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• Produce annotated 3D models of famous tourist sites

 Analyzing Wikipedia and other text

 Together with online photos 

 Automatically discover and link objects in text and 3D geometry

Abstract
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• Guidebooks 

 Packed with interesting historical facts 

 Descriptions of site specific objects and spaces

• Difficult to fully visualize the scenes they present

• Difficult to understand the spatial relationships between each 
image viewpoint

• Online sites 

 Do not have space restrictions

• But similarly sparse and disconnected visual coverage

Introduction
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• Our goal

 Interactive, photorealistic visualization

• Wikipedia page is shown next to a detailed 3D model of the 
described site

 Create such a visualization completely automatically

• Analyzing the Wikipedia page itself

• Together with many photos of the site available online

Introduction
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• Automatically creating such a visualization 

 Formidable challenge

• Text and photos

 Provide only very indirect cues about the structure of the scene

• Automatically extracting the names of objects is not trivial

 Name the artist that created the object, or other unrelated concept

• Determining the precise 3D location of each described object

 Even more challenging

Introduction
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• Key to our approach 

 Mine text and photo co-occurrences across all of the Internet

• ex) photo anywhere on the Internet with the caption 
“Annunciation, Pantheon”

 This simple strategy does not completely solve the problem

• Hence, we treat the image results as a noisy signal 

Introduction
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• Our reconstruction and visualization approach 

 Inspired by Photo Tourism 

• [Snavely et al., SIGGRAPH 2006]

 Employ similar techniques to generate 3D models 

 Render transitions to photos within those models 

• VisualSFM : A Visual Structure from Motion System

• http://homes.cs.washington.edu/~ccwu/vsfm/

• We show compelling results for several major tourist sites

 Able to reliably extract many of the objects in each scene

• With relatively few errors

Introduction
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• Natural language processing and 3D computer vision

 Very fertile area with little prior research 

• Scene segmentation using the wisdom of crowds

 [Simon and Seitz, ECCV ‘08] 

 Segmenting and labeling 3D point clouds 

• Analyzing SIFT feature co-occurence in tagged Flickr photos

 Flickr tags are notoriously noisy 

 Far less informative

• Compared to Wikipedia and other authoritative guides

Related work
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• In the 2D domain

 Correlating regions in images/video to captioned text or keywords

• [Barnard et al. 2003; Laptev et al. 2008; Cour et al. 2011]

 Generating sentences or captions for specific images 

• [Farhadi et al. 2010; Berg et al. 2012; Mitchell et al. 2012]. 

 Relatively small set of object classes (e.g. car, boat) 

 Require captioned photographs during the training of their model

Related work
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• Reconstructing 3D models of tourist sites 

 From Internet photo collections

 Structure-from-motion 

• [Snavely et al. 2008; Agarwal et al. 2011; Raguram et al. 2011] 

 Multi-view stereo 

• [Furukawa and Ponce 2010; Furukawa et al. 2010; Goesele et al. 2007] 

• Recognition in RGB-D and range-scan data

 Advent of commodity depth sensors 

• Like Kinect

• [Ren et al. 2012; Silberman et al. 2012; Ladick´y et al. 2012]

• We focus on labeling instances

Related work
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• Recognizing images of specific objects or places (instances)

 Large-scale image retrieval 

• [Sivic and Zisserman 2003; Chum et al. 2007; Philbin et al. 2008] 

 Matching local features computed at interest points 

• Between an input image and a database of labeled images 

• [Lowe 2004] 

 GPS-tagged images 

• [Crandall et al. 2009; Hays and Efros 2008]

 Require a database of labeled objects as reference

• Our focus is to create such a database 

 From joint analysis of text and images

Related work
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• We present a fully automatic system 

 Generates interactive visualizations 

• Link authoritative text sources with photorealistic 3D models

 System requires two types of inputs

• One or more reference text sources

 Such as Wikipedia

• Unique name for the site to reconstruct

 Such as the Pantheon in Rome

System Overview
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• Overview of the complete approach

System Overview

VisualSFM
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• Algorithm consists of three steps

1. Generate an over complete list 

• Candidate object hypothesis from the text

2. Obtain their likely location on the 3D model 

3. Filter the large number of false positive detections 

• By training a classifier over features

Automatic labeling of 
3D models from text
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• Seek to automatically obtain a list of candidate descriptive phrases

 For each site

 Texts come from two sources 

• Freely available online

1. Articles from Wikipedia

2. Text from other, site specific, third-party web pages

Obtaining object hypotheses from text
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• Use the syntactic structure of the language 

 To define the set of possible descriptive phrases

• Primarily leveraging the fact that noun phrases 

 Can name physical objects in English

• Extract noun phrases

 Use the Stanford parser 

• [Klein and Manning 2003]

• Achieves near state-of-the-art performance 

• Available as public-domain software

 Ran the parser with the default parameter settings

Obtaining object hypotheses from text
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• Boost recall
 Extract prepositional phrases that are immediately followed by a noun phrase

• e.g. a fresco of the Annunciation

 Merge adjacent noun phrases 

• e.g. a canvas by Clement Maioli of St. Lawrence and St. Agnes

 These additional phrases allow us to overcome parsing errors

• Reduce false positives

 Remove phrases containing only a single stop word

• As defined by a commonly used stop word list

 Remove phrases containing only numerals

Obtaining object hypotheses from text
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Obtaining object hypotheses from text

“The first chapel on the right, the Chapel of the Annunciation, has a fresco of
the Annunciation attributed to Melozzo da Forli.”

• annunciation
• annunciation attributed to melozzo da forli
• chapel
• chapel of the annunciation
• da forli
• first chapel
• first chapel on the right
• first chapel on the right the chapel 

of the annunciation

• forli
• fresco
• fresco of the annunciation
• fresco of the annunciation attributed 

to melozzo da forli
• melozzo
• melozzo da
• melozzo da forli
• right
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• Generate proposal regions for their 3D location within the site

 Given the automatically obtained list of candidate named objects

• Search for and download images using Google image search

 For each candidate named object

 Construct the query terms 

• By concatenating the extracted noun phrase with the place name 

 e.g. central figure Trevi Fountain

Link objects to 3D geometry
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• To find candidate regions within the 3D model for the site
 Build upon the success of feature matching and geometric verification 

• “Modeling the world from Internet photo collections”
 [Snavely et al., International Journal of Computer Vision, 2008] 

 Match SIFT key points extracted from the downloaded images 

• To the inlier SIFT key points corresponding to 3D points within 
the 3D model

Link objects to 3D geometry
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• Recover the camera parameters

 Using the putative 2D-3D point correspondences

 Camera resectioning

• [Hartley and Zisserman 2004]

Link objects to 3D geometry
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• Perform camera resectioning for the top 6 images 

 For each search query

• Keep the alignment 

 If camera resectioning finds at least 9 inlier correspondences

 At least 9 inlier features 

• Almost always yields a correct alignment to the 3D model

• Using fewer yields incorrect alignments

 This requirement 

• Discards many images that do not depict the site at all 

• Maintains a high recall for valid images that do depict the site

Link objects to 3D geometry
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• Internet image search 

 Returns many valid images for the candidate object tags

 Remains a high number of false positives

• Over-generated list of candidate objects resulting 

 Output of the natural language processing parser

• Our goal

 Extract good object detections 

• From the hypothesis set of object-region pairs

Model for filtering hypotheses
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• Start by merging highly-overlapping camera frustra

 Corresponding to the aligned images for a given object tag 

 First project each frustrum onto a reference image 

• i.e. panorama or perspective photograph

• Depicting the site that has been registered to the 3D model

 Form a bounding box by taking the maximum x, y 

• Extent of the projected frustrum

 Merge two frustra

• If their relative overlap exceeds 0.5

 Ratio of intersection area to their union

• Mean of their bounding boxes returned

 Results in a set of object tag and detection frustrum pairs

• Dubbed the candidate pool

Model for filtering hypotheses
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• Extract features 

 From the candidate pool and the original text

 Visual features

• Number of merged frustra for the candidate

• Rank number for the top-ranked image search result 

 That aligned to the 3D model

• Total number of frustra across all object tags 

 That overlap the candidate frustrum

∙ High number indicates a generic viewpoint of the site

Model for filtering hypotheses
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• Extract features 

 Text features

• Whether a non-spatial preposition 

 (ago, as, because of, before, despite, during, for, like, of, since, until)

 Resides in the same sentence as the extracted noun phrase

∙ Which often corresponds to historical descriptions

• Whether the tag corresponds to an author 

• Whether an author appears in the same sentence as the tag

• Presence of an author

 As a feature

• Authorship of an object is often described together

 Detect the presence of an author

• Analyzing prepositional by dependencies

Model for filtering hypotheses
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• Train a linear classifier

 Using logistic regression across a set of training sites 

• Test on the remaining sites

• Construct the training set

 Project each frustra in the candidate pool for the site 

• Onto the reference image 

 Intersect the projected frustra with objects 

• That have been manually labeled via LabelMe

 [Russell et al. International Journal of Computer Vision 2008]

Model for filtering hypotheses
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• For each labeled object

 Keep the object tag/detection frustrum pair 

• Has highest word F-score 

 When comparing the object and labeled tags 

• Having the center of their bounding boxes 

 Residing in the other’s bounding box

• Form the set of positive examples 

 Tag/frustrum pairs 

• That match to a ground truth label

• Form the set of negative examples 

 Tag/frustrum pairs 

• That do not have tag or frustrum overlap with any of the positive 
training examples

Model for filtering hypotheses
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• During testing, perform non-maximum suppression 

 Suppress detections 

• If a higher confidence frustrum overlaps a lower confidence one 

 Their relative overlap exceeds 0.3 and their centers reside in the 
other’s bounding box

• If any of the tag words overlap in the same sentence

Model for filtering hypotheses
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Text-to-3D navigation
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3D-to-text navigation
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Tour navigation
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• Automatically create the 3D models from Internet photo collections 

 VisualSFM [Wu et al., CVPR 2011] 

• For generating a sparse point cloud

 PMVS [Furukawa and Ponce, PAMI 2010] 

• For generating a dense point cloud

 Poisson Surface Reconstruction [Kazhdan et al. SGP 2006] 

• To generate a mesh

Implementation details
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• Then delete 

 Small connected components of the mesh 

 Vertices that lie far away from the PMVS points

• Then color the mesh vertices 

 According to the closest PMVS points 

 Keep the vertices of the mesh as our final point cloud

• We only use the vertices from the mesh for visualizations 

 Although we generate colored meshes

 Point cloud is visually more forgiving of artifacts

Implementation details
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• To highlight the objects in the 3D model

 Generate 3D bounding boxes for each object 

• That are rendered semi-transparently in our visualizations

 First compute the mode 𝑚
• Over the distribution of the normals of the points 

 That lie in the frustra of the images

 Then choose a coordinate unit-vector 𝑥
• In the world-coordinate frame of the reconstruction 

 That is approximately orthogonal to the mode

 Finally, calculate the other axis vector

• 𝑦 =  𝑦∥  𝑦∥ with  𝑦 = 𝑚 − 𝑚 ∙ 𝑥 𝑥
• 𝑧 = 𝑥 × 𝑦

Implementation details
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• Manually evaluate the accuracy of the correspondences

 Evaluate performance relative to a set of canonical views

• Set of registered panoramas 

• Set of Perspective photographs depicting most or all of a site

 Manually labeled the name and a bounding box

 Raw Precision : labeled ground truth as a guide

 Full Precision : manually verified detections

Evaluation
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Evaluation
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• Object recall for the sites in which we retained the Flickr tags

 Pantheon – 0.06

 Trevi Fountain – 0

 US Capitol Rotunda – 0.21

 Flickr baseline performs significantly worse

Evaluation
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• Bounding box is too large

Error Analysis
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• Incorrect object tag

 Typically come from noisy co-occurrences 

• Between images and text in the online sources

Error Analysis
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• Multiple object class instances

Error Analysis



Conclusion



YoungBin Kim | 2014. 01. 10 | # 49Computer Graphics @ Korea University

• First system 

 Automatically build immersive 3D visualizations of popular sites

• Using online text and photo collections  

 Built using off-the-shelf ingredients

• Ideas and the system are new

 Based on crowd-sourced data on the Internet

 Insight of using text parsing + Google image search

∙ Connect web text to 3D shape data

 Viable approach

∙ Incorporating a series of sophisticated steps

• Room for improvement

 To leverage spatial terms

 People to assist in the labeling task

Conclusion


