed by an n-scale decomposition spectrally, where it is possible for
m 6= n. For example, the wavelet-packet transform depicted in Fig. 14.6 uses a
three-scale decomposition (m = n = 3) in all directions. In comparing the two
decomposition structures, the wavelet-packet transform is more flexible, because
the spectral decomposition can be better tailored to the data at hand than in
the dyadic transform. In Sec. 14.6.1, we will see that this wavelet-packet decom-
position typically yields more efficient coding for hyperspectral datasets than the
dyadic decomposition does. Additionally, it has been shown [9] that the particular
wavelet-packet decomposition of Fig. 14.6 is typically very close in performance to
the optimal 3D transform structure selected in a best-basis sense for the dataset at
hand.

Wavelet-based coders, 2D or 3D, base their operation on the following obser-
vations about the DWT: 1) since most images are lowpass in nature, most signal
energy is compacted into the baseband and lower-frequency subbands; 2) most
coefficients are zero in the higher-frequency subbands; 3) small- or zero-valued co-
efficients tend to be clustered together within a given subband; and 4) clusters of
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small- or zero-valued coefficients in one subband tend to be located in the same
relative spatial/spectral position as similar clusters in subbands of the next decom-
position scale. The techniques we describe in Sec. 14.4 exploit one or more of these
DWT properties to achieve efficient coding performance.

14.2.2 Bitplane Coding

The partitioning of information into DWT subbands somewhat inherently supports
embedded coding in that transmitting coefficients by ordering the subbands from
the low-resolution baseband subband toward the high-resolution highpass subbands
implements a decreasing order of importance. However, more is needed to produce
a truly embedded bitstream—even if some coefficient is more important than some
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other coefficient, not every bit of the first coefficient is necessarily more important
than every bit of second. That is, not only should the coefficients be transmitted
in decreasing order of importance, but also the individual bits that constitute the
coefficients should be ordered as well.

Specifically, to effectuate an embedded coding of a set of coefficients, we represent
the coefficients in sign-magnitude form as illustrated in Fig. 14.7 and code the sign
and magnitude of the coefficients separately. For coefficient-magnitude coding, we
transmit the most significant bit (MSB) of all coefficient magnitudes, then the next-
most significant bit of all coefficient magnitudes, etc., such that each coefficient is
successively approximated. This bitplane-coding scheme is contrary to the usual
binary representation which would output all bits of a coefficient at once. The net
effect of bitplane coding is that each coefficient magnitude is successively quantized
by dividing the interval in which it is known to reside in half and outputting a bit
to designate the appropriate subinterval, as illustrated in Fig. 14.8.

In practice, bitplane coding is usually implemented by performing two passes
through the set of coefficients for each bitplane—the significance pass and the re-
finement pass. Suppose the coefficient located at position [x1, x2, x3] in the 3D
hyperspectral volume is c[x1, x2, x3]. We define the significance state with respect
to threshold t of the coefficient as

s[x1, x2, x3] =

{
1,

∣∣c[x1, x2, x3]
∣∣ ≥ t,

0, otherwise.
(14.1)

We say that c[x1, x2, x3] is a significant coefficient when s[x1, x2, x3] = 1; otherwise,
c[x1, x2, x3] is insignificant. The significance pass describes s[x1, x2, x3] for all the
coefficients in the DWT that are currently known to be insignificant but may be-
come significant for the current threshold. On the other hand, the refinement pass
produces a successive approximation to those coefficients that are already known
to be significant by coding the current coefficient-magnitude bitplane for those sig-
nificant coefficients. After each iteration of the significance and refinement passes,
the significance threshold is divided in half, and the process is repeated for the next
bitplane.

14.2.3 Significance-Map Coding

The collection of s[x1, x2, x3] values for all the coefficients in the DWT of an image is
called the significance map for a particular threshold value. Given our observations
in Sec. 14.2.1 of the nature of DWT coefficients, we see that for most of the bitplanes
(particularly for large t), the significance map will be only sparsely populated with
nonzero values. Consequently, the task of the significance pass is to create an
efficient coding of this sparse significance map at each bitplane; the efficiency of this
coding will be crucial to the overall compression efficiency of the coder. Sec. 14.4
is devoted to reviewing approaches that prominent algorithms have taken for the
efficient coding of significance-map information. These algorithms are largely 2D
image coders which have been extended to 3D and modified to accommodate the
addition of spectral information.
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14.2.4 Refinement and Sign Coding

In most embedded image coders, after the significance map is coded for a particu-
lar bitplane, a refinement pass proceeds through the coefficients, coding the current
bitplane value of each coefficient that is already known to be significant but did not
become significant in the immediately preceding significance pass. These refine-
ment bits permit the reconstruction of the significant coefficients with progressively
greater accuracy. It is usually assumed that the occurrence of a 0 or 1 is equally
likely in bitplanes other than the MSB for a particular coefficient; consequently,
most algorithms take little effort to code the refinement bits and may simply out-
put them unencoded into the bitstream. Recently, it has been recognized that the
refinement bits typically possess some correlation to their neighboring coefficients
[10], particularly for the more significant bitplanes; consequently, some coders (e.g.,
JPEG2000) employ entropy coding for refinement bits.

The significance and refinement passes encode the coefficient magnitudes; to
reconstruct the wavelet coefficients, the coefficient signs must also be encoded.
As with the refinement bits, most algorithms assume that any given coefficient is
equally likely to be positive or negative; however, recent work [10–12] has shown
that there is some structure to the sign information that can be exploited to improve
coding efficiency. Thus, certain coders (e.g., JPEG2000) also employ entropy coding
for coefficient signs as well as for refinement bits.

14.2.5 Arithmetic Coding

Most wavelet-based coders incorporate some form of lossless entropy coding at the
final stage before producing the compressed bitstream. In essence, such entropy
coders assign shorter bitstream codewords to more frequently occurring symbols in
order to maximize the compactness of the bitstream representation.

Most wavelet-based coders use adaptive arithmetic coding (AAC) [13] for lossless
entropy coding. AAC codes a stream of symbols into a bitstream with length very
close to its theoretical minimum limit. Suppose source X produces symbol i with
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probability pi. The entropy of source X is defined to be

H(X) = −
∑

i

pi log2 pi, (14.2)

where H(X) has units of bits per symbol (bps). One of the fundamental tenets of
information theory is that the average bit rate in bps of the most efficient lossless
(i.e., invertible) compression of source X cannot be less than H(X). In practice,
AAC often produces compression quite close to H(X) by estimating the probabil-
ities of the source symbols with frequencies of occurrence as it codes the symbol
stream. Essentially, the better able AAC can estimate pi, the closer it will come
to the H(X) lower bound on compression efficiency. Oftentimes, the efficiency of
AAC can be improved by conditioning the coder with known context information
and maintaining separate symbol-probability estimates for each context. That is,
limiting attention of AAC to a specific context usually reduces the variety of sym-
bols, thus permitting better estimation of the probabilities within that context and
producing greater compression efficiency. From a mathematical standpoint, the
conditional entropy of source X with known information Y is H(X|Y ). Since it is
well known from information theory that

H(X|Y ) ≤ H(X), (14.3)

conditioning AAC with Y as the context will (usually) produce a bitstream with a
smaller bit rate.

14.3 PERFORMANCE MEASURES FOR HYPERSPECTRAL
COMPRESSION

Traditionally, performance for lossy compression is determined by simultaneously
measuring both distortion and rate. Distortion measures the fidelity of the re-
constructed data to the original data, while rate essentially measures the amount
of compression incurred. Distortion is commonly measured via a signal-to-noise
ratio (SNR) between the original and reconstructed data. Let c[x1, x2, x3] be an
N1 × N2 × N3 hyperspectral dataset with variance of σ2. Let ĉ[x1, x2, x3] be the
dataset as reconstructed from the compressed bitstream. The mean squared error
(MSE) is defined as

MSE =
1

N1N2N3

∑

x1,x2,x3

(
c[x1, x2, x3]− ĉ[x1, x2, x3]

)2

, (14.4)

while the SNR in decibels (dB) is defined in terms of the MSE as

SNR = 10 log
10

σ2

MSE
. (14.5)

Both the MSE and SNR provide a measure of the performance of a coder in an
average sense over the entire volume. Such an average measure may or may not be
of the greatest use depending on the application to be made of the reconstructed
data. Hyperspectral imagery is often used in applications involving extensive anal-
ysis; consequently, it is paramount that the compression of hyperspectral data does
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Figure 14.9. Classification map for the Moffett image using k-means classification. (a)
Map for original image, (b) map after JPEG2000 compression.

not alter the outcome of such analysis. As an alternative to the SNR measure
for distortion, one can examine the difference between performance of application-
specific analysis as applied to the original data and the reconstructed data. As an
example, unsupervised classification of hyperspectral pixel vectors is representative
of methods that segment an image into multiple constituent classes. To form a
distortion measure, we can apply unsupervised classification on the original hyper-
spectral image as well as on the reconstructed image, counting the number of pixels
that change assigned class as a result of the compression. We call the resulting
distortion measure preservation of classification (POC), which is measured as the
percentage of pixels that do not change class due to compression.

In the subsequent experimental results reported in Sec. 14.6, all POC results
are calculated using the ISODATA and k-means unsupervised classification as im-
plemented in ENVI Version 4.0. A maximum of ten classes are used, and POC
performance is determined by applying the classification to the original dataset as
well as to the reconstructed volume and comparing the classification map produced
for reconstructed volume to that of the original dataset. In this manner, the classi-
fication map of the original dataset is effectively used as “ground truth.” Fig. 14.9
depicts typical classification maps generated in this manner.

In addition to distortion, it is necessary to gauge compression techniques accord-
ing to the amount of compression incurred, due to the inherent trade-off between
distortion and compression—the more highly compressed a reconstructed dataset
is, the greater is the expected distortion between the original and reconstructed
data. Typically, for hyperspectral imagery, one measures the rate as the number
of bits per pixel per band (bpppb) which gives the average number of bits to repre-
sent a single sample of the hyperspectral dataset. A compression ratio can then be
determined as the ratio of the bpppb of the original dataset (usually 16 bpppb) to
the bpppb of the compressed dataset.
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Figure 14.10. Parent-child relationships
between subbands of a 2D DWT.
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Set
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Figure 14.11. Processing of sorted lists
in SPIHT.

14.4 PROMINENT TECHNIQUES FOR SIGNIFICANCE-MAP CODING

The primary difference between wavelet-based coding algorithms is how coding of
the significance map is performed. Several techniques for significance-map coding
that have been used for hyperspectral imagery are discussed below. These tech-
niques were typically developed originally for 2D images and then subsequently
extended and modified for 3D coding. As a consequence, we briefly overview the
original 2D algorithm—which is usually more easily conceptualized—before dis-
cussing its 3D extension for each of the techniques considered below.

14.4.1 Zerotrees

Zerotrees are one of the most widely used techniques for coding significance maps in
wavelet-based coders. Zerotrees capitalize on the fact that insignificant coefficients
tend to cluster together within a subband, and clusters of insignificant coefficients
tend to be located in the same location within subbands of different scales. As
illustrated for a 2D DWT in Fig. 14.10, “parent” coefficients in a subband can
be related to four “children” coefficients in the same relative spatial location in a
subband at the next scale. A zerotree is formed when a coefficient and all of its
descendants are insignificant with respect to the current threshold, while a zerotree
root is defined to be a coefficient that is part of a zerotree yet is not the descendant
of another zerotree root.

The Embedded Zerotree Wavelet (EZW) algorithm [14] was the first 2D image
coder to make use of zerotrees for the coding of significance-map information. This
coder is based on the observation that if a coefficient is found to be insignificant,
it is likely that its descendants are also insignificant. Consequently, the occurrence
of a zerotree root in the baseband or in the lower-frequency subbands can lead
to substantial coding efficiency since we can denote the zerotree root as a special
“Z” symbol in the significance map, and not code all of the descendants which are
known then to be insignificant by definition. The EZW algorithm then proceeds
to code the significance map in a raster scan within each subband, starting with
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the baseband and progressing to the high-frequency subbands. A lossless entropy
coding of symbols from this raster scan then produces a compact representation of
the significance map.

The Set Partitioning in Hierarchical Trees (SPIHT) algorithm [15] improves upon
the zerotree concept by replacing the raster scan with a number of sorted lists that
contain sets of coefficients (i.e., zerotrees) and individual coefficients. These lists
are illustrated in Fig. 14.11. In the significance pass of the SPIHT algorithm, the
list of insignificant sets (LIS) is examined in regard to the current threshold; any set
in the list that is no longer a zerotree with respect to the current threshold is then
partitioned into one or more smaller zerotree sets, isolated insignificant coefficients,
or significant coefficients. Isolated insignificant coefficients are appended to the list
of insignificant pixels (LIP), while significant coefficients are appended to the list
of significant pixels (LSP). The LIP is also examined, and, as coefficients become
significant with respect to the current threshold, they are appended to the LSP.
Binary symbols are encoded to describe motion of sets and coefficients between
the three lists. Since the lists remain implicitly sorted in an importance ordering,
SPIHT achieves a high degree of embedding and compression efficiency.

Originally developed for 2D images, SPIHT has been extended to 3D in several
contexts [16–21]. In the case of a dyadic transform such as in Fig. 14.5, the 3D
zerotree is a straightforward extension of the parent-child relationship of 2D ze-
rotrees; that is, one coefficient is the parent to a 2 × 2 × 2 cube of eight offspring
coefficients in the next scale. However, in the case of a wavelet-packet transform,
there are several approaches to fitting a zerotree structure to the wavelet coeffi-
cients. The first, proposed in [18], recognizes that wavelet-packet subbands appear
as “split” versions of their dyadic counterparts; consequently, one should “split”
the 2 × 2 × 2 offspring nodes of the dyadic zerotree structure appropriately. An
alternative zerotree structure for packet transforms was proposed in [19] and used
subsequently in [20, 21]. In essence, this zerotree structure consists of 2D zerotrees
within each “slice” of the subband-pyramid volume, with parent-child relationships
setup between the tree-root coefficients of the 2D trees. Cho and Pearlman [20]
called this alternative structure an asymmetric packet zerotree, with the original
splitting-based packet structure of [18] then being a symmetric packet zerotree.
The asymmetric structure, which is depicted in Fig. 14.12, usually offers somewhat
more efficient compression performance than the symmetric packet structure [19–
21]. Additionally, the wavelet-packet transform can have the number of spectral
decomposition levels different from the number of spatial decomposition levels when
the asymmetric tree is used, whereas the number of spatial and spectral decompo-
sitions must be the same in order to use the symmetric packet zerotree.

14.4.2 Spatial-Spectral Partitioning

Another approach to significance-map coding is spatial-spectral partitioning. The
Set-Partitioning Embedded Block Coder (SPECK) [22, 23], originally developed as
a 2D image coder, employs quadtree partitioning (see Fig. 14.13) in which the
significance state of an entire block of coefficients is tested and coded. Then, if
the block contains at least one significant coefficient, the block is subdivided into
four subblocks of approximately equal size, and the significance-coding process is
repeated recursively on each of the subblocks.
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Figure 14.12. The asymmetric packet zerotree in a 3D packet DWT of m = 3 spatial
decompositions and n = 2 spectral decompositions (adapted from [20]). The spectral
subbands are indicated by different shades of gray.

In 2D-SPECK, there are two types of sets: S sets and I sets. The first S set is
the baseband, and the first I set contains everything that remains. There are also
two linked lists in SPECK: the List of Insignificant Sets (LIS), which contains sorted
lists of decreasing sizes that have not been found to contain a significant pixel as
compared with the current threshold, and the List of Significant Pixels (LSP), which
contains single pixels that have been found to be significant through sorting and
refinement passes. An S set remains in the LIS until it is found to be significant
against the current threshold. The set is then divided into four approximately
equal-sized sets, and the significance of each of the resulting four sets is tested. If
the set is not significant, then it is placed in its appropriate place in the LIS. If the
set is significant and contains single pixel, it is appended to the LSP; otherwise,
the set is recursively split into four subsets. Following the significant pass, the
coefficients in the LSP go through a refinement pass in which coefficients that have
been previously found to be significant are refined.

The SPECK algorithm was extended to 3D in [24, 25] by replacing quadtrees
with octrees as illustrated in Fig. 14.14. Unlike the original 2D-SPECK algorithm,
the 3D-SPECK algorithm uses only one type of set, rather than having S and I sets
as in 2D-SPECK. Consequently, each subband in the DWT decomposition is added
to an LIS at the start of the 3D-SPECK algorithm, whereas the 2D algorithm
initializes with only the baseband subband in an LIS. An advantage of the set-
partitioning processing of 3D-SPECK is that sets are confined to reside within
a single subband at all times throughout the algorithm, whereas sets in SPIHT
(i.e., the zerotrees) span across scales. This is beneficial from a computational
standpoint as the coder need buffer only a single subband at a given time, leading
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Figure 14.13. 2D quadtree block
partitioning as performed in 2D SPECK.

Figure 14.14. 3D octree cube
partitioning as performed in 3D SPECK.

to reduced dynamic memory needed [23]. Furthermore, 3D-SPECK is easily applied
to both the dyadic and packet transform structures of Figs. 14.5 and 14.6 with no
algorithmic differences.

14.4.3 Conditional Coding

Recent work [26] has indicated that typically the ability to predict the insignifi-
cance of a coefficient through parent-child relationships, such as those employed by
zerotree algorithms, is somewhat limited compared to the predictive ability of neigh-
boring coefficients within the same subband. Consequently, recent algorithms, such
as SPECK above, have focused on coding significance-map information using only
within-subband information. Another approach to within-subband coding is to em-
ploy extensively conditioned, multiple-context AAC to capitalize on the theoretical
advantages conditioning provides for entropy coding as discussed in Sec. 14.2.5.

The usual approach to employing AAC with context conditioning for the significance-
map coding of an image is to use the known significance states of neighboring coef-
ficients to provide the context for the coding of the significance state of the current
coefficient. Assuming a 2D image, the eight neighboring significance states to xi

are shown in Fig. 14.15. Given that each neighbor takes on a binary value, there
are 28 = 256 possible contexts.

JPEG2000 [6–8], the most prominent conditional-coding technique, uses contexts
derived from the neighbors depicted in Fig. 14.15, but reduces the number of dis-
tinct contexts to nine, since not all possible contexts were found to be useful. The
context definitions, which vary from subband to subband, are shown in Fig. 14.16.
To further improve the context conditioning, as well as to increase the degree of
embedding, JPEG2000 splits the coding of the significance map into two separate
passes rather than employing one significance pass as do most other algorithms.
Specifically, JPEG2000 uses a significance-propagation pass that codes those coeffi-
cients that are currently insignificant but have at least one neighbor that is already
significant. This pass accounts for all coefficients that are likely to become signif-
icant in the current bitplane. The remaining insignificant coefficients are coded in
the cleanup pass; these coefficients, which are surrounded by insignificant coeffi-
cients, are likely to remain insignificant. Both passes use the same nine contexts
depicted in Fig. 14.16. contexts. In addition, the cleanup pass includes one addi-
tional context used to encode four successive insignificant coefficients together with
a single “insignificant run” symbol.

To code a single-band (i.e., 2D) image, a JPEG2000 encoder first performs a
2D wavelet transform on the image and then partitions each transform subband
into small, 2D rectangular blocks called codeblocks, which are typically of size
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Figure 14.15. Significance-state neighbors to xi.

32 × 32 or 64 × 64 pixels. Subsequently, the JPEG2000 encoder independently
generates an embedded bitstream for each codeblock. To assemble the individual
codeblock bitstreams into a single, final bitstream, each codeblock bitstream is
truncated in some fashion, and the truncated bitstreams are concatenated together
to form the final bitstream. The method for codeblock-bitstream truncation is an
implementation issue concerning only the encoder as codeblock-bitstream lengths
are conveyed to the decoder as header information. Consequently, this truncation
process is not covered by the JPEG2000 standard.

It is highly likely that, for codeblocks residing in a single spectral band, any
given JPEG2000 encoder with perform a Lagrangian rate-distortion optimal trun-
cation as described as part of Taubman’s EBCOT algorithm [8, 10]. This optimal
truncation technique, post-compression rate-distortion (PCRD) optimization, is a
primary factor in the excellent rate-distortion performance of the EBCOT algo-
rithm. PCRD optimization is performed simultaneously across all of the codeblocks
from the image, producing an optimal truncation point for each codeblock. The
truncated codeblocks are then concatenated together to form a single bitstream.
The PCRD optimization, in effect, distributes the total rate for the image spatially
across the codeblocks in a rate-distortion-optimal fashion such that codeblocks with
higher energy, which tend to more heavily influence the distortion measure, tend
to receive greater rate.

As described in the standard, JPEG2000 is, in essence, a 2D image coder. Al-
though the standard does make a few provisions for multiband imagery such as
hyperspectral data, the core coding procedure is based on within-band coding of
2D blocks as described above. Furthermore, the exact procedure employed for 3D
imagery (e.g., the 3D wavelet transform and PCRD optimization across multiple
bands) largely entails design issues for the encoder and thus lies outside the realm
of the JPEG2000 standard, which covers only the decoder. Given the increasing
prominence that JPEG2000 is garnering for the coding of hyperspectral imagery,
we return to consider these encoder-centric issues in depth in Sec. 14.5. Finally, we
note that JPEG2000 with truly 3D coding, consisting of AAC coding of 3D code-
blocks as in [27], has been proposed as JPEG2000 Part 10 (JP3D), an extension to
the core JPEG2000 standard. However, at the time of this writing, this proposed
extension is in the preliminary stages of development, and currently, JPEG2000 for
hyperspectral imagery is employed as discussed in Sec. 14.5.

14.4.4 Runlength Coding

Since, for a given significance threshold, the significance map is essentially a binary
image, techniques that have long been employed for the coding of bilevel images
are applicable. Specifically, runlength coding is the fundamental compression algo-
rithm behind the Group 3 fax standard; the Wavelet Difference Reduction (WDR)
[28] algorithm combines runlength coding of the significance map with an efficient
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Figure 14.16. The AAC contexts for JPEG2000.

lossless representation of the runlength symbols to produce an embedded image
coder. Originally developed for 2D imagery in [28], WDR was extended to 3D
as an implementation in QccPack [29]; this 3D extension merely deploys the run-
length scanning as a 3D raster scan of each subband of the 3D DWT, which is easily
accomplished in either dyadic or packet DWT decompositions.

14.4.5 Density Estimation

An all-together different approach to significance-map coding was proposed in [30]
wherein an explicit estimate of the probability of significance of wavelet coefficients
is used to code the significance map. Specifically, the significance state of a set
of coefficients for a given threshold is coded via a raster scan through the coeffi-
cients. For coding efficiency, an entropy coder codes the significance state for each
coefficient, using the probability that the coefficient is significant as determined by
the density-estimation procedure. The density estimate is in the form of a multidi-
mensional convolution implemented as a sequence of 1D filtering operations coined
tarp filtering. In [30], the tarp filtering procedure was originally developed for 2D
image coding; 3D tarp, with the tarp-filtering procedure suitably extended to three
dimensions, was proposed in [31, 32].

Of the various significance-map coding techniques considered in this section,
conditional coding in the form of JPEG2000 has achieved the most widespread
prominence for the coding of hyperspectral imagery. In the next section, we explore
several issues concerning JPEG2000 encoding that lie outside the scope of the
JPEG2000 standard yet yield significant impact on compression performance.

14.5 JPEG2000 ENCODING STRATEGIES

JPEG2000 is increasingly being considered for the coding of hyperspectral imagery
as well as other types of volumetric data, such as medical imagery. JPEG2000 is
attractive because of its proven state-of-the art performance for the compression
of grayscale and color photographic imagery. However, its performance for hyper-
spectral compression can vary greatly depending on how the JPEG2000 encoder
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handles multiple-band images, i.e., images with multiple spectral bands. In effect,
the JPEG2000 standard specifies the syntax and semantics of the compressed bit-
stream and, consequently, the operation of the decoder. The exact architecture of
the encoder, on the other hand, is left largely to the designer of the compression
system.

In deploying JPEG2000 on hyperspectral imagery, there are two primary issues
that must be considered in the implementation of the JPEG2000 encoder: 1) spec-
tral decorrelation, and 2) rate allocation between spectral bands. The first issue
arises due to the fact that there tends to exist significant correlation between con-
secutive bands in a hyperspectral image. As a consequence, spectral decorrelation,
via a wavelet transform, yields significant performance improvement.

The second encoder-design issue—rate allocation between spectral bands—arises
from the fact that, essentially, JPEG2000 is a 2D compression algorithm. Con-
sequently, given a specific target rate of R bpppb, the JPEG2000 encoder must
determine how to allocate this total rate appropriately between spectral bands. It
is usually the case that certain bands have significantly higher energy than other
bands and thus will weigh more heavily in distortion measures than the other,
weaker-energy bands. Consequently, it is likely that the JPEG2000 encoder will
need to allocate proportionally greater rate to the higher-energy bands in order
to maximize distortion performance for a given total rate R. Below, we explore
several rate-allocation strategies; we will find significant performance difference be-
tween these strategies later in experimental results in Sec. 14.6.2.

14.5.1 Spectral Decorrelation for Multiple-Component Images

The JPEG2000 standard allows for images with up to 16,385 spectral bands to be
included in a single bitstream; however, the standard does not specify how these
spectral bands should be encoded for best performance. Whereas Part I of the
JPEG2000 standard [6] permits spectral decorrelation only in the case of three-
band images (i.e., red-green-blue), Annexes I and N of Part II of the standard [7]
make provisions for arbitrary spectral decorrelation, including wavelet transforms.

By applying a 1D wavelet transform spectrally, and then subsequently employ-
ing a 2D wavelet transform spatially, we effectively implement the wavelet-packet
transform of Fig. 14.6. We note that many JPEG2000 implementations are not yet
fully compliant with Part II of the standard. In this case, we can “simulate” the
spectral decorrelation permitted under Part II by employing a 1D wavelet trans-
form spectrally on each pixel in the scene before the image cube is sent to the
Part-I-compliant JPEG2000 encoder. Such an external spectral transform as been
used previously [32, 33] to implement a “2D spatial + 1D spectral” wavelet-packet
transform with Part-I-compliant coders.

14.5.2 Rate-Allocation Strategies Across Multiple Image Components

The PCRD optimization procedure of EBCOT described in Sec. 14.4.3 produces a
rate-distortion-optimal bitstream for a single-band image by optimally truncating
the independent codeblock bitstreams from the spectral band. However, there
are several ways that this single-band truncation procedure can be extended to
the multiband case, and the resulting multiband truncation procedure, in effect,
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dictates how the total rate available for coding the hyperspectral image is allocated
between the individual spectral bands.

That is, for a multiple-band image, a JPEG2000 encoder will partition each spec-
tral band into 2D codeblocks which are coded into independent bitstreams identi-
cally to the process used for single-band imagery. To assemble a final bitstream,
these individual codeblock bitstreams are truncated and concatenated together. Al-
though the method for codeblock-bitstream truncation is an implementation issue
concerning only the encoder and is thus not covered by the JPEG2000 standard, it is
highly likely that, any given multiband JPEG2000 encoder will perform PCRD op-
timization for at least the codeblocks originating from a single spectral band. How
this truncation process is extended across the multiple bands may vary with en-
coder implementation. Below, we describe three possible multiband rate-allocation
strategies. In the following, let a hyperspectral image volume X be composed of N
bands Xi, i.e., X = {X1, X2, . . . , XN}. We code X with a total rate of R bpppb.
Assume that Bi = JPEG2000 Encode(Ri, Xi) is a single-band JPEG2000 encoder
that encodes spectral band Xi with rate Ri using PCRD optimization, producing
a bitstream Bi.

JPEG2000-BIFR The most straightforward method of allocating rate between mul-
tiple spectral bands is to simply code each band independently and assign to each
an identical rate. This JPEG2000 band-independent fixed-rate (JPEG2000-BIFR),
strategy operates as follows, where the “◦” operator denotes bitstream concatena-
tion:

JPEG2000 BIFR(R, {X1, . . . , XN})
B = ∅
for i = 1, 2, ..., N

Bi = JPEG2000 Encode(R,Xi)
B = B ◦Bi

return B

JPEG2000-BIRA JPEG2000 band-independent rate allocation (JPEG2000-
BIRA) also codes each band independently; however, rates are allocated ex-
plicitly so that more important bands are coded with higher rate, and less
important bands are coded at a lower rate.

JPEG2000 BIRA(R, {X1, . . . , XN})
B = ∅
for i = 1, 2, ..., N

σ2

i = variance [Xi]
for i = 1, 2, ..., N

Ri =
log

2
σi

∑N
j=1

log
2
σj

·RN

Bi = JPEG2000 Encode(Ri, Xi)
B = B ◦Bi

return B

The rates, Ri, are determined so that bands with larger variances (i.e., higher
energy) are coded at a higher rate than those with lower variances, while the total
rate for the entire volume is R. This approach is, in essence, an ad-hoc variant
of classical optimal rate allocation for a set of quantizers based on log variances
(chap. 8 of [34], [35]).

JPEG2000-MC The final approach, JPEG2000 multi-component (JPEG2000-MC),
can be employed when the JPEG2000 encoder is capable of performing PCRD op-
timization across multiple bands. That is, all of the spectral bands are input to the
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encoder which produces codeblock bitstreams for every codeblock in every subband
of every spectral band. Then, PCRD optimal truncation is applied to all code-
block bitstreams from all bands simultaneously, rather than simply the codeblock
bitstreams for a single band. In this way, the PCRD optimization performs to the
maximum of its potential, implicitly allocating rate in a rate-distortion fashion, not
only spatially within each spectral band, but also spectrally across the multiple
bands.

14.6 COMPRESSION PERFORMANCE

All the datasets used in the experiments were collected by AVIRIS, an airborne
hyperspectral sensor with data in 224 contiguous bands from 400 nm to 2500 nm.
For the results here, we crop the first scene in each dataset to produce image cubes
with dimensions of 512×512×224. In all cases, unprocessed radiance data was used.
All coders use the popular biorthogonal 9-7 wavelet [36] with symmetric extension as
used extensively in image-compression applications, and a transform decomposition
of 4 spatial and spectral levels is employed. All rate measurements are expressed in
bits per pixel per band (bpppb). All JPEG2000 coding uses Kakadu1 Version 4.3
with a quantization step size of 0.0000001. Since Kakadu is not yet fully compliant
with Part II of the JPEG2000 standard, the spectral transform is applied externally
as described in Sec. 14.2.1 and in [32, 33]. We note that the results below are
selected from extensive empirical evaluations we have conducted; a more complete
presentation of results is available in [37].

14.6.1 Performance of Dyadic and Packet Transforms

As was discussed in Sec.14.2.1, there are two contending transform arrangements
for the 3D DWT. The 3D dyadic transform (Fig. 14.5) is a direct extension of
the 2D dyadic transform in which we transform once in each direction and then
further decompose the baseband. In the case of the 3D packet transform (Fig. 14.6),
the coefficients in each spectral slice are transformed with a 2D dyadic transform,
which is then followed by a spectral transform. Fig. 14.17 depicts the typical rate-
distortion performance achieved by a coder using these two transform structures.
We see that performance for the packet transform is greatly superior to that for the
dyadic transform. As we have observed similar results for other coders and other
datasets, we use the packet transform exclusively for all subsequent results.

14.6.2 Performance of JPEG2000 Encoding Strategies

Sec. 14.5 presents several strategies for the design of a JPEG2000 encoder. We
evaluate these strategies now, focusing first on rate-distortion performance before
considering POC performance as described in Sec. 14.3. In Fig. 14.18, we plot the
rate-distortion performance of JPEG2000 for a range of rates, while in Table 14.1,
distortion performance at a single rate is tabulated. In these results, techniques
labeled as “2D” do not use any spectral transform (i.e., only 2D wavelet transforms
are applied spatially), while the other techniques use the 3D wavelet-packet trans-
form which includes a spectral transform. For each dataset, we present performance

1http://www.kakadusoftware.com
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Figure 14.17. Comparison of the typical rate-distortion performance for the dyadic
transform of Fig. 14.5 versus that of the packet transform of Fig. 14.6. This plot is for the
Moffett image using 3D-SPIHT.

for the three rate-allocation techniques described in Sec. 14.5.2, both with and with-
out the spectral-decorrelation transform. With the exception of JPEG2000-BIFR,
all the rate-allocation techniques perform significantly better when a spectral trans-
form is performed. We see that JPEG2000-MC substantially outperforms the other
techniques by at least 5–10 dB.

We now turn our attention to POC performance to gauge the preservation of
unsupervised-classification performance. We see that the POC performances in
Table 14.2 correlate well with SNR figures of Table 14.1 in that, if one technique
outperforms another in the rate-distortion realm, then it will mostly likely have
higher POC performance as well. As expected, JPEG2000-MC performs substan-
tially better than the other techniques in terms of POC.

We note that both Kakadu Version 4.3 and the JPEG2000 encoder in ENVI
Version 4.1 (which uses the Kakadu coder) implement JPEG2000-MC rate alloca-
tion, yet neither support the use of a spectral transform since they are not fully
compliant with Part II of the JPEG2000 standard. Thus, the performance of these
coders is equivalent to that of the 2D JPEG2000-MC approach considered here. As
our results indicate, adding a spectral transform would significantly enhance the
performance of these coders.
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Figure 14.18. Rate-distortion performance for Moffett for the JPEG2000 encoding
strategies.

Table 14.1. SNR Performance in dB at 1.0 bpppb for the JPEG2000 Encoding
Strategies

2D 2D 2D
Dataset BIFR BIFR BIRA BIRA MC MC

Moffett 25.8 25.9 27.4 34.9 30.6 45.5

Jasper Ridge 24.0 23.8 25.7 33.4 29.8 44.8

Cuprite 32.9 32.8 34.9 42.6 38.3 51.0
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14.6.3 Algorithm Performance

Rate-distortion performance for a variety of the algorithms described in Sec. 14.4
(3D-WDR, 3D-tarp, 3D-SPECK, 3D-SPIHT, and JPEG2000-MC) is shown in Figs. 14.19–
14.21 as well as in Table 14.3. In these results, we see that all five techniques pro-
vide largely similar rate-distortion performance for the datasets considered, with
JPEG2000-MC usually slightly outperforming the others. Similar conclusions are
drawn from the POC results of Table 14.4.

14.7 SUMMARY

In this chapter, we overviewed the major concepts in 3D embedded wavelet-based
compression for hyperspectral imagery. We reviewed several popular compression
techniques that have been considered for the coding of hyperspectral imagery, fo-
cusing on the primary difference between techniques—how the significance map is
coded. We found that the different techniques offered performance that is roughly
similar, both in terms of rate-distortion performance as well as a more application-
specific preservation of performance at unsupervised classification. We discussed
that the most prominent of the algorithms considered, JPEG2000, is subject to
an international standard that covers only the decoder, leaving many design de-
tails regarding the encoder unspecified, particularly as pertaining to the coding
of multiband imagery. We presented experimental results that demonstrate how
a JPEG2000 encoder allocates rate between spectral bands substantially affects
performance. Additionally, we saw that JPEG2000 performance almost always
benefits greatly from the application of a 1D spectral wavelet transform to remove
correlation in the spectral direction.

As a final note, we observe that, in many situations, it may be necessary to
store hyperspectral datasets in their original state, i.e., without any compression
loss. Such archival applications may necessitate the lossless compression of hyper-
spectral imagery, whereas the discussion in this chapter has focused exclusively on
lossy compression algorithms. However, it is fairly straightforward to modify the
lossy algorithms considered here to render them lossless, while still preserving their
progressive-transmission capability. Such embedded wavelet-based coders then pro-
vide “lossy-to-lossless” performance, such that any truncation of the bitstream can
be reconstructed to a lossy representation, yet, if the entire bitstream is decoded,
a lossless reconstruction of the original dataset is obtained. Such lossy-to-lossless
coding has been proposed in several contexts [38, 39], including hyperspectral-image
compression [40], by adding an integer-to-integer wavelet transform [41] to a lossy
technique. JPEG2000 supports such lossy-to-lossless coding in Part I of the stan-
dard in exactly this way.
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Figure 14.20. Rate-distortion performance for Cuprite.

Table 14.3. SNR at 1.0 bpppb

SNR (dB)
Dataset JPEG2000 SPECK SPIHT TARP WDR

Moffett 45.4 45.1 45.3 44.5 44.7
Jasper Ridge 44.9 44.4 44.7 43.7 44.2
Cuprite 50.8 50.5 50.7 50.3 50.4
Low Altitude 27.6 27.3 27.4 25.2 27.1
Lunar Lake 46.4 45.9 46.1 43.7 45.9
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Figure 14.21. Rate-distortion performance for Jasper Ridge.

Table 14.4. POC Performance at 1.0 bpppb

ISODATA POC (%)
Dataset JPEG2000 SPECK SPIHT TARP WDR

Moffett 99.8 99.7 99.7 99.7 99.7
Jasper Ridge 99.8 99.7 99.7 99.7 99.7
Cuprite 99.8 99.8 99.8 99.8 99.8

Low Altitude 97.9 98.1 97.9 97.3 97.9
Lunar Lake 99.7 99.5 99.7 99.7 99.7

k-Means POC (%)

Moffett 99.7 99.6 99.6 99.6 99.6
Jasper Ridge 99.6 99.5 99.5 99.5 99.5
Cuprite 99.7 99.7 99.6 99.7 99.7

Low Altitude 96.6 96.8 96.6 96.1 96.7
Lunar Lake 99.5 99.6 99.5 99.2 99.6
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