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Abstract

In this work we present a novel publicly available stereo

based 3D RGB dataset for multi-object zebrafish tracking,

called 3D-ZeF. Zebrafish is an increasingly popular model

organism used for studying neurological disorders, drug

addiction, and more. Behavioral analysis is often a criti-

cal part of such research. However, visual similarity, occlu-

sion, and erratic movement of the zebrafish makes robust

3D tracking a challenging and unsolved problem.

The proposed dataset consists of eight sequences with

a duration between 15-120 seconds and 1-10 free moving

zebrafish. The videos have been annotated with a total

of 86,400 points and bounding boxes. Furthermore, we

present a complexity score and a novel open-source mod-

ular baseline system for 3D tracking of zebrafish. The per-

formance of the system is measured with respect to two de-

tectors: a naive approach and a Faster R-CNN based fish

head detector. The system reaches a MOTA of up to 77.6%.

Links to the code and dataset is available at the project page

http://vap.aau.dk/3d-zef

1. Introduction

Over the past decades, the use of zebrafish (Danio re-

rio) as an animal model has increased significantly due to

its applicability within large-scale genetic screening [1, 2].

The zebrafish has been used as a model for studying hu-

man neurological disorders, drug addiction, social anxiety

disorders, and more [3, 4, 5, 6, 7, 8]. Locomotion and be-

havioral analysis are often critical parts of neuroscientific

and biological research, which have traditionally been con-

ducted manually [9, 10, 11]. However, manual inspection

is subjective and limited to small-scale experiments. There-

fore, tracking systems are getting increasingly popular due

to their efficiency and objectivity. The majority of the so-

lutions has been developed for terrestrial animals or fish in

shallow water, and most studies have been based on 2D ob-

servations in scientific [12, 13, 14, 15, 16, 17, 18] and com-
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Figure 1: An example that illustrates the difference between

the two perspectives. The 3D trajectories are estimated

based on the head point annotations.

mercial systems [19, 20, 21, 22]. However, observations in

a single plane cannot capture all the relevant phenotypes of

fish [23, 24, 25]. Estimating the 3D trajectories of multiple

zebrafish accurately is difficult due to their erratic move-

ment, visual similarity, and social behavior [26], see Fig-

ure 1. This may be one of the reasons why no commercial

solution has been developed yet. Only few groups in the

scientific community have addressed the problem, focusing

mainly on stereo vision [27, 28, 29, 30, 31] and monocular

stereo using mirrors [32, 33]. However, no labeled datasets

have been made publicly available within the field, which

makes a fair comparison between the applied methods dif-

ficult. This ultimately hinders significant developments in

the field as we have seen in other computer vision fields

with common datasets. Therefore, our contributions are

• a publicly available RGB 3D video dataset of zebrafish

with 86,400 bounding box and point annotations.

• an open-source modular baseline system.

A large part of 3D multi-object tracking methods are de-

veloped for LiDAR-based traffic datasets [34, 35, 36, 37,

38] or RGB-D tracking [39, 40]. However, to the best of

our knowledge, there exists no publicly available annotated

RGB stereo dataset with erratic moving and similarly look-

ing subjects like the one we propose.
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Figure 2: Five frames from two different occlusion scenarios. The upper frames are from the front-view and the lower frames

are from the top-view. An illustration of the experimental setup is shown to the right.

2. Related Work

Multi-Object Tracking (MOT). Reliably tracking mul-

tiple objects is widely regarded as incredibly difficult. The

interest in solving MOT has been steadily increasing since

2015 with the release of the MOT [41, 42, 43], UA-

DETRAC [44, 45], and KITTI [34, 35] challenges. Within

the MOT challenges, the current focus is on either aiming to

solve the association problem using deep learning [46], us-

ing techniques such as intersection-over-union based track-

ing [47], or disregarding tracking-specific models and uti-

lizing the improvements within object detections [48].

Zebrafish Tracking. Vision-based tracking systems de-

veloped for studying animal behavior have traditionally

been based on 2D [18, 49, 50, 51, 52, 53, 54] due to simplic-

ity and because the movement of most terrestrial animals

can be approximated to a single plane. The majority of re-

search in zebrafish tracking has followed this path by only

allowing the fish to move in shallow water and assuming

that motion happens in a 2D plane.

A 2D animal tracker, called idTracker presented by

Perez-Escudero et al. in 2014 [49], uses thresholding to

segment blobs and is able to distinguish between individ-

ual zebrafish based on intensity and contrast maps. In 2019,

Romero-Ferrero et al. presented an updated version of id-

Tracker, called idtracker.ai [18], which is the current state-

of-the-art 2D tracker system based on convolutional neural

networks (CNN) for handling occlusions and identifying in-

dividuals. The subjects are observed with a camera posi-

tioned above a tank with a water depth of 2.5 cm and the

distance between camera and subjects is, therefore, approx-

imately the same at all times. As stated by the authors, this

simplifies the task compared to a real 3D tracking scenario.

However, as most aquatic species move in three dimen-

sions, trajectories in 3D are required to thoroughly describe

their behavior [55, 56]. The most frequently used acquisi-

tion method when dealing with studies of animal behavior

in 3D is stereo vision [28, 30, 31, 56, 57, 58, 59, 60, 61].

3D tracking of zebrafish has been focused mainly on single

subjects or small groups, as occlusion is a big hindrance for

maintaining correct IDs due to their shoaling behavior [26].

Furthermore, the visual appearance of the fish can change

dramatically depending on the position and posture, which

makes re-identification more complex compared to 2D.

The Track3D module from the commercial EthoVision

XT [19] is popular for tracking zebrafish in 3D, but is lim-

ited to a single individual [56, 61]. An early semi-automatic

3D tracking system was developed by Viscido et al. [58] to

investigate the relationship between individual members of

fish schools. Initial 2D tracks were generated by a nearest

neighbor algorithm followed by a step allowing the user to

adjust and correct the proposed 2D trajectories, and subse-

quently triangulated to reconstruct the 3D trajectories.

Qian et al. have worked extensively with tracking of ze-

brafish and have developed a 2D tracking system with a

top-view camera using an augmented fast marching method

(AFMM) [62] and the determinant of the Hessian [15]. This

was expanded to 3D tracking by extending the setup with a

side-view camera. AFMM was utilized to generate a feature

point based fish representation in each view followed by 2D

tracklet construction based on motion constraints. 3D tracks

were then constructed by associating the 2D tracklets with

side-view detections using epipolar and motion consistency

constraints [29]. Liu et al. [63] extended this method to bet-

ter handle occlusions based on a set of heuristic methods

and the epipolar constraint. A third camera was added in

[31], and the feature point representation method was ex-

tended.

Cheng et al. [28] utilized a similar three-camera setup,

applying an iterative unsupervised learning method to train

a CNN-based classifier to distinguish between the individ-

ual fish from a camera placed above the water tank. The

classifier was trained on the head region of the fish during

periods when all fish were visible at the same time. By

iteratively retraining the classifier, they were able to gen-

erate 2D tracks from the top-view and reconstruct the 3D

tracklets based on detections from the two other side-view

cameras under epipolar and motion constraints.

Wang et al. [30] also utilized a three-camera setup, us-

ing a Gaussian Mixture Model, a Gabor filter and an SVM-

based method to detect the fish heads in the top- and side-
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Trn2 Trn5 Val2 Val5 Tst1 Tst2 Tst5 Tst10 Total

Length 120 s 15 s 30 s 15 s 15 s 15 s 15 s 15 s 240 s

Frames 14,400 1,800 3,600 1,800 1,800 1,800 1,800 1,800 28,800

BBs 28,800 9,000 7,200 9,000 1,800 3,600 9,000 18,000 86,400

Points 28,800 9,000 7,200 9,000 1,800 3,600 9,000 18,000 86,400

OC 1.82 / 1.42 3.60 / 2.93 0.93 / 0.47 2.67 / 3.80 0.00 / 0.00 0.67 / 0.67 3.07 / 2.93 4.40 / 6.53

OL 0.41 / 0.51 0.56 / 0.64 0.22 / 0.63 0.25 / 0.66 0.00 / 0.00 0.10 / 0.38 0.25 / 0.36 0.28 / 0.35

TBO 0.69 / 0.89 1.00 / 1.21 1.79 / 3.20 1.64 / 0.73 15.00 / 15.00 2.41 / 2.18 1.38 / 1.28 1.86 / 1.40

IBO 0.29 / 0.26 0.28 / 0.28 0.24 / 0.35 0.22 / 0.34 0.00 / 0.00 0.19 / 0.19 0.25 / 0.23 0.26 / 0.24

Ψ 0.26 0.50 0.03 0.63 0.00 0.01 0.16 0.28

Table 1: Overview of the proposed dataset. OC, OL, TBO, and IBO are listed for the top- and front-view, respectively, and the

number of fish is denoted in the sequence name. OC: average amount of occlusions per second, OL: average occlusion length

in seconds, TBO: average amount of seconds between occlusions, IBO: intersection between occlusions, Ψ: complexity

measure based on OC, OL, TBO and IBO (see Equation (2)).

views, respectively. The top-view detections are associ-

ated into 2D tracklets based on a cross-correlation method

and by applying a Kalman filter; near linear movement is

achieved by a frame rate of 100 FPS. The 2D tracklets are

then constructed into 3D tracklets by associating the side-

view detections under epipolar and motion constraints. In

[64], Wang et al. proposed to model the top-view movement

of the zebrafish through long short-term memory networks,

which were used to improve the motion constraints in a new

iteration of their 3D system [65]. Lastly, Wang et al. used

a CNN for re-identification of zebrafish heads from the top-

view [66], although this has yet to be incorporated into a 3D

tracking setup. None of the methods are able to track multi-

ple zebrafish in 3D for more than a few seconds without ID

swaps; this is still a difficult and unsolved problem.

Datasets. As in other MOT challenges, there is a mu-

tual agreement that occlusion is what makes 3D tracking of

zebrafish difficult. Nonetheless, only Wang et al. [65] de-

scribe their recordings based on occlusion frequency; how-

ever, they do not define how it is measured. Qian et al. [31]

indicate their complexity based on the amount of fish, but

only four occlusion events occur during their 15 seconds

demo video with ten fish. For comparison, there are 66 oc-

clusion events in our 15 seconds sequence with ten fish.

3. Proposed Dataset

The proposed 3D zebrafish dataset, 3D-ZeF, has been

recorded from a top- and front-view perspective. This ap-

proach was taken to minimize events of total occlusion typ-

ical for side-by-side binocular setups. An example of the

visual variation between the views is shown in Figure 2 to-

gether with an illustration of the experimental setup.

3.1. Experimental Setup

The setup used to record the proposed dataset was

built entirely from off-the-shelf hardware, whereas previous

methods have used specialized camera equipment. An illus-

tration of the setup is shown in Figure 2. The two light pan-

els are IKEA FLOALT of size 30× 30 cm with a luminous

flux of 670 lumen and a color temperature of 4000K. The

test tank is a standard glass aquarium of size 30 × 30 × 30
cm with a water depth of 15 cm. The top and front cam-

eras are GoPro Hero 5 and GoPro Hero 7, respectively. All

the videos are recorded with a resolution of 2704 × 1520,

60 FPS, 1/60 s shutter speed, 400 ISO, and a linear field

of view. However, the fish tank does not take up the entire

image, therefore, the effective region of interest is approxi-

mately 1200× 1200 and 1800× 900 for the top- and front-

view, respectively. Diffusion fabric was placed in front of

the top light in order to reduce the amount of glare in the

top-view. Semi-transparent plastic was attached to three out

of four of the window panes in order to reduce reflections.

Furthermore, the front camera was placed orthogonally to

the water level, which reduced reflections from the water

surface. Lastly, the pair-wise recordings have been manu-

ally synchronized using a flashing LED, which results in a

worst case temporal shift of 1

2·FPS
.

3.2. Dataset Construction

A total of eight sequences were recorded and divided into

a training, validation, and test split. Each sequence consists

of a pair of temporally aligned top- and front-view videos

and the specifications of the three splits are shown in Ta-

ble 1. In order to avoid data leakage, each split contains a

unique set of fish. The training and validation set of fish

were from the same cohort, whereas the fish in the test split

were from a younger cohort. Therefore, the test set differs

from the training and validation set, as the fish are smaller

and behave socially different. This represent a real-life sce-

nario where different cohorts need to be tracked, which has

not generally been addressed within the field.

The zebrafish were manually bounding box and point an-

notated with consistent identity tags through all frames. The

bounding boxes were tightly fitted to the visible parts of

the zebrafish and the point annotations were centered on the

head. If a set of fish touched, an occlusion tag was set for all
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involved bounding boxes. During occlusions, the bounding

box was fitted to the visible parts of the fish and not where it

was expected to be due to the extreme flexibility of the ze-

brafish. The pair-wise point annotations from the two views

were triangulated into 3D positions using the method pro-

posed by Pedersen et al. [67]. The fish head was approxi-

mated during occlusions to ensure continuous 3D tracks.

It should be noted that the data was recorded in RGB. Ze-

brafish can change their body pigmentation based on their

environment, stress level, and more [23]. The changes in

coloration can be important in behavioral studies and may

even be valuable in solving the 3D tracking problem.

3.3. Dataset Complexity

Intuitively, a higher number of fish creates a more dif-

ficult tracking problem. However, this is only true to some

extent as the main complexity factor is the number and level

of occlusions, which depends on a combination of the social

activity and amount of space rather than the number of in-

dividuals. Therefore, we have defined a range of metrics

based on occlusion events to describe the complexity of the

proposed sequences. An occlusion event is defined by a set

of consecutive frames, where a fish is part of an occlusion.

The events are measured from the perspective of the fish; if

two fish are part of an occlusion it counts as two events.

The number of occlusion events indicates how often a

fish is part of an occlusion, but, few long occlusions can

be just as problematic as many short. The length of the

occlusions and time between them are, therefore, impor-

tant to keep in mind when evaluating the complexity of a

recording. Due to our definition of occlusion events there

are cases where fish are part of occlusions with only minor

parts of their bodies. Therefore, the intersection between

occlusions is measured as an indication of the general inter-

section level. The metrics that we provide as basis for the

complexity level of our recordings are defined here:

Occlusion Count (OC): the average number of occlusion

events per second.

Occlusion Length (OL): the average time in seconds of all

occlusion events.

Time Between Occlusions (TBO): the average time in sec-

onds between occlusion events.

Intersection Between Occlusions (IBO): a measure of

how large a part of the fish that is part of an occlusion event.

The intersection in a frame, f , for fish i is given by

IBOi,f =
1

|bbi|

nocc∑

j=1

bbi ∩ bbj , for j 6= i, (1)

where nocc is the number of fish in an occlusion event, and

bbj is the set of pixel coordinates in the bounding box of

fish j. IBO is measured across all bounding boxes with an

occlusion tag in a given frame, even for subjects that are not

Figure 3: IBO seen from the perspective of two different

individuals in the same frame. The targets are marked in

yellow, the red area shows the intersection with a subject

that is part of the same occlusion as the target, and the blue

area shows the intersection with a subject that is not part of

the same occlusion as the target.

part of the same occlusion. Two examples are presented in

Figure 3, where the IBOi,f is calculated from the perspec-

tive of the targets enclosed in yellow. The blue area in the

second example, represents the intersection with a subject

that is not part of the same occlusion as the target. Ad-

ditionally, the annotated bounding boxes enclose only the

visible parts of the subjects. Thus, the actual intersection

between the subjects can be higher if a large part of a fish is

hidden. Nonetheless, the assumption is that a high IBO is

an expression of heavy occlusion and vice versa. The IBO

measure presented in Table 1 is an average between all fish

in all frames. A single complexity measure is calculated per

sequence, by combining the four proposed metrics by

Ψ =
1

n

{T,F}∑

v

OCv OLv IBOv

TBOv

, (2)

where n is the number of camera views and subscript T and

F denote the top- and front-view, respectively. If a recording

has no occlusions the complexity measure, Ψ, is zero; oth-

erwise, the measure is in the interval ]0,∞[, where a larger

value indicates a higher complexity.

4. Method

The pipeline of the proposed 3D tracker follows a mod-

ular tracking-reconstruction approach, where subjects are

detected and tracked in each view before being triangulated

and associated across views. This allows us to use the tem-

poral information of the tracklets in the two views in the 3D

association step in opposition to a reconstruction-tracking

approach, where detections are triangulated before tracks

are generated.

4.1. Object Detection in 2D

A consistent 2D point is needed in each view in order to

create 3D trajectories. As the head is the only rigid part of
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the body the tracking point is chosen to be located between

the eyes of the fish. We present two simple methods to find

the head-point of the fish: a naive approach, that does not

require training, and a CNN based approach.

Naive: A background image, bg, is initially estimated

for each view by taking the median of Nbg images sam-

pled uniformly across the videos. Subsequently, the back-

ground is subtracted by calculating the absolute difference

image, fg = |im − bg|. To locate the head of a fish in the

top-view, the fg is binarized using the intermodes bimodal

threshold algorithm [68]. The skeletonization approach of

Zhang and Suen [69] is applied, and the endpoints are ana-

lyzed to locate the head of the fish. In the front-view the fg

is binarized through the use of a histogram entropy thresh-

olding method because the appearance of the fish cannot

be approximated as bimodal. The head point is estimated

as being either the center of the blob or one of the middle

edge points of the blob along the minor axis of the detected

bounding box. All three points are evaluated during the 3D

reconstruction step, and the two points with the highest re-

projection errors are discarded.

FRCNN-H: A Faster R-CNN [70] model has been

trained for each view. The bounding boxes have been ex-

tracted from all the head-point annotations in the training

sequences in order to train a head-detector model for each

view. The bounding boxes have static diameters of 25 and

50 pixels for the top-, and front-view, respectively. The

head-points are determined as the center of the detected

bounding boxes which have a minimum confidence of c.

See the supplementary material for more detailed infor-

mation on the detectors.

4.2. 2D Tracklet Construction

As zebrafish move erratically, it is difficult to set up a sta-

ble motion model. Therefore, we use a naive tracking-by-

detection approach. The tracking is done by constructing

a distance matrix between the detections in a frame and the

last detections of current tracklets. The matrix is solved as a

global optimization problem using the Hungarian algorithm

[71]. Tracklets are deliberately constructed in a conserva-

tive manner, where robustness is encouraged above length.

A new detection is only assigned to a tracklet located within

a minimum distance, denoted δT and δF, for the top and front

view respectively. If a tracklet has not been assigned a de-

tection within a given amount of time, τk, the tracklet is

terminated.

The ℓ2 distance between the head detections is used in

both views for the FRCNN-H method. However, the Maha-

lanobis distance between the center-of-mass is used for the

front-view in the Naive method. This is due to the elliptical

form of the zebrafish body, which can be utilized by setting

the covariance matrix of the blob as the Mahalanobis ma-

trix; as the fish is more likely to move along the major axis

Figure 4: The colored lines represent 2D tracklets in each

view, the node pairs are represented by the double-colored

circles, and the edges of the DAG are shown by the arrows.

The numbers represent example node and edge weights.

than along the minor axis.

4.3. 2D Tracklet Association Between Views

The 2D tracklets from each view are associated into 3D

tracklets through a graph-based approach. All 2D tracklets

with less than a given number of detections, α, are removed

in order to filter out noisy tracklets. The 3D calibration and

triangulation method from Pedersen et al. [67] is used.

4.3.1 Graph Construction

A directed acyclic graph (DAG) is constructed. Every node

represents a 3D tracklet and consists of two 2D tracklets;

one from each camera view. Each edge associates nodes,

where the 3D tracklet is based on the same 2D tracklet from

one of the views.

Create nodes: The graph nodes are constructed by pro-

cessing each top-view tracklet and identifying all tempo-

rally intersecting front-view tracklets as given by

I = FT ∩ FF, (3)

where FT and FF are the set of frames with detections in the

top- and front-view tracklets, respectively, and I is the set

of frames with detections in both views. If I = ∅, the node

is not created.

An example is presented in Figure 4, where both the blue

and red tracklets in the top-view intersects with the three

tracklets in the front-view. The outer and inner circles of

the six nodes represent the top- and front-view tracklets, re-

spectively. The number inside the nodes indicates the node

weight, which is calculated as follows.

For each intersecting frame in I , denoted f , the 2D track-

lets are triangulated. This results in a 3D point of the ze-

brafish head, pf , with a reprojection error, xf . For the Naive

method where the head is not directly detected in the front-

view, the top-view 2D point is triangulated with the three es-

timated points to find the match resulting in the smallest re-

projection error. Therefore, pf represents the point with the

smallest reprojection error. To penalize large reprojection
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errors, the complimentary probability from the exponential

cumulative distribution function (CDF), Φ, is utilized. The

exponential CDF is chosen as it approximately models the

reprojection error of the ground truth training data. The set

of weights for all valid 3D points, V , can be described by

the following set-builder notation

V = {1− Φ(xf | λerr) | f ∈ I ∧A(pf )}, (4)

where λerr is the reciprocal of the mean of the training data

reprojection error, and A states whether pf is within the

water tank. The per-frame weights in V are combined into

a single weight, W , for the entire node by

W = median(V )
|V |

|FT ∪ FF|
, (5)

and the node is added to the DAG given that W 6= 0. This

weighting scheme considers both the reprojection error and

the ratio of frames with valid 3D points compared to the

set of all frames I . The median function is used instead of

the mean function in order to counteract that a few extreme

outliers skew the weight.

Connect nodes: The nodes in the DAG should be con-

nected to all other nodes building on one of the same 2D

tracklets, as long as the 2D tracklets in the other view do

not overlap temporally, as illustrated in Figure 4. This is

done by constructing the set of node pairs, P , from the set

of nodes in the DAG, N . Each element of N , denoted n,

consists of the 2D tracklets, tF and tT, the 3D tracklet, t,

and the node weight, W . Nodes ni and nj are considered

a pair if ti,T = tj,T or ti,F = tj,F, if the 2D tracklets in the

other view do not temporally overlap, and if ti starts earlier

in time than tj . This is necessary in order to avoid assigning

multiple detections to the same frame.

This can be represented by the set-builder notation

P = {(ni, nj) | ni, nj ∈ N ∧O(ni, nj)∧T (ni, nj)}, (6)

where O assesses whether ti starts before tj , and T ensures

that the 2D tracklets in ni and nj do not temporally overlap,

where n = {tT, tF, t,W}.

For each node pair in P , the weight, E, of the directed

edge from ni to nj is based on:

• s, the speed of the fish as it moves between the last

detection in ti and the first detection in tj .

• td, the temporal difference between ti and tj .

• Wi and Wj , the weights of the nodes.

The edge weight is calculated as the complimentary prob-

ability of the CDF of the exponential distribution, Φ. The

exponential distribution is chosen as it approximately mod-

els that of the speed of the zebrafish. E is calculated by

E = (1− Φ(s | λs))e
−

td
τp (Wi +Wj), (7)

Figure 5: Graph evaluation based on the example from Fig-

ure 4. The colored lines represent 2D tracklet pairs based

on the chosen nodes in the graph; the transparent nodes are

discarded.

where τp is an empirically chosen value, and λs is the re-

ciprocal of the sum of the mean and standard deviation of

the measured speed in the training data. In case a node is

not present in any node pairs, the node will be assigned to

the DAG, but it will have no edges. The DAG is therefore a

disconnected graph.

4.3.2 Graph Evaluation

The final 3D tracklets are extracted from the constructed

DAG; this is done by recursively finding the longest path in

the graph and storing the set of nodes as a single 3D track-

let. The longest path is the path throughout the DAG, which

gives the highest value when summing all nodes and edge

weights in the path, see Figure 5. After extraction of a path,

the used nodes, and all other nodes using the same 2D track-

lets, are removed from the DAG. This process is repeated

until the DAG is empty. In case a 2D tracklet in the 3D

tracklet is missing a detection, the 3D position cannot be

assigned, but the known information of the 2D tracklet is

kept. For the Naive method, the head position of the front-

view 2D tracklet is determined by assigning the estimated

point, which minimizes the ℓ2 distance to the head positions

in the consecutive frame.

4.4. 3D Tracklet Association

The final 3D tracks are constructed from the 3D tracklets

in a greedy manner. A set of tracklets equal to the amount

of fish present, Nfish, is used as initial main tracklets. The

remaining tracklets, denoted gallery tracklets, are assigned

one by one to a single main tracklet, until no more tracklets

can be assigned.

4.4.1 Initial Tracklet Selection

The set of Nfish in the main tracks is selected by finding the

stable tracklets that are temporally concurrent in time and

span long time intervals. For each tracklet, the set of other

temporally concurrent tracklets is considered. In this set,

all possible combinations of size Nfish are investigated. If
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Figure 6: Example of internal spatio-temporal DAG, with

the spatial distance between detections in the tracklets. The

shortest path is found when switching from trackletgallery to

trackletmain in frame tn+1.

all tracklets in the set overlap temporally, the set is saved as

a valid tracklet set. The valid tracklet set with the highest

median temporal overlap is used to construct Nfish full 3D

tracks. This is done by using the greedy association scheme

described in the following sections. No 3D tracks are cre-

ated if no valid combination of size Nfish is identified.

4.4.2 Greedy Association

A greedy association algorithm is used when each gallery

tracklet is associated with a single main tracklet. The

greedy part of the algorithm concerns the way that gallery

tracklets are chosen; all gallery tracks are ranked in as-

cending order by the shortest temporal distance to any main

tracklet. If the gallery tracklet overlaps temporally with all

main tracklets, it is relegated to the end of the list. When

the gallery tracklet has been associated with a main track,

the remaining gallery tracks are re-ranked, and the process

repeated. In this way, the main tracklets are “grown” into

full tracks. The gallery tracklet assignment is based on min-

imizing the cost of assignment. The cost is based on a set of

distance measures, which are determined from two cases.

In the first case at least one main tracklet does not tem-

porally overlap with the gallery tracklet. In this case, the as-

sociation process is based on the spatio-temporal distances

between the gallery tracklet and main tracklets. All tempo-

rally overlapping main tracklets are not considered.

In the second case the gallery tracklet overlaps tempo-

rally with all main tracklets. As the spatio-temporal dis-

tances between the main and gallery tracklet is no longer

measurable, a different set of distance values are used: The

internal spatio-temporal distances, the amount of intersect-

ing frames, i.e. frames with a detection in both the main and

gallery tracklets, and the ratio of intersecting frames com-

pared to the total amount of detections in the gallery track-

let. The internal spatio-temporal distances are determined

through the construction of a DAG, where each node is a

detection in a frame, and the edge weights are the spatial

distances between the temporally previous nodes. The fi-

nal path is the one minimizing the spatial distance traveled.

An example of a graph is shown in Figure 6. The distances

are calculated as the mean of the values when the graph

switches from a detection in the gallery tracklet to the main

tracklet and vice versa.

Association: The distance measures are consolidated

into a single assignment decision through a global cost

scheme. Each distance value is normalized across valid

main tracklets into the range [0; 1] and sum to 1. The fi-

nal cost of assigning the gallery tracklet to a main track-

let, is obtained by calculating the mean of the normalized

distance values. The gallery tracklet is associated with the

main tracklet with the smallest cost, unless all main tracklet

costs are located within a small margin, β, of each other,

in which case the gallery tracklet is discarded. β directly

enforces a margin of confidence in the assignment, in or-

der to not assign a gallery traklet based on inconclusive cost

values.

5. Evaluation

The metrics used in the MOT challenges [41, 42, 43]

and the Mean Time Between Failures (MTBF) proposed

by Carr and Collins [72] are utilized to measure the per-

formance of the system on the proposed dataset. The MOT

challenge metrics consist of the CLEAR MOT metrics [73],

the mostly tracked/lost metrics [74], and the identification-

based metrics [75].

The final 3D tracks are evaluated based on a subset of

the MOT challenge metrics and the monotonic MTBF met-

ric. The primary metric used is the multiple object tracking

(MOTA) metric. The detected and ground truth tracklets are

compared using the detected and annotated head points. A

detection is only associated with a ground truth tracklet if

it is within a distance of 0.5 cm. The performance of the

system is evaluated with two different detection modules:

Naive, and FRCNN-H. The results are compared with a hy-

pothetical tracker, called Oracle, which tracks perfectly at

all times except during occlusions. This provides an upper

bound on the performance if occlusions are not handled in

any way. The full set of metrics, system parameters, and

results can be found in the supplementary material.

Results for all sequences compared to data complexity

is shown in Figure 7, and metrics for the test sequences

are shown in Table 2. It is clear that the FRCNN-H out-

performs the Naive method on the training and validation

splits; it even outperforms the Oracle tracker in three out

of four cases. This is likely due to the method being able

to detect some of the fish heads during occlusions. How-

ever, the superior performance is only seen on the two splits

where the fish are from the same cohort. On the test set the

FRCNN-H fails to generalize, whereas the Naive method

still manages to track the fish.
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Figure 7: MOTA compared to the dataset complexity, Ψ,

for all sequences in the dataset.

It should be noted that the poor performance of the Naive

method on Tst1, is suspected to be due many short tracks

from erratic movement, which the pipeline with the used

parameter settings does not handle well.

5.1. Comparison with Other Methods

It has not been possible to make a fair comparison with

the other 3D zebrafish tracking methods mentioned in Sec-

tion 2. Previous systems have been analyzed in terms of

ID swaps, fragments, precision, and recall for the generated

2D and 3D tracks. However, there is no exact description of

how these metrics are calculated. The evaluation protocol

is further limited by not including a statement on the maxi-

mum allowed distance between estimated and ground truth

tracks leading to uncertainty on the accuracy of the metrics.

Furthermore, the evaluated sequences are not described

in terms of complexity, even though occlusion is repeatedly

stated as a major hindrance in 3D zebrafish tracking. The

only common complexity indication of the datasets is the

number of fish, even though it is not representative. An ex-

ample of this is the tracking demo video of Qian et al. [62]

with ten fish and only four occlusion events during 15 sec-

onds. Wang et al. [30] describes their dataset on basis of an

occlusion probability but do not explain how it is measured.

There are currently no publicly available annotated data

and the previous systems are evaluated on seemingly sim-

plified cases of the problem. Furthermore, the used eval-

uation protocols are lacking details in such a manner that

it is not possible to determine under which conditions the

metrics have been calculated. This, along with inaccessible

codebases, severely limits the reproducibility of the results,

Method MOTA ↑ MT ↑ ML ↓ ID Sw. ↓ Frag. ↓ MTBFm ↑

T
st

1

Naive 77.6% 1 0 0 28 12.5

FRCNN-H 30.2% 0 0 0 15 8.212

Oracle 100.0% 1 0 0 0 900

T
st

2

Naive 77.6% 1 0 0 44 15.856

FRCNN-H 5.7% 0 2 2 17 2.641

Oracle 81.6% 2 0 0 25 27.396

T
st

5

Naive 39.7% 0 0 7 185 6.249

FRCNN-H 40.2% 0 0 7 115 7.577

Oracle 67.8% 1 0 0 50 28.112

T
st

1
0 Naive 48.3% 0 0 11 268 9.075

FRCNN-H 25.2% 0 3 32 225 4.904

Oracle 66.6% 1 10 0 119 23.105

Table 2: Evaluation of 3D tracks on test split. The arrows

indicate whether higher or lower values are better. MOTA:

Multiple Object Tracking Accuracy, MT: Mostly tracked,

ML: Mostly lost, ID Sw.: Number of identity swaps, Frag.:

Number of fragments, MTBFm: Monotonic MTBF.

and makes it impossible to ensure identical evaluation pro-

cedures. Therefore, it simply does not make sense to com-

pare the proposed system to the other methods under the

current circumstances.

6. Conclusion

Zebrafish is an increasingly popular animal model and

behavioral analysis plays a major role in neuroscientific

and biological research. However, it is tedious and sub-

jective to manually describe the complex 3D motion of ze-

brafish. Therefore, 3D zebrafish tracking systems are crit-

ically needed to conduct accurate experiments on a grand

scale. The significant development experienced in other

fields of MOT has not yet translated to 3D zebrafish track-

ing. The main reason being that no dataset has been made

publicly available with ground truth annotations. Therefore,

we present the first publicly available RGB 3D zebrafish

tracking dataset called 3D-ZeF.

3D-ZeF consists of eight stereo sequences with highly

social and similarly looking subjects demonstrating com-

plex and erratic motion patterns in three dimensions that are

not seen in common MOT challenges. A complexity mea-

sure based on the level of occlusions has been provided for

each sequence to make them comparable to future related

datasets. The proposed dataset is annotated with 86,400

bounding boxes and points; the latter used for estimating

ground truth 3D tracks based on the head position of the

fish. Different cohorts of zebrafish are used in the training,

validation, and test splits to avoid data leakage; a problem

that has never been addressed within the field.

The proposed Naive method scores a MOTA between

25% and 80% across the entire dataset, which correlates

well with the complexity measure of the recordings. The

open-source modular based system provides a baseline and

stepping stone for further development within the field of

3D zebrafish tracking and understanding.
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[42] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,

“MOT16: A benchmark for multi-object tracking,”

arXiv:1603.00831 [cs], Mar. 2016. arXiv: 1603.00831.

[43] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers,

I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé, “CVPR19

tracking and detection challenge: How crowded can it get?,”

arXiv:1906.04567 [cs], June 2019. arXiv: 1906.04567.

[44] S. Lyu, M. Chang, D. Du, L. Wen, H. Qi, Y. Li, Y. Wei, L. Ke,

T. Hu, M. Del Coco, P. Carcagnı̀, D. Anisimov, E. Bochinski,

F. Galasso, F. Bunyak, G. Han, H. Ye, H. Wang, K. Palaniap-

pan, K. Ozcan, L. Wang, L. Wang, M. Lauer, N. Watchara-

pinchai, N. Song, N. M. Al-Shakarji, S. Wang, S. Amin,

S. Rujikietgumjorn, T. Khanova, T. Sikora, T. Kutschbach,

V. Eiselein, W. Tian, X. Xue, X. Yu, Y. Lu, Y. Zheng,

Y. Huang, and Y. Zhang, “UA-DETRAC 2017: Report of

AVSS2017 IWT4S challenge on advanced traffic monitor-

ing,” in 2017 14th IEEE International Conference on Ad-

vanced Video and Signal Based Surveillance (AVSS), pp. 1–

7, Aug 2017.

[45] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim,

M.-H. Yang, and S. Lyu, “Ua-detrac: A new benchmark and

protocol for multi-object detection and tracking,” Computer

Vision and Image Understanding, vol. 193, p. 102907, 2020.

[46] S. Sun, N. Akhtar, H. Song, A. S. Mian, and M. Shah, “Deep

affinity network for multiple object tracking,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, pp. 1–1,

2019.

[47] E. Bochinski, T. Senst, and T. Sikora, “Extending IOU based

multi-object tracking by visual information,” in 2018 15th

IEEE International Conference on Advanced Video and Sig-

nal Based Surveillance (AVSS), pp. 1–6, Nov 2018.

[48] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking

without bells and whistles,” in The IEEE International Con-

ference on Computer Vision (ICCV), October 2019.

[49] A. Perez-Escudero, J. Vicente-Page, R. C. Hinz, S. Arganda,

and G. G. de Polavieja, “idTracker: tracking individuals in

a group by automatic identification of unmarked animals,”

Nature Methods, vol. 11, pp. 743 – 748, 2014.

[50] V. H. Sridhar, D. G. Roche, and S. Gingins, “Tracktor:

Image-based automated tracking of animal movement and

behaviour,” Methods in Ecology and Evolution, vol. 10,

pp. 815–820, Mar. 2019.

2435



[51] H. J. Mönck, A. Jörg, T. v. Falkenhausen, J. Tanke, B. Wild,

D. Dormagen, J. Piotrowski, C. Winklmayr, D. Bier-

bach, and T. Landgraf, “BioTracker: an open-source com-

puter vision framework for visual animal tracking,” CoRR,

vol. abs/1803.07985, 2018.

[52] A. Rodriguez, H. Zhang, J. Klaminder, T. Brodin, P. L. An-

dersson, and M. Andersson, “ToxTrac: a fast and robust soft-

ware for tracking organisms,” Methods in Ecology and Evo-

lution, vol. 9, pp. 460–464, Sept. 2017.

[53] A. M. T. Harmer and D. B. Thomas, “pathtrackr: An r pack-

age for video tracking and analysing animal movement,”

Methods in Ecology and Evolution, May 2019.

[54] X. Liu, P. R. Zhu, Y. Liu, and J. W. Zhao, “Tracking full-body

motion of multiple fish with midline subspace constrained

multicue optimization,” Scientific Programming, vol. 2019,

pp. 1–7, June 2019.

[55] L. Zhu and W. Weng, “Catadioptric stereo-vision system for

the real-time monitoring of 3D behavior in aquatic animals,”

Physiology & Behavior, vol. 91, no. 1, pp. 106 – 119, 2007.

[56] J. Cachat, A. Stewart, E. Utterback, P. Hart, S. Gaikwad,

K. Wong, E. Kyzar, N. Wu, and A. V. Kalueff, “Three-

dimensional neurophenotyping of adult zebrafish behavior,”

PLOS ONE, vol. 6, no. 3, pp. 1–14, 2011.

[57] X. E. Cheng, S. H. Wang, and Y. Q. Chen, “3D tracking tar-

gets via kinematic model weighted particle filter,” in 2016

IEEE International Conference on Multimedia and Expo

(ICME), pp. 1–6, July 2016.

[58] S. V. Viscido, J. K. Parrish, and D. Grünbaum, “Individual
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