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Abstract

Over the last decade, more and more cities and even countries worldwide are creating semantic 3D city models of

their physical environment based on the international CityGML standard issued by the Open Geospatial Consortium

(OGC). CityGML is an open data model and XML-based data exchange format describing the most relevant urban

and landscape objects along with their spatial and non-spatial attributes, relations, and their complex hierarchical

structures in five levels of detail. 3D city models, which are structured according to CityGML, are often used for

various complex GIS simulation and analysis tasks, which go far beyond pure 3D visualization. Due to the large size

and complexity of the sometimes country-wide 3D geospatial data, the GIS software vendors and service providers

face many challenges when building 3D spatial data infrastructures for realizing the efficient storage, analysis,

management, interaction, and visualization of the 3D city models based on the CityGML standard. Hence, there has

been strong demand for an open and comprehensive software solution that can provide full support of the

aforementioned functionalities. The ‘3D City Database’ (3DCityDB) is a free 3D geo-database solution for CityGML-

based 3D city models. 3DCityDB has been developed as an Open Source and platform-independent software

suite to facilitate the development and deployment of 3D city model applications. The 3DCityDB software

package consists of a database schema for spatially enhanced relational database management systems (ORACLE

Spatial or PostgreSQL/PostGIS) with a set of database procedures and software tools allowing to import, manage,

analyze, visualize, and export virtual 3D city models according to the CityGML standard. Within this paper, the

software suite is illustrated and explained in detail with respect to the related technical implementations and the

underlying conceptual software design. Moreover, the utilization of 3DCityDB in different projects and practical

application fields are also presented in this paper.
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Introduction
Virtual 3D city models are used today for a wide range

of applications like urban planning, environmental and

training simulations, navigation, disaster management,

energy assessment, and many more. In their paper Bil-

jecki et al. [6] present a systematic overview about the

different application fields and their respective require-

ments on the 3D city models. It was shown that most of

the applications do not just need data about the 3D

geometry and graphical characteristics, but also require

semantic information like object types, thematic attri-

butes as well as spatial and semantic interrelationships.

Semantic 3D city models, hence, are virtual models of

the physical urban environment, i.e. datasets represent-

ing the entities of the physical reality like buildings,

streets, trees, bridges, and the terrain. In contrast to 3D

models used in Computer Graphics they are structured

(e.g. subdivided and attributed), according to thematic

and logical criteria and not according to graphical or

rendering considerations. The objects of a semantic 3D

city model represent the respective real-world objects

with their thematic, geometrical, topological, and ap-

pearance properties (cf. [21]).

In order to support the interoperable exchange and

mutual usage of 3D city models over different applica-

tions as well as software systems, the Open Geospatial

Consortium (OGC) has issued the international standard

City Geography Markup Language (CityGML, cf. [17]).

Many cities worldwide and even entire countries today

have created and are maintaining CityGML-based 3D

city models. CityGML defines an object-oriented data

model of the most relevant urban objects like buildings,

vegetation, roads, water bodies, terrain etc. The struc-

tural and spatial complexity of CityGML-based 3D city

models can range from very simple to complex and

nested entities. Each object can be spatially represented

by multiple geometries of different types in 3D space (e.

g. polygons, meshes, solids) in different levels of detail

(LOD). While on the one hand applications and users

benefit from the rich data model in many ways (cf. [43]),

it puts high demands on storing, managing, and analyz-

ing the complex structured data on the other hand.

Above, 3D city models can be very large and single

CityGML files for a bigger city or region can have from

tens over hundreds gigabytes in size. However, applica-

tions and users need efficient tools to query, visualize,

and update the 3D city model.

This paper presents a free 3D geo-database solution

called ‘3D City Database (3DCityDB)’, which especially

addresses the challenges named above. 3DCityDB is an

Open Source software suite allowing to import, manage,

analyze, visualize, and export virtual 3D city models ac-

cording to the CityGML standard, supporting both ver-

sions 2.0 and 1.0.

3DCityDB is not completely new. In fact, the develop-

ment of 3DCityDB was started by the last author of this

paper back in 2003 at the Institute for Cartography and

Geoinformation at the University of Bonn. During the

first phase the companies ‘lat-lon’ and ‘3D Geo’ also con-

tributed to the developments. Between 2006 and 2012

the development was continued by the Institute for Geo-

desy and Geoinformation Science at Technical Univer-

sity of Berlin. In 2012, the developer team at TU Berlin

received the ORACLE Spatial Excellence Award for Edu-

cation and Research from ORACLE USA for the work

on 3DCityDB. Since 2013 the 3DCityDB and its tools

are being further developed at the Chair of Geoinfor-

matics of TU Munich (TUMGI) in collaboration with

the companies ‘virtualcitySYSTEMS GmbH’ (VCS) and

‘M.O.S.S. Computer Grafik Systeme GmbH’ (MOSS) on

the basis of a cooperation agreement. In order to sim-

plify the inclusion and adoption of 3DCityDB within

third-party commercial and Open Source products, the

developers decided to switch from the LGPL3 license to

the Apache 2.0 license in 2016. Today, third-party devel-

opers and software vendors from different domains are

not only using the 3DCityDB, but they also contribute to

the improvement of the functionalities and quality of the

software tools and they create their own extensions.

While some basic concepts of the 3DCityDB have

already been explained in an earlier paper [39], much

has happened since then. Therefore, this paper gives

more details on the one hand, and especially puts focus

on the changes, new features, tools, and application ex-

amples that have been developed over the last ten years

on the other hand.

The rest of this paper is structured as follows: Section

2 gives a brief introduction to the international standard

CityGML. In addition, the essential aspects and ap-

proaches for realizing the efficient management using

spatially-enhanced relational database management sys-

tem (SRDBMS) are discussed in order to provide the

foundation for designing a compact CityGML-compliant

relational database schema for 3DCityDB. Section 3 pre-

sents the 3DCityDB software tools with details about the

conceptual design and technical implementations. Sec-

tion 4 at first highlights some application areas, use

cases, research projects, and users currently employing

3DCityDB. Then it is shown, how 3DCityDB is being

used to manage a large 3D city model of entire New

York City, which has been created from Open Data. It is

also shown, which role 3DCityDB plays as a techno-

logical core component in commercial software products

of the two companies VCS and MOSS who have contrib-

uted to the 3DCityDB development for many years now.

The last section draws the conclusions about the pre-

sented work and outlines the relevant aspects of our fu-

ture research and development tasks.
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Managing 3D city models within a 3D
geodatabase
3D city modelling and CityGML

The City Geography Markup Language (CityGML) is an

international standard for the interoperable representa-

tion and exchange of virtual 3D city and landscape

models. CityGML defines a conceptual schema for the

most relevant entities of the urban space like buildings,

roads, railways, tunnels, bridges, city furniture, water

bodies, vegetation, and the terrain. The conceptual

schema specifies how and into which parts and pieces

physical objects of the real world should be decomposed

and classified. All objects can be represented with re-

spect to their semantics, 3D geometry, 3D topology, and

appearances in five predefined levels of detail (LOD 0–

4). CityGML is formally specified using UML class dia-

grams, explanations of the object classes and attributes,

and an XML schema for the file exchange format.

CityGML is issued by the Open Geospatial Consortium

(OGC). The first official version of CityGML was re-

leased in the year 2008 and the current version 2.0.0 was

published in 2012 (cf. [17]).

In CityGML, all classes and data types are grouped into a

number of thematic modules. The modules and their rela-

tionships are shown in the UML package diagram in Fig. 1.

The Core module defines the basic CityGML components

and is, hence, a mandatory package that must always be

referenced by the packages of the other modules including

Building, Bridge, Transportation, CityObjectGroup, Appear-

ance, Generic, CityFurniture, Relief, Vegetation, Tunnel,

LandUse, and WaterBody. Since CityGML is based on

OGC’s Geography Markup Language (GML) in version 3.1.

1, the Core module has a dependency of the GML3 schema

which must always be imported into the CityGML sche-

mas. Another mandatory package is the Extensible Address

Language (xAL) issued by OASIS, which maps the address

formats of different countries onto a unified XML schema

for encoding the address information of a building object in

a standardised XML structure.

The geometric-topological model of CityGML is real-

ized using a subset of the GML3 geometry model, which

is based on the ISO 19107 standard ‘Spatial Schema’ for

representing the spatial properties of real-world objects.

Supported geometric primitives include Point, Curve,

Surface, and Solid, which allow to represent spatial prop-

erties of city objects in different dimensions ranging

from zero to three. Volumetric geometries are modeled

using the well-known boundary representation (B-Rep,

cf. [13]), where each Solid geometry object is defined by

a closed outer shell (composed of individual Surface ob-

jects) and an arbitrary number of inner shells (represent-

ing any inclosures). The orientation of surfaces can be

specified explicitly when using the geometry type

OrientableSurface.

Fig. 1 Overview of the CityGML modules (cf. [17])
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For each geometry type, more complex geometries with

composite or aggregated hierarchies (cf. Fig. 2) can be

constructed. The difference between aggregate and com-

posite geometries lies in the topological relationships be-

tween the respective geometry components. For aggregate

geometries such as MultiCurve, MultiSurface, and Multi-

Solid, the spatial relationships between components are

not restricted and primitives can, hence, overlap, touch, or

be disjoint. In contrast, a composite geometry like Compo-

siteCurve, CompositeSurface, or CompositeSolid is a spe-

cial case of the aggregate geometry which must be

isomorphic to a single respective geometric primitive. This

implies that the underlying elements must be topologically

connected along their boundaries. In addition, the GML

geometry type GeometryComplex can be used to represent

a complex consisting of geometric primitives of different

types (e.g. Point and Curve). The members of a geometric

complex must not overlap and can touch at their bound-

aries only. GeometryComplex is being used in CityGML to

represent the geometric network of streets and railways.

CityGML allows to assign appearances to individual

surfaces (like Polygons), composite, and aggregate sur-

faces. Appearances can be specified by colours or tex-

tures, and each surface can be assigned any number of

appearances. Textures are represented by raster images.

In order to represent topological relationships between

geometries, CityGML utilizes the XLink concept accord-

ing to the GML specification. Each geometry object can

have a unique identifier and can form a shared part of

different aggregate or composite geometries. For ex-

ample, one polygon may be member of the outer shells

of two solids in order to explicitly express that the two

solids are touching along one side. The shared polygon

is then not represented redundantly, but is referenced

from the outer shell of the second solid by an XLink to

the shared polygon.

CityGML is very flexible regarding the expression of

spatial properties of semantic objects. For example, the

geometry of a Building object may be given in any of the

LODs 0, 1, 2, 3, and 4 (also simultaneously). Most LODs

Fig. 2 Graphical UML notation of the CityGML geometry model [17]
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allow representing the geometry by a Solid, a MultiSur-

face, or a combination of both. Besides geometrical de-

compositions, CityGML can also decompose objects

semantically into parts. For example, a building can con-

sist of building parts, which again can consist of roof,

wall, and ground surfaces etc. When objects are decom-

posed in the same way regarding their semantic as well

as their spatial structure, they are considered to be

spatio-semantically coherent. This is illustrated for a

building model in Fig. 3. Most of the LOD2 CityGML

building models available today are semantically describ-

ing the wall, roof, and ground surfaces and additionally

provide a solid geometry for the geometric representa-

tion of the building hull and its 3D shape. The semantic

objects are usually used to query and analyse the build-

ing components and their thematic attributes, whereas

the solid geometry represents the whole body and is use-

ful for geometric calculations such as the building vol-

ume and surface areas. Both aspects of describing the

building are complementary and provide a very flexible

modelling structure ranging from simple geometric

models to semantically rich models.

A 3D geodatabase for CityGML must be able to cope

with all the aspects presented above. This means, each

semantic object like a building or a tunnel can be

decomposed into parts and subparts. Each semantic ob-

ject can have a number of geometric properties of differ-

ent geometry types and LODs. Some geometry elements

can be shared from different aggregate geometries. Also

semantic objects can be part of multiple semantic aggre-

gate objects. Each surface can be assigned an arbitrary

number of appearances. The geodatabase must also be

able to handle appearance data like individual surface

textures, which typically are given in binary image file

formats (e.g. JPEG or PNG). All semantic objects have

predefined thematic attributes and, in addition, can have

an arbitrary number of generic attributes. Finally, since

3D city models cover large areas up to entire countries,

the geodatabase must be able to manage the large data

volumes and provide efficient access to the stored data

for thematic and spatial queries.

Database solutions for CityGML

Besides 3DCityDB, several other database solutions sup-

port the management of CityGML data. In the following,

a selection of these software packages are listed, along

with their major characteristics with respect to CityGML

support. The Open Source software frameworks deegree1

and GDAL/OGR2 as well as the commercial software

packages CPA SupportGIS3 and Snowflake GO LOADER

Fig. 3 Coherence of semantics and geometry in CityGML (taken from [38])
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/ GO PUBLISHER4 offer generic support for GML appli-

cation schemas. Since CityGML is a GML application

schema, these software systems are able to automatically

create database schemas for storing CityGML data for

various database management systems like ORACLE

Spatial or PostgreSQL/ PostGIS, using the CityGML

XML Schema definition files. For importing and export-

ing CityGML data sets into/from the database, deegree

and SupportGIS offer an OGC Web Feature Service

(WFS) interface whereas Snowflake GO Loader provides

a desktop tool.

The named systems all extract CityGML data from

CityGML files and insert the data into tables of spatially-

extended relational database management systems. But,

in recent years researchers have also examined different

NoSQL solutions (de Souza Baptista et al. [11]). Docu-

ment stores such as BaseX5 for XML or MongoDB6 for

JSON seem like an obvious choice for storing instance

documents of CityGML [31]. In fact, data ingest and re-

trieval is a lot faster than with RDBMS due to the

smaller serialization effort [20]. While documents stores

have their weakness with more complex queries includ-

ing joins and spatial operations, they can be a great

choice for web application backends sitting in between

the RDBMS and a client. GeoRocket,7 for example, de-

composes CityGML XML files and stores the XML frag-

ments in a (distributed) file system like Amazon S3 or

MongoDB. GeoRocket is available in an Open Source and

a commercial version. Furthermore, solutions for storing

CityGML data using the graph database Neo4j8 have

been presented by Agoub et al. [1] as well as by Nguyen

et al. [33]. The latter software has been made available

as Open Source software on Github.9

Relational database modelling for CityGML

There are strong reasons to employ spatially-extended re-

lational database management systems (SRDBMS) to store

and manage complex 3D city models. First, SRDBMS sup-

port all required geometry types and provide means for

proper spatial indexing as well as for geometric and topo-

logical analyses. Second, SRDBMS can directly be used by

most geoinformation systems (GIS) or spatially enabled

ETL (Extract, Transform, Load) tools. As described above

there exists a variety of non-relational databases like

object-oriented databases, document-oriented databases,

and graph databases, which are increasingly investigated

and employed in many application fields (cf. [35]). How-

ever, they are currently still more or less limited in their

capabilities and performance regarding spatial operations

and coordinate transformations, which are of great im-

portance for the enterprise use in GIS applications (cf.

[1]). Therefore, SRDBMS such as the commercial software

ORACLE Spatial/Locator and the Open Source software

PostgreSQL with PostGIS extension play a major role for

GIS due to their extensive capabilities in handling 3D

spatial data.

The conceptual solution for handling object-oriented

data models like CityGML in SRDBMS can be ab-

stracted to solving the problem of mapping the object-

oriented data model onto a relational data model. This

has been extensively studied and discussed in literature

over the past 25 years. Golobisky & Vecchietti [16] sum-

marized the fundamental concepts for deriving relational

database schemas using different mapping rules accord-

ing to the source UML class structures. For example, a

class shall be mapped onto one table where each row

should represent an instanced object of the respective

class. Thus, the mapped table shall have at least one pri-

mary key column which can be named as “ID” and de-

fined with the long integer data type for storing the

object identifier which must be unique within the table.

Additional columns can also be added to the mapped

table for storing the spatial and non-spatial attribute

values of the respective class objects. To handle the class

associations in relational models, a foreign key con-

straint or an associative table in case of M:N relationship

shall be utilized to link the tables mapped from the asso-

ciated classes. Moreover, the inheritance relationship be-

tween two classes can either be implemented using a

foreign key constraint to link the subclass and superclass

tables by joining their primary keys or mapped to a table

that represents the two inherited classes at the same

time. Further discussions and comparison of, among

others, the aforementioned mapping rules are given in

[19].

However, although these mapping rules from the lit-

erature allow to map CityGML data model onto a rela-

tional database model, they may easily lead to a large

number of database tables with many join relations. An

analysis of the existing relational database systems indi-

cated that a more compact database schema is much

more efficient for querying and processing of large and

complex-structured data to facilitate good performance

when interacting with the database in a real-time appli-

cation (cf. [39]). To reach this purpose, the CityGML

database schema shall result from a careful manual

process by identifying and simplifying the complex

CityGML classes and data types and mapping them onto

fewer tables with respect to the database complexity,

operating performance, and semantic interoperability.

Concerning this requirement, [24] proposed a set of

fine-grained mapping rules, which have been successfully

adopted for designing the 3DCityDB database schema

and are briefly reviewed in the following subsections.

Mapping an inheritance hierarchy onto one table

With this approach, multiple CityGML classes belonging

to an inheritance hierarchy can be mapped onto one
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single table. For example, a table named CITYOBJECT

can be used for the instance objects and their attribute

values of the GML class _GML, and _Feature as well as

the CityGML class _CityObject (cf. Fig. 4). For each

CityGML top-level class like AbstractBuilding, Abstract-

Bridge and AbstractTunnel etc. a separate table associ-

ated with the CITYOBJECT table shall be created to

hold the feature attributes. This way, the CITYOBJECT

table can be used as a central registry of all the CityGML

top-level features and allows for rapidly retrieving a list

of CityObjects through a query on their attributes like

spatial extent via a user-selected bounding box.

Mapping classes at the same inheritance hierarchy level

onto one table

This mapping approach utilizes only one table to rep-

resent multiple classes which are subtyped from a

common class and at the same time belong to the

same inheritance hierarchy level (cf. Fig. 5). This way,

the subclasses are logically mapped onto the super

class table, such that the retrieval of data contents of

all subclasses just needs to perform only one query on

the table in order to avoid multiple table joins for

speeding up the overall performance. To distinguish

the different types of instance objects stored in the

table, an additional column OBJECTCLASS_ID is re-

quired which can store a numeric value in each row

for representing the respective class type. This type in-

formation is static and can be well documented in an

additional table OBJECTCLASS whose primary key

values are used for enumerating the object class IDs

and referenced by the OBJECTCLASS_ID columns of

the class tables. Moreover, additional columns for de-

scribing the meta-information like class name and par-

ent class name etc. of each feature class can be added

to the OBJECTCLASS table which allows third-party

applications to directly retrieve the class information

from the database for interpreting the queried feature

objects.

Note that this mapping approach is not generally ap-

plicable since it also has its own usage limitations in

some particular cases. For example, if the subclasses

have very different attributes or associations to other

classes, a large number of empty cells will occur in the

database table and can result in a lower storage effi-

ciency, especially when the number of subclasses is in-

creased. Considering this situation, the utilization of this

mapping approach shall satisfy some certain conditions

regarding the model definitions and structures which

may typically have the following characteristics:

� The super class shall be an abstract class that holds

all attributes and associations which will be

inherited by the concrete subclasses.

� Every of the subclasses shall not have any further

attributes or associated with other classes.

With these conditions, the storage efficiency can be

retained to the highest degree, because only one additional

column e.g. OBJECTCLASS_ID storing the class type in-

formation needs to be added to the table. An analysis of

the CityGML model structure shows that this mapping

Fig. 4 Example of mapping an inheritance hierarchy onto one table
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approach can be well applied to the relational database

modelling for CityGML to improve the overall database

performance and efficiency. For example, the thematic

surfaces like wall surfaces, roof surfaces, and ground sur-

faces etc. of each feature type like Building, Tunnel, and

Bridge are abstracted to an abstract class called _Boundar-

ySurface which holds the relevant attributes and associ-

ation information. For each type of thematic surface, a

concrete class i.e. WallSurface, RoofSurface, and Ground-

Surface etc. being a subtype of the class BoundarySurface

is defined individually. This model definition exactly satis-

fies the afore-outlined conditions of this mapping ap-

proach allowing for realizing the fast data retrieval. For

example, a typical query being usually applied is the ex-

port of a semantically rich building (LOD > = 2) to a 3D

graphics format. In this case, the thematic surfaces like

roof and wall surfaces forming the outer shell of the build-

ing object can be directly queried by joining the surface

table with the building table instead of using multiple

database joins.

Mapping aggregations and compositions onto one table

In objected-oriented data models, recursive aggregation

relations of features can be properly modelled by means

of a well-known design pattern called ‘Composite

Pattern’ (cf. [14]) which typically uses three interrelated

classes (cf. Fig. 6) for constructing a tree-like data struc-

ture. According to the concept of this design pattern,

each instance of the class CompositeObject can contain

an arbitrary number of, but at least one instance of the

class BasicObject or CompositeObject. The BasicObject

corresponds to the leaf in the aggregation hierarchy and

Fig. 6 General idea for the mapping of an object-oriented model with the composite pattern onto an efficient relational database model

Fig. 5 Example of mapping multiple classes onto one table
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shall not have child components. The conventional solu-

tion for the mapping of such data model onto relational

structure is to use a foreign key for joining each object

with its parent object to querying all the aggregated ob-

jects. In this case, recursive database queries must be

performed which may cause high performance cost, es-

pecially if the recursion depth is unknown.

In order to achieve good performance when retrieving

the elements of a tree of objects, a specific optimization

approach has been developed. The key idea of the data-

base design is to utilize a single database table for the

mapping of all the involved feature classes along with

their inheritance relationships. A foreign key column

PARENT_ID is used for representing the composition

relationship. Additionally, this database table receives a

foreign key column ROOT_ID which holds the ID of the

root element of each composite hierarchy and hence al-

lows for fast retrieval of all its child elements by query-

ing on the attribute ROOT_ID in order to avoid time-

costly recursive database joins. Moreover, since three

classes are mapped onto one table, an additional column

OBJECTCLASS_ID is required for supporting the auto-

matic determination of class affiliation information. This

mapping approach can benefit the relational database

modelling for the CityGML data modules like Building,

Bridge, and Tunnel.

Mapping CityGML’s B-rep geometries onto a single table

The optimization approach for the mapping of compos-

ite pattern can also be applied for the handling of com-

plex data types like the B-Rep geometries such as

aggregated/composite surfaces and solids (cf. Fig. 7).

With this optimization step, all surface-based geom-

etry types can be represented in a simplified data model

according to the composite pattern (cf. the previous sub-

section) and consequently mapped onto a compact table

allowing for high-performance database query of all the

geometry elements of an aggregation hierarchy. Instead

of using a class ID column, the class affiliation is realized

using a number of flag columns for characterizing the

different types of geometry and aggregation. For ex-

ample, the IS_SOLID distinguishes between surface and

solid geometry, and the IS_COMPOSITE can be used to

determine whether this is an aggregate (e.g. MultiSolid,

MultiSurface) or a composite (e.g., CompositeSolid,

CompositeSurface) geometry element. This approach of-

fers semantic clarity of the table structure and also al-

lows to manage the surface and solid geometries within

a single table at the same time. Consequently, the inter-

action and query of the geometry data from this table

becomes much simpler. For example, if a feature object

owns a MultiSurface or MultiSolid property, a foreign

key column can be added to the class table referencing

to the primary key column of the geometry table to

access the geometry data. Furthermore, since each sur-

face geometry element is explicitly stored in a tuple, it

can be easily augmented with appearance information

like texture images, colors, or materials by associating

the geometry table with the appearance data table via

the corresponding row ID.

Implementation of the 3DCityDB and its tools
The relational database schema is the core component

of the 3D City Database (3DCityDB). The mapping rules

introduced in the previous section were used for a man-

ual mapping of the object-oriented data model of

CityGML onto a relational database schema. The data-

base schema employs spatial datatypes to represent geo-

metric properties of CityGML objects. Currently,

3DCityDB supports two different spatial relational data-

base management system (SRDBMS), the first is the

commercial SRDBMS ORACLE Spatial/Locator and the

second is the Open Source SRDBMS PostgreSQL with

the PostGIS extension.

Compared to other systems discussed in subsection 2.

2 the resulting database schema is more compact in the

sense that 3DCityDB requires fewer tables with respect

to those systems that fully automatically generate the

database schema. The manual mapping also ensures that

table and attribute names are identical (or at least simi-

lar) to the respective class and property names of the

CityGML data model. The entire relational schema is ex-

plained in full detail in the 3DCityDB documentation.

This makes it easy for users who directly need to inter-

act with the tables in the database. In this way, large and

complex CityGML datasets can be not only efficiently

managed, analyzed, and queried within a central data re-

pository using the database language SQL, but they can

also easily be accessed by external GIS and ETL software

applications to e.g. enrich a 3D city model by adding in-

formation to the corresponding database tables.

In addition to the database schema, stored procedures

are provided in PL/SQL (ORACLE) or PL/pgSQL, re-

spectively, to perform basic tasks like the computation

of bounding volumes of 3D objects and the entire 3D

city model, the deletion of objects, or the management

of spatial indexes. Furthermore, 3DCityDB comes with a

number of software tools (cf. Fig. 8), which allow for the

flexible extraction of 3D city model data subject to the-

matic and spatial filter criteria in the CityGML format,

in 3D visualization formats like KML, COLLADA, and

glTF as well as in spreadsheet formats.

Database stored procedures

The first important 3DCityDB software toolkit are the

stored procedures which are automatically installed on

the database side during the setup procedure of a 3DCi-

tyDB database instance. They are written in the database
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Fig. 7 GML geometry types being used in the CityGML standard (cf. [24])
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scripting language PL/SQL for ORACLE and in PL/

pgSQL for PostgreSQL. Since some of these procedures

expose related functionalities, they are organized into six

packages, namely SRS, STAT, INDX, ENVELOPE,

DELETE and UTIL (cf. Fig. 9). The package SRS mainly

provides a useful function allowing to transform the

stored 3D spatial data into another coordinate system

during the export process. The package STAT can be ap-

plied to count all entries in all data tables and generate a

report listing the number of rows in the individual data

tables. The package DELETE consists of several func-

tions allowing to delete single or multiple city objects

Fig. 8 Key components of the 3DCityDB Software Suite

Fig. 9 Overview of the 3DCityDB database procedure packages
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from the database according to the given row ID or an

object class ID in the CITYOBJECT table. Each function

automatically takes care of the integrity constraints be-

tween the related tables to properly clean up the corre-

sponding data contents. The package ENVELOPE

provides functions for calculating the maximum 3D

bounding volume of a city object according to its geom-

etry contents and also allows for updating the ENVE-

LOPE attribute of the respective city object with the

calculated value. In order to ensure data consistency, it

is hence very important to run this function whenever

one of the geometry representations of a city object has

been changed. The package INDEX contains the func-

tion for activating and deactivating the ordinary indexes

as well as the spatial indexes on those columns that are

frequently used for performing queries. This allows to

deactivate the spatial indexes before running a CityGML

import in case of very big datasets and to reactive the

spatial indexes afterwards. This way, the import process

is able to run much faster than with enabled spatial in-

dexes. The last package UTIL offers various utility func-

tions i.e. checking the database version information,

performing affine transformation on the 3D coordinates,

determination of the mapping relationships between

3DCityDB tables and CityGML classes etc. All functions

are explained in detail within the 3DCityDB

documentation.

CityGML import/export tool

One of the major software tools included in the 3DCi-

tyDB software package is the CityGML Importer/Ex-

porter, which is a Java-based desktop application serving

as a front-end for the 3DCityDB database with a graph-

ical user interface (cf. Fig. 10). The Importer/Exporter al-

lows for high-performance reading and writing of large

CityGML datasets with arbitrary file sizes. For reading

and writing CityGML documents, a low-level Java API

called citygml4j10 is employed which provides a conveni-

ent way to process and validate CityGML datasets

against the CityGML and xAL schema definition files.

This is realized by using the Java XML Schema binding

compiler (xjc) included in the Java™ Architecture for

XML Binding (JAXB11) to compile the CityGML, GML,

and OASIS xAL models to a set of corresponding Java

Fig. 10 User interface of the CityGML Import/Export Tool
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classes which are kept static and provide an object-

oriented view for handling CityGML features along with

their properties in Java during runtime. The import of

CityGML datasets works chunk-wise. Each CityGML

top-level feature element (e.g. a Building, WaterBody,

Street object) is read individually and automatically

transformed to a Java object according to the corre-

sponding class definition in the citygml4j context. All

these Java objects are organized within a buffered queue

and are successively imported into the database concur-

rently by means of a multi-threaded approach to in-

crease the overall processing performance. In order to

make full use of multiple CPU cores and to avoid the

thread life-cycle overhead, a thread pool is employed for

dynamically managing and controlling the number of

the threads according to the number of the available

processors of the hardware being used.

An important step of the import process is the reso-

lution of XLinks in the CityGML datasets. This ad-

dresses the issue that a CityGML feature or geometry

could be referenced by other ones using GML’s XLink

mechanism. Since some CityGML objects in the begin-

ning of a CityGML file can point to objects located at

the end of the same CityGML file, resolving the XLinks

usually requires reading the entire CityGML dataset into

main memory. This, however, will eventually cause a

memory overflow when dealing with very large CityGML

datasets (> > 4GB), which is not so uncommon today.

For example, the CityGML file representing the one mil-

lion building models from the New York City dataset

presented in section 4.1 has a size of 32 GB. To over-

come this problem, CityGML features and geometries

are first read and imported, neglecting all the XLink ref-

erence information which, however, is temporarily stored

into the database. When the first import process is done,

the XLink reference information stored in the database

will be resolved again and written into the correspond-

ing CityGML data tables to complete the entire

CityGML import process. This is illustrated in the center

and upper part of Fig. 11.

During the export process, a list of GMLIDs of the

top-level features satisfying the user-defined filter criteria

i.e. feature class types and geographic bounding box etc.

are first queried from the database. In the subsequent

step, a worker pool containing a number worker threads

is constructed and each GMLID is processed by a

worker thread for creating a citygml4j object from the

CityGML feature content queried from the respective

database tables. In the last step, the citygml4j objects are

marshalled to XML elements and written to a CityGML

Fig. 11 Software structure of the CityGML Import/Export Tool (cf. [39])
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instance document. This is illustrated in the center and

lower part of Fig. 11.

The 3DCityDB Importer/Exporter allows just to valid-

ate CityGML datasets against the respective XML sche-

mas. If datasets should also be validated regarding their

semantic and geometrical correctness or regarding their

geometric-topological consistency, external tools like

CityDoctor12 (cf. [42]) or val3dity13 (cf. [28]) must be

used.

Web feature service

Although the CityGML Importer/Exporter offers exten-

sive functionalities for reading and writing CityGML doc-

uments from the database, it is only applicable in a

desktop environment. To overcome this limitation, 3DCi-

tyDB comes with a web service implementation extending

the core modules of the CityGML Import/Export tool and

allowing for web-based access to the 3D city objects

stored in the database. The 3DCityDB web service imple-

ments the OGC Web Feature Service 2.0 (WFS 2.0) Inter-

face Standard, which provides a standardized and open

interface for requesting geographic features across the

Web using platform-independent requests using a simple

HTTP call. Thus, the 3DCityDB users are no longer re-

stricted to use the Importer/Exporter tool for the data re-

trieval only but can also directly use the WFS interface via

a web browser or a WFS-aware applications. Please note,

that the Open Source version of the 3DCityDB WFS im-

plements the WFS 2.0 Simple Profile only, which is

enough to retrieve objects by their GMLID. A full, trans-

actional WFS-T is commercially available, though.

The 3DCityDB WFS is implemented as a Java web

application based on the Java Servlet technology and

must, hence, be run in a Java servlet container like Apa-

che Tomcat on a web server. The workflow of executing

a WFS procedure is illustrated in Fig. 12. When sending

a request to the WFS server to retrieve certain CityGML

features, the 3DCityDB WFS servlet will first capture

and parse the request information and translate it to a

corresponding database query to obtain a list of

GMLIDs of the those CityGML top-level features that

satisfy the filter criteria encoded in the WFS request

messages. These feature IDs will be then handed over to

the CityGML Import/Export module which utilizes its

pre-complied citygml4j/JAXB classes as well as the

multi-threading API for efficiently querying and generat-

ing the corresponding CityGML XML elements. Finally,

these XML datasets will be returned as a response of the

WFS request and can be directly downloaded or used by

a WFS client.

KML/COLLADA/glTF exporter

The CityGML Import/Export tool has an extensive plu-

gin API enabling developers to create plugins for the Im-

port/Export tool that dynamically extend the existing

functionalities. A plugin can be easily installed by copy-

ing its mandatory files – including the compiled JAR file

and related libraries etc. – into a specific subfolder of

the Importer/Exporter installation directory. The plugin

will be automatically launched when starting up the Im-

porter/Exporter. In addition to the functional aspects, a

plugin may also have its own GUI that can be embedded

and rendered in the main operations window of the

CityGML Import/Export tool. Per default, the 3DCityDB

comes with a plugin called KML/COLLADA/glTF Ex-

porter. Using this plugin, the spatial contents of

CityGML features can be directly exported to the 3D

visualization formats KML, COLLADA, and glTF. These

formats were chosen, because they allow to directly view

the visualization models with virtual digital 3D globes

like Google Earth, ESRI ArcGlobe & ArcGIS Pro, NASA

Worldwind, and CesiumJS. In order to be able to render

Fig. 12 Implementation of the 3DCityDB Web Feature Service

Yao et al. Open Geospatial Data, Software and Standards  (2018) 3:5 Page 14 of 26



3D city models with acceptable frame rates for inter-

active exploration, larger datasets need to be geographic-

ally subdivided into tiles. 3DCityDB supports tiling as

well as the generation of some master file (in KML or

JSON), which loads the respective tiles according to the

current camera perspective on demand. 3DCityDB can

also adjust the base heights of individual 3D objects dur-

ing export in order to align them with a digital elevation

model (DEM). This works automatically with the DEM

used in Google Earth. Users can choose which LOD

should be exported and which appearance should be

used. For 3D objects that do not have appearance infor-

mation attached, users can specify simple colour and

styling rules. Also information balloons containing the-

matic data for each 3D object can be generated.

The export process (cf. Fig. 13) follows a similar logic to

that of the CityGML exports. In the first step, the GMLIDs

of the features are first queried from the database according

to the user-defined filter criteria and then passed to a

worker pool which is implemented using the multi-

threading API of the Import/Export tool. Depending on the

hardware being used, this worker pool is able to dynamic-

ally create an optimal number of worker threads each of

which is responsible for taking one GMLID after another

from the waiting queue and querying the respective spatial

data contents from the database for creating a KML/COL-

LADA java object. The class definition of the java object is

pre-generated by means of the XML Schema binding com-

piler (xjc) for compiling the XML schema definition files of

KML and COLLADA to the corresponding Java classes

and allowing for directly marshalling the created java ob-

jects to the corresponding XML elements using the JAXB

library. Furthermore, the creation of the glTF models can

be done in a subsequent processing step, which utilizes a

third-party software tool called Collada2glTF for converting

the COLLADA models to glTF.

Spreadsheet generator plugin

The 3DCityDB offers another plugin called Spreadsheet

Generator, which can be installed optionally. This plugin

can be used to generate simple reports about objects of the

stored 3D city model. It exports the thematic contents of a

3D city model from a 3DCityDB instance to a simple table

format, either to a CSV or a Microsoft Excel file, where the

first column lists the unique identifiers (GMLIDs) of the

exported city objects each of which refers to one spread-

sheet row. The generated spreadsheets can be opened

using a spreadsheet application like Microsoft Excel and

Open Office Calc etc. or uploaded to a Cloud-based online

spreadsheet service like Google Spreadsheets or Microsoft

OneDrive, which allows for interactive, collaborative web

access and easy data exploration by multiple users. The

3DCityDB-Webmap-Client can link 3D visualization

models created by the KML/COLLADA/glTF Exporter

with Google Spreadsheets or Google Fusion Tables for

interactive display of object attributes (see section 3.6

below for more details).

The spreadsheet generation process is similar to the

workflow of the KML/COLLADA/glTF export and is

also implemented based on a multi-threading program-

ming by means of the concurrency API of the Importer/

Exporter tool (see Fig. 14). Each thread in the worker

pool is dedicated to query the thematic contents of a

top-level feature and map the results onto a table row

Fig. 13 Workflow of generating KML/COLLADA/glTF visualization models
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based on a so-called table mapping template which can

be freely defined by the users. This template is text-

based file and comprises a set of key-value pairs (kvp)

each of which can be seen as a column definition: The

“key” of a kvp specifies an expression which can be dir-

ectly translated to an SQL statement for fetching the

data from a column of a specific 3DCityDB table,

whereas the “value” specifies the column name in the

output spreadsheet. With this template file, the value of

each spreadsheet column can be dynamically queried

from the database for every city object and written to

the spreadsheet during export. In case that more than

one value is returned, it is possible to select the first or

the last one of the returned values or simply group them

as a comma separated string value which can be passed

into the corresponding spreadsheet cell.

3DCityDB web-map-client

Starting from version 3.3.0, the 3DCityDB software

package comes with a new tool called 3DCityDB Web-

Map-Client or simply called 3D web client acting as a

web-based front-end for 3D visualization and interactive

exploration of arbitrarily large semantic 3D city models.

Basically, the 3D web client is an extension of the

CesiumJS WebGL virtual globe. The latter is an Open

Source software offering high-performance and cross-

platform visualization and exploration of 3D geographic

contents on the web without the need to install add-

itional web browser plugins. The 3D web client imple-

ments various extensions to the CesiumJS virtual globe

as shown in Fig. 15. The major new functionality is the

support and handling of configurable data layers allow-

ing to create visualization mashups consisting of digital

terrain models, imagery data as well as of (possibly large

tiled) 3D visualization models in the formats like KML,

CZML, glTF, 3DTiles, point. Users can interactively add

and remove, enable and disable their selected data layers

on the 3D map. In addition, user interaction with the 3D

models is also supported, e.g. highlighting of 3D objects

on mouse-over and mouse-click, hiding and showing of

the selected 3D objects as well as the exploration from

different view perspectives using third-party mapping

services like Microsoft Bing Maps with oblique view,

Google Streetview, and a combined version using Dual-

Maps. Moreover, the 3D web client implements a

Cloud-based online spreadsheet API, i.e. the Google Fu-

sion Table API, to query thematic information for

clicked 3D objects stored in a tabular form. These func-

tions allow to link the 3D visualization models generated

from the KML/COLLADA/glTF exporter plugin with

the tabular thematic data exported from the Spreadsheet

Generator plugin within a 3D web client project. When

a user clicks onto a 3D object, the linked Google Fusion

Table is queried for the respective row and all its attri-

butes are displayed then (cf. [18, 45]). In the past four

years, this 3D web client has been successfully used in

many research projects. It was awarded with the first

price in the ‘Best Students Contribution’ of the ‘Web3D

city modelling competition’ at the ACM SIGGRAPH

Web3D Conference in 2015.

The graphical user interface of the 3D web client is

shown in Fig. 16. Users are able to control the visibility

of the selected data layers by deactivating their check-

boxes or clicking on the Remove selected layer button to

completely remove it from the 3D web client. In the ex-

ample in Fig. 16, three data layers are loaded into the

web client. Depending on the distance between the cam-

era and the individual building objects, one of the three

geometry representations are automatically chosen by

the 3D web client for the display and dynamically

Fig. 14 Workflow of generating spreadsheet from 3DCityDB

Yao et al. Open Geospatial Data, Software and Standards  (2018) 3:5 Page 16 of 26



Fig. 16 Example of displaying multiple data layers on the 3D web client

Fig. 15 Workflow of using 3DCityDB web client coupled with Cloud-based online spreadsheets
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switched during the runtime according to the Level of

Detail mechanism: The buildings being far away from

the camera are simply rendered as extruded or untex-

tured geometries, while the textured buildings with

higher details will be rendered when viewing the build-

ing objects from a short distance. In this way, the 3D

visualization of large 3D city models with higher level of

details (LOD ≥ 2) can be efficiently performed. The 3D

web client automatically detects, if it is being executed

on a mobile device like a smart phone or tablet com-

puter. In this case, icons and text sizes are adjusted

properly. When running in mobile mode, the client can

also continuously align the 3D viewer with the user’s

position and heading.

Finally, it is possible to create a scene link saving the

current configuration of the 3D web client by clicking

on the Generate Scene Link button. This scene link en-

codes the information about the title of the 3D project,

activation status of the shadow visualization, parameters

of all layers, the current camera perspective etc. The cre-

ated scene link can be stored as a browser bookmark or

favourite and can also be sent e.g. by email to friends,

colleagues, project partners etc. When they open the

link, the same scene will open in their browsers. This

encoding of the entire 3D client project within the URL

is based on earlier work on public cooperative web maps

as described in Kolbe et al. [23].

Examples for applications and the adoption of
3DCityDB
The 3DCityDB software suite has been and is being

employed by many cities as well as by mapping agencies

on regional, state, and country level worldwide (concrete

examples are named in subsections 4.1 to 4.3). It is also

being used by companies as an embedded component of

their products or to work with CityGML datasets in

various application domains.

Apart from the adoption in administration and industry,

3DCityDB has been applied for storing and analysing se-

mantic 3D City and Landscape Models in many research

projects. For example, Konde and Saran [25] report their

experience from using 3DCityDB in their research on

spatio-temporal semantic analysis of traffic noise. 3DCi-

tyDB has been used by Santana et al. [36] in their research

on mobile visualization of urban energy modelling and

simulation results as well as by Tymkow et al. [40] for

flood modelling. Agugiaro [2] describes using the 3DCi-

tyDB tools for creating an integrated CityGML-based 3D

model of Vienna. 3DCityDB is also being used for Smart

City projects, for example, the ‘Future Cities Pilot 1’ of the

Open Geospatial Consortium (cf. [9]) and within the so-

called ‘Smart District Data Infrastructure (SDDI)’ as pre-

sented by Moshrefzadeh et al. [32]. Due to the Open

Source nature of the 3DCityDB, researchers also report on

modifying specific parts of the software. For example,

Ghassoun and Löwner [15] document their adaption and

usage of the 3DCityDB migration SQL script for the cal-

culation of building volumes and Blut et al. [7] describe

their development of a simplified database schema –

which is inspired by the 3DCityDB schema – for using

CityGML models on smartphones.

In the following subsections, the three main contribu-

tors to the 3DCityDB Open Source project, namely the

Chair of Geoinformatics at Technical University of

Munich and the companies virtualcitySYSTEMS and M.

O.S.S., describe practical use cases and how 3DCityDB is

being employed as a part of commercial software sys-

tems. This illustrates the usability of the 3DCityDB soft-

ware solution for projects in research, administration,

and industry.

3D city model of new York City

The first example is the “Semantic 3D Model of New York

City”, which is a student project that was carried out in

the context of the three master theses of Barbara Burger,

Berit Cantzler, and Christof Beil within the master’s pro-

gram Geodesy and Geoinformation at TUM (cf. [5, 22]).

The key objective of the project has been the creation of a

homogenized and integrated semantic 3D city model of

New York City (NYC) from existing public 2D, 2.5D, and

3D datasets provided in the NYC Open Data Portal. Dif-

ferent spatial and semantic transformations together with

some photogrammetric analyses were investigated and

performed using the ETL tool Feature Manipulation En-

gine (FME) from Safe Software. The resulting 3D city

model integrates data from around 30 separate datasets

from the NYC Open Data Store into a single CityGML

dataset. It comprises a variety of 3D feature types includ-

ing all NYC buildings, land parcels, roads, parks, the

digital terrain model, and water bodies. The CityGML

dataset has also been imported into a 3DCityDB instance

for data management and exported to tiled KML/glTF

models for Web-based 3D visualization. In order to inter-

actively explore the resulting 3D city model in the 3DCi-

tyDB web client (see Fig. 17 and section 3.6), the

generated 3D visualization models have been published

on the 3DCityDB web server. The entire CityGML dataset

as well as many online demos and videos are provided on

the project homepage.14

The 3D city model of NYC and the 3DCityDB have been

used already for different applications such as solar irradi-

ation analysis and traffic simulations. In order to estimate

the potentials of solar energy production for roofs and fa-

cades of all buildings in NYC a dedicated software tool

called ‘Solar Potential Analysis Tool’ developed by TUM

(cf. [43]) has been employed. This Java-based simulation

tool works directly on the data tables of the 3DCityDB. It

takes the 3D building models together with the calculated
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sun positions for each hour over an entire year as well as

an approximated sky dome to estimate the direct, diffuse,

and global solar irradiation using a ray casting approach,

taking into account the shadowing effects of the surround-

ing 3D topographic objects and the digital elevation model.

The estimated solar power values are then aggregated on a

monthly basis at first for individual surfaces, then for all

wall and roof surfaces of each building, and finally for each

building. All aggregated data are attached to the 3D build-

ing models as CityGML generic attributes on Building,

WallSurface, and RoofSurface objects within the 3DCi-

tyDB. Also, textures for each surface and month are gener-

ated and attached to the building models. In addition to

the solar power, the Sky View Factor (SVF) which is a value

ranging between 0 and 1 representing the visible fraction

of the sky dome has also been calculated for each surface

of the buildings.

A 3D visualization model (a tiled KML/glTF model) has

been generated from the textured building models using

the 3DCityDB KML/COLLADA/glTF Exporter. The the-

matic information (solar irradiation values) was exported

on building level using the Spreadsheet Generator Plugin

and the resulting file was uploaded to Google Fusion Ta-

bles. The 3DCityDB Webmap client can now be used to

interactively explore the 3D city model with the simulation

results as shown in Fig. 18. The same process has been ap-

plied to the 3D city model of Rennes, France, within the

OGC Future Cities Pilot project (cf. [9, 10]).

virtualcitySUITE - a 3DCityDB-based software from VCS

virtualcitySYSTEMS15 (VCS) is a key contributor to the

3DCityDB project and expert in the field of CityGML-

based 2D/3D Web GIS solutions. With the virtualcity-

SUITE, VCS offers a modular software solution for the

management, distribution, web-based visualization as

well as analysis and simulation of massive 3D geodata,

whose core component is the 3DCityDB. Being based on

open standards, interfaces and APIs, the virtualcity-

SUITE ensures a reliable and scalable basis for innova-

tive Smart City applications.

VCS has augmented the 3DCityDB with many ad-

vanced database functions and plugins for the Importer/

Exporter that enable data management and maintenance

processes such as data quality assessment, the integra-

tion of city objects with different LoDs and from differ-

ent data sources into a clean and redundancy-free

database representation, or the deletion of city objects

using user-defined filter criteria. The Open Source WFS

implementation has been extended to retrieve arbitrary

subsets of the 3D city model based on thematic and

spatial queries and to modify city objects using insert,

update and delete operations. This allows for easily inte-

grating 3DCityDB content into vendor-neutral applica-

tions and data maintenance workflows based on an open

and standardized OGC web interface to the 3DCityDB.

Users of 3D city models often require the city objects

to be provided in industry CAD or GIS formats other

than CityGML to be able to seamlessly use the data in

their software products and workflows. To tackle this re-

quirement and to bring the 3D geodata into use, VCS

has developed workspaces for the Feature Manipulation

Engine (FME) from Safe Software to export 3DCityDB

content into various target formats such as 3D Shape,

Sketchup, DWG, DXF or 3D PDF. Together with

Fig. 17 3D Visualization of the created 3D City Model of NYC within a Web browser

Yao et al. Open Geospatial Data, Software and Standards  (2018) 3:5 Page 19 of 26



templates for processing and exchanging CityGML data,

the workspaces have been published as 3D Solution

Templates on FME Hub.16

The virtualcitySUITE provides a web-based authoring

tool for the creation of 3D web maps optimized for the

high-performance and scalable visualization of 3D city

models and geodata in modern web browsers and mo-

bile devices without the need for additional plugins. De-

tails and performance evaluations are given in [37]. User

can choose any content from the 3DCityDB and have it

automatically converted into a streaming dataset for the

web. The Open Source web globe CesiumJS together

with the candidate OGC community standard 3D Tiles

is used as client-side rendering technology. The web

maps are not limited to CityGML-based 3D models but

also support massive 3D point clouds, 3D meshes, ob-

lique imagery and legacy 2D map layers being seamlessly

integrated into one application. They therefore serve as

rich basis for building smart city applications on top of

the 3D city model.

The virtualcitySUITE is in production use by cities

and municipalities worldwide. Amongst others, the cities

of Berlin, Hamburg, Helsinki, Rotterdam, Vienna,

Singapore, Frankfurt, Dresden, Hannover, Potsdam, Salz-

burg, Falun, and Zurich as well as the German federal

surveying agencies of Bavaria and Mecklenburg-

Vorpommern rely on the 3DCityDB and the virtualcity-

SUITE for managing their 3D city model. The screen-

shot below shows the Berlin 3D city model consisting of

more than 550,000 fully textured CityGML building

models managed based on the virtualcitySUITE. It is

used, amongst others, for the Berlin Economic Atlas,17 a

publicly accessible web map application that advertises

Berlin as business location by combining 3D city assets

with business and POI information. The Berlin 3D city

model is available as open data and can be freely down-

loaded in different data formats from a web-based 3D

geoportal18 that has been realized with VCS technology

on top of the 3DCityDB (Fig. 19).

Figure 20 shows further examples of CityGML-based

3D city models that are managed in the 3DCityDB and

used in application scenarios realized with the virtualci-

tySUITE technology: Collaborative, web-based urban

planning in the virtual urban space using CityGML

models, BIM designs and 3D drawings (top left), linking

results of a solar irradiation analysis on roofs and build-

ing façades with the city objects (top right), WFS-based

search for buildings affected by a flooding scenario

(lower left), and wind field and turbulence simulation of

newly planned buildings in the built environment (lower

right).

novaFACTORY – A 3DCityDB-based Software from

M.O.S.S.

M.O.S.S. Computer Grafik Systeme GmbH19 is another

key contributor to the 3DCityDB project and offers a

range of advanced geospatial data management and pro-

cessing solutions. It owns an extensive commercial prod-

uct suite called novaFACTORY which utilizes the

3DCityDB database schema as its core component for

handling and processing CityGML datasets within a 3D

geospatial data infrastructure (3D GDI). Based on the

Fig. 18 3D visualization and exploration of the results of a solar irradiation estimation for buildings in central Manhattan
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3DCityDB, the novaFACTORY not only supports the ef-

ficient storage of 3D city models but also provide many

additional data manipulation functionalities. For ex-

ample, the CityGML data stored in the 3DCityDB can

be automatically transferred into e.g. ESRI Geodatabase

and allows to be easily interacted and explored using

ArcGIS software like ArcMap. Besides, the CityGML

data can also be disseminated in a variety of data for-

mats, e.g. CityGML, KML/COLLADA, VRML, SKP, 3D

Shape, 3D PDF and DXF etc. via a web-based service or

graphical user interface. As an advanced module of the

novaFACTORY suite, the ‘novaFACTORY 3D Pro Mod-

ule’ additionally supports the automatic enrichment of

the 3D city models based on an automatic process of

recognizing the building roofs from photogrammetric

data. Once the photogrammetric datasets have been suc-

cessfully approved, the derived 3D city models will be

automatically passed to the 3DCityDB and spread over

the corresponding tables. In addition, the existing 3D

city models stored in the database can also be updated

in a user-defined regular time interval according to the

actual changes of the real-world objects based on their

unique model identifiers. The update process can be car-

ried out using the software called “CityDoctor” (cf. [42])

for controlling the data quality regarding the semantic,

topologic or geometric data errors which shall be fixed

before importing the data into the 3DCityDB database.

Moreover, the novaFACTORY also supports a number

of data analysis and processing functions invoked during

the export process. For instance, one of these functions

allows to automatically detect the interior walls within a

building or between two adjacent buildings. These walls

could be marked as CityGML ClosureSurface structures

and then used for distinguishing the outer and inner

walls to facilitate performing heat demand analysis of

buildings. In the near future, additional object types like

towers, power poles, wind turbine generators or bridges

will also be supported by the novaFACTORY software

(Fig. 21).

In order to apply the developed software solution to a

wide range of areas in Gemany, a user network called

“M.O.S.S-Anwender 3D” has been initiated by M.O.S.S

in 2012. The members of this network are from most

German federal states who have submitted their 3D data

as CityGML files and intended to create a national 3D

landscape model for Germany. All these data have been

successfully validated and compiled into an integrative

dataset at the “Zentrale Stelle für Hauskoordinaten und

Hausumringe (ZSHH)”. The dataset is managed within a

central 3DCityDB instance. Today, this nationwide data-

base contains more than 40 million LoD1 building ob-

jects and has become one of the worldwide largest

productive 3D city models based on the 3DCityDB and

CityGML. With the help of the novaFACTORY solution,

the efficient maintenance, quality assurance, and

visualization of this large 3D dataset has been realized in

Fig. 19 The Berlin Economic Atlas realized as 3D web map application based on CityGML building models stored and managed in the 3DCityDB
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a highly automated way. Furthermore, M.O.S.S. also pro-

vides various commercial services for the fields like real

estate industry and renewable energy topics like building

heat demand analysis and solar potential assessment.

Conclusions and outlook
This paper presented the 3DCityDB software suite,

which is an Open Source 3D geodatabase solution to

manage, analyse, and visualize large 3D city models ac-

cording to the CityGML standard. 3DCityDB is imple-

mented as a relational database schema plus stored

procedures for different SRDBMS. It comes with a set of

Java-based software tools to provide web-based data ac-

cess (WFS), import and export of CityGML datasets of

arbitrary sizes, and to generate 3D visualization models

including thematic data. Furthermore, an HTML5/

WebGL-based 3D web client for interactive exploration

of the generated 3D visualization models is included. By

the combined usage of these software components

complete work chains can be established ranging from

the reading, processing, and writing of the 3D city model

contents into the database, via the conversion to differ-

ent model representations, to interactive Web-based

data visualization and exploration in a 3D map viewer.

The emphases of the paper lie on 1) the explanation of

the challenges to handle CityGML datasets within a

database and the discussion of related systems, 2) the

optimized mapping of the complex, object oriented data

model of CityGML onto a compact relational schema, 3)

the presentation of the provided tools, their functional-

ities as well as technical details on their implementation,

and 4) the presentation and discussion of application ex-

amples from research, education, public administration,

and industry.

Currently, our focus mainly lies on extending the

3DCityDB database and software tools to support the

handling of CityGML Application Domain Extensions

(ADEs). ADEs are community defined extensions to the

CityGML data model for specific application domains.

There exists already a number of ADEs, for example, for

building energy assessment (Energy ADE, cf. [34]), envir-

onmental noise propagation (Noise ADE, included in

the CityGML 2.0 specification), and the representation

of technical infrastructures (Utility Network ADE, cf. [4,

27]). Furthermore, the national 3D model of The

Netherlands is expressed as a CityGML ADE called

Fig. 20 Application examples using the virtualcitySUITE and 3D city models managed in the 3DCityDB
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IMGeo3D (cf. van den Brink et al. [41]). Recently, a first

extension of the 3DCityDB database schema for the En-

ergy ADE has been presented by Agugiaro & Holcik [3].

It was derived manually by following the rules presented

in this paper.

The problem concerning the generic support of ADEs

is that the current database schema has been created

manually from the CityGML data model resulting in a

static schema. While this schema offers a number of ad-

vantages, it cannot store data elements from CityGML

ADEs, because they were not included in the original

CityGML data model. While there exists a generic solu-

tion, which generally employs a fixed set of tables with a

rigid relational structure allowing to map arbitrary

XML-based graph like structures onto a relational data-

base model (cf. [12, 29]), this approach poses two signifi-

cant drawbacks. First, the mapped relational structure

usually requires a large number of recursive joins to rep-

resent the aggregation and inheritance hierarchies of the

object-oriented data model resulting in a low query per-

formance. Second, it lacks the possibility of explicitly de-

scribing the mapping relationship between classes and

tables, since all classes and their attributes are mapped

onto a mixed table structure. This makes it difficult for

external applications to retrieve the data contents from

the database. Therefore, instead of a generic database

structure, the 3DCityDB database models must be dy-

namically extended in such a way that each CityGML

ADE is handled like a ‘plugin’ for the 3DCityDB extend-

ing the fixed 3DCityDB core database schema by

respective new tables. Since CityGML ADEs are basically

GML application schemas represented in the XML

Schema language, they can contain arbitrary feature, at-

tribute, and relation definitions. This renders the auto-

matic derivation of ‘3DCityDB-style’ database schemas a

challenging task. Nevertheless, this work made good

progress and first results have been presented in [44].

Future work refers to the adaption of 3DCityDB to the

next major release 3.0.0 of CityGML, which is currently

being compiled and will include many improvements of

the current data model, new thematic modules, and an

updated levels-of-detail schema (cf. [30]). One of the

proposed new concepts is called Dynamizer. It extends

CityGML by a new representation for dynamic property

values and explicit linking with real-time sensor data

(see [8]). For CityGML 2.0, a Dynamizer ADE has been

created which was employed in the OGC Future Cities

Pilot Phase 1 [9]. We are currently working on a corre-

sponding extension of the 3DCityDB, where the time

series data will be queried by an OGC Sensor Observa-

tion Service running directly on the 3DCityDB.

Availability and requirements
Project name: 3D City Database (3DCityDB).

Project home page: https://www.3dcitydb.org

Operating system(s): Platform independent.

Programming languages: SQL, PL/SQL, Java,

JavaScript.

Other requirements: Java 8 or higher, Tomcat 4.0 or

higher, ORACLE DBMS > = 10 g R2 with Spatial or

Fig. 21 Example of a 3D building heat demand map for the city of Ludwigsburg created in the SIMSTADT project and using the novaFACTORY

software (cf. [26])
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Locator option, PostgreSQL DBMS > = 9.1 with PostGIS

extension > = 2.0, Apache Tomcat 7 or higher, WebGL

enabled hardware and web browsers.

License: Apache 2.0.

Endnotes
1https://www.deegree.org/
2http://www.gdal.org/drv_gmlas.html
3http://www.cpa-software.de
4https://snowflakesoftware.com/geospatial-products/
5http://basex.org/
6https://www.mongodb.com/ https://www.mongodb.

com/
7https://georocket.io/
8https://neo4j.com/product/
9https://github.com/tum-gis/citygml-change-detection
10https://github.com/citygml4j
11https://github.com/javaee/jaxb-v2
12http://www.citydoctor.eu
13https://github.com/tudelft3d/val3dity
14http://www.gis.bgu.tum.de/en/projects/new-york-

city-3d/
15http://www.virtualcitysystems.de/
16https://hub.safe.com/
17https://www.businesslocationcenter.de/wab/maps/

main/
18http://www.businesslocationcenter.de/berlin3d-

downloadportal/
19http://www.moss.de/
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