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ABSTRACT

Context. High-precision cosmology requires the analysis of large-scale surveys in 3D spherical coordinates, i.e. spherical Fourier-
Bessel decomposition. Current methods are insufficient for future data-sets from wide-field cosmology surveys.
Aims. The aim of this paper is to present a public code for fast spherical Fourier-Bessel decomposition that can be applied to cosmo-
logical data or 3D data in spherical coordinates in other scientific fields.
Methods. We present an equivalent formulation of the spherical Fourier-Bessel decomposition that separates radial and tangential
calculations. We propose to use the existing pixelisation scheme HEALPix for a rapid calculation of the tangential modes.
Results. 3DEX (3D EXpansions) is a public code for fast spherical Fourier-Bessel decomposition of 3D all-sky surveys that takes
advantage of HEALPix for the calculation of tangential modes. We perform tests on very large simulations and we compare the pre-
cision and computation time of our method with an optimised implementation of the spherical Fourier-Bessel original formulation.
For surveys with millions of galaxies, computation time is reduced by a factor 4–12 depending on the desired scales and accuracy.
The formulation is also suitable for pre-calculations and external storage of the spherical harmonics, which allows for additional
speed improvements. The 3DEX code can accommodate data with masked regions of missing data. 3DEX can also be used in other
disciplines, where 3D data are to be analysed in spherical coordinates.

Key words. cosmology: observations – large-scale structure of Universe – methods: statistical – methods: data analysis –
galaxies: statistics

1. Introduction

In the last few decades, cosmology has become a data-driven
field, where high-precision measurements of the cosmic mi-
crowave background (CMB, e.g., Larson et al. 2011), weak
lensing (e.g., Schrabback et al. 2010) and galaxy surveys (e.g.,
Percival et al. 2007b) have permitted the establishment of a stan-
dard cosmological model in which the Universe is composed of
4% baryons, 22% dark matter and 74% dark energy. Some major
questions remain, the nature of dark matter and dark energy in
particular is still not understood. Similarly, the initial conditions
of the Universe are yet to be established and alternative mod-
els of gravity are still to be tested in comparison with Einstein’s
general relativity.

New surveys are underway with these science objectives, e.g.
Planck for the CMB (Planck Collaboration 2006), DES (Dark
Energy Survey, Annis et al. 2005), BOSS (Baryon Oscillation
Spectroscopic Survey, Schlegel et al. 2007), LSST (Large
Synoptic Survey Telescope, Tyson & LSST 2004) and Euclid
(Laureijs et al. 2011; Refregier et al. 2011) for weak lensing and
the study of large-scale structure with galaxy surveys. In order

⋆ The code and documentation can be downloaded at
http://ixkael.com/blog/3dex

to be beneficial, cosmological studies of these surveys need to
use high-precision statistical methods, such as a full 3D analysis
on the sky where all-sky 3D surveys are available.

Several tools have been developed to analyse data on the
sphere, which is required for a 2D spherical harmonic CMB
analysis (Crittenden & Turok 1998; Crittenden 2000; Górski
et al. 2002, 2005; Doroshkevich et al. 2005). Weak lensing and
galaxy survey data can also be analysed tomographically (i.e. in
2D slices), but unlike for the CMB, a full 3D spherical Fourier-
Bessel analysis can also be sought (Fisher et al. 1995; Heavens
& Taylor 1995; Heavens 2003; Castro et al. 2005; Rassat &
Refregier 2012). Previous 3D data analyses were on relatively
small data sets (Fisher et al. 1995; Heavens & Taylor 1995;
Erdoğdu et al. 2006b,a), but future surveys like Euclid and LSST
will provide surveys with billions of galaxies, making previ-
ous methods for calculating the 3D spectra unfeasibly time-
consuming.

In Sect. 2.1, we present the theory behind the 3D Fourier-
Bessel decomposition for infinite and finite continuous fields
as well as the usual method for a discrete survey (e.g. galaxy
survey). In Sect. 2.2, we present two additional equivalent for-
mulations of the spherical Fourier-Bessel decomposition, one
of which is central to the 3DEX code. In Sect. 3, we compare
the accuracy and calculation time for the usual method used
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for calculating Fourier-Bessel coefficients and methods with the
3DEX code presented in this paper. In Sect. 4, we describe the
3DEX library and give examples of how to use it. In Sect. 5 we
present our conclusions. We also include an appendix, where we
discuss the subtleties of the Fourier-Bessel normalisation.

2. Theory

2.1. The spherical Fourier-Bessel decomposition

In observational cosmology, spherical coordinates (where the
observer is at the origin) are a natural choice for the analysis
of cosmological fields. In this system of coordinates, eigenfunc-
tions of the Laplacian operator are products of spherical Bessel
functions and spherical harmonics, i.e. functions jℓ(kr)Yℓm with
eigenvalues −k2. For an homogeneous three-dimensional field
f (r) = f (r, θ, φ) in a flat geometry, the spherical Fourier-Bessel
decomposition (Fisher et al. 1995; Heavens 2003; Castro et al.
2005) is

f (r, θ, φ) =

√

2
π

∫

dk
∑

ℓm

fℓm(k)k jℓ(kr)Yℓm(θ, φ), (1)

with the inverse relation

fℓm(k) =

√

2
π

∫

d3
r f (r, θ, φ)k jℓ(kr)Y∗ℓm(θ, φ). (2)

Note that this decomposition uses the same notation as Rassat
& Refregier (2012) and Castro et al. (2005), which is slightly
different from the one used in Lanusse et al. (2012). The coeffi-
cients may be used to calculate the 3D power spectrum C(ℓ, k),
defined by
〈

fℓm(k) f ∗ℓ′m′ (k
′)
〉

= C(l, k)δD(k − k′)δℓℓ′δmm′ , (3)

a naïve estimator of which is

Cℓ(k) =
1

2l + 1

∑

m

| fℓm(k)|2. (4)

This can be seen as an extension of the usual 2D power spec-
trum

〈

fℓm f ∗
ℓ′m′

〉

= Clδℓℓ′δmm′ . The latter arises from the spherical
harmonic transform of a 2D field given on the sphere f (θ, φ) =
∑

ℓm fℓmYℓm(θ, φ).
In practice, surveys will only cover a finite amount of vol-

ume, limiting the analysis to a sphere of radius R. These bound-
ary conditions lead to a discrete spectrum {kℓn}, which is detailed
in the appendices. In this paper, we assumed as a boundary con-
dition that f vanishes at r = R. The spherical Fourier-Bessel de-
composition becomes (Erdoğdu et al. 2006b; Fisher et al. 1995)

f (r, θ, φ) =
∑

ℓmn

κℓn fℓm(kℓn)kℓn jℓ(kℓnr)Yℓm(θ, φ), (5)

which is exact if the ranges of ℓ,m and n are infinite. The Fourier-
Bessel coefficients are denoted by fℓmn = fℓm(kℓn), and κℓn is the
normalisation constant (see Appendices for more details).

In various applications, though, the continuous field f can-
not be directly observed. This is notably the case in cosmol-
ogy where galaxy surveys give indirect information about the
underlying matter density field through their spacial positions.
Note that these tracers are subject to various distortions and non-
linearities, but these are not the purpose of this work. In this
work we only consider linear or quasi-linear scales (ℓ < 50,
k < 0.2 h Mpc−1).

If the only information about the field f is a list of coordi-
nates rp = (rp, θp, φp) with p = 1, . . . ,N (where N is the number
of galaxies in the latter example), the survey may be considered
as a superposition of 3D Dirac deltas and each coefficient fℓmn

can simply be estimated with a sum (Heavens & Taylor 1995;
Fisher et al. 1995; Erdoğdu et al. 2006b; Abramo et al. 2010)

f̃ (r) =
N
∑

p=1

δ(3)(r − rp), (6)

f̃ℓmn =

N
∑

p=1

kℓn jℓ(kℓnrp)Y∗ℓm(θp, φp). (7)

This formulation has been used for the analysis of shallow
galaxy surveys such as the IRAS 1.2 mJ survey (∼6 k galaxies,
Strauss et al. 1992; Fisher et al. 1995; Heavens & Taylor 1995),
and the 2MRS survey (2MASS Redshift Survey, ∼45 k galaxies,
Huchra et al. 2012; Erdoğdu et al. 2006b,a). Since the time to
calculate Eq. (7) is proportional to Nnmax(ℓmax + 1)2/2, Eq. (7)
will become highly time-consuming when applied to larger sur-
veys or when precise decomposition is required (large nmax and
ℓmax).

2.2. Three equivalent formulations

In spherical coordinates, since 3D space can be viewed as an in-
finite series of closed shells Ω(r), the spherical Fourier-Bessel
decomposition may also arise from repeated 2D spherical har-
monic transforms to which spherical Bessel transforms are ap-
plied (Abramo et al. 2010). Formally, the field f given on each
shell Ω(r) is first expanded into spherical harmonics

f (r, θ, φ) =
∑

ℓm

fℓm(r)Yℓm(θ, φ), (8)

for which the inversion formula gives harmonics coefficients
fℓm(r) depending on the radius r

fℓm(r) =
∫

Ω(r)
dΩ f (r, θ, φ)Y∗ℓm(θ, φ). (9)

It is then possible to perform a spherical Bessel transform

fℓm(r) =

√

2
π

∫

dk fℓm(k)k jℓ(kr), (10)

leading to the final Fourier-Bessel coefficients fℓm(k)

fℓm(k) =

√

2
π

∫

dr r2 fℓm(r)k jℓ(kr). (11)

This formulation hence extends the notion of 2D spherical har-
monics to three-dimensional fields.

It is also possible to conceive the reverse approach, i.e.
to perform the spherical Bessel transform first and subse-
quently expand the resulting coefficients into spherical harmon-
ics. Formally, the ℓth order spherical Bessel transform of f (sim-
ilar to its Hankel transform) is

f (r, θ, φ) =

√

2
π

∫

dk fℓ(k, θ, φ)k jℓ(kr), (12)

for which the inversion formula gives

fℓ(k, θ, φ) =

√

2
π

∫

dr r2 f (r, θ, φ)k jℓ(kr). (13)
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The result is then expanded into spherical harmonics but with an
unusual formulation since fℓ(k, θ, φ) and Yℓm(θ, φ) (as well as the
basis functions jℓ(kr) and Yℓm(θ, φ)) have now the ℓ parameter in
common:

fℓ(k, θ, φ) =
∑

m

fℓm(k)Yℓm(θ, φ). (14)

Again, using the inversion formula, we obtain the Fourier-Bessel
coefficients

fℓm(k) =
∫

Ω

dΩ fℓ(k, θ, φ)Y
∗
ℓm(θ, φ). (15)

Due to the closed domains of shellsΩ(r) and thus the relative in-
dependence of angular and radial dimensions, the raw (Eqs. (1)
and (2)), the forward (denoted by SHB for spherical-harmonic-
Bessel, Eqs. (8) to (11)) and the reverse (denoted by SBH
for spherical-Bessel-harmonic, Eqs. (12) to (15)) methods are
equivalent formulations of the spherical Fourier-Bessel decom-
position of any three-dimensional field f (r, θ, φ). This is sum-
marised in the following schematic description of each method:

RAW: f (r)
three-dimensional integration
−−−−−−−−−−−−−−−−−−−−→ fℓm(k)

SHB: f (r)
SHT
−−−→ fℓm(r)

SBT
−−−→ fℓm(k) (16)

SBH: f (r)
SBT
−−−→ fℓ(k, θ, φ)

SHT
−−−→ fℓm(k).

Note that this section is related to the ideal case R = ∞, but
all equations can be straightforwardly rewritten for a finite R by
replacing k by kln, bounding each integral and adapting normali-
sation. The formulas arising from this adaptation are used in the
next sections.

2.3. Estimating Fourier-Bessel coefficients from a real survey

Although the three approaches described in Sect. 2.2 are theoret-
ically equivalent, their estimates and numerical implementations
take different forms.

2.3.1. Forward approach (SHB)

Estimating the fℓmn coefficients using the forward method natu-
rally requires the radial dimension to be discretised. Indeed, the
first step is to compute the spherical harmonic transform on a
set of shells located at radial values r1, . . . , rNlayers . In each layer,
the coefficients fℓm(ri) are estimated. Although it is possible to
perform a raw estimate for the later harmonics transform, it is of-
ten advisable to use a robust 2D discretisation scheme (of Npix(i)
pixels for the ith shell) and to take advantage of the related high-
performance algorithms. Angular space is hence discretised into
nodes (ri, θp, φp) = (ri,γq) and the field is approximated on each
node, giving f̃ (ri,γp). The spherical harmonic decomposition in
the ith shell becomes

f̃ℓm(ri) =
Npix(i)
∑

p=1

f̃ (ri,γp)Y∗ℓm(γp), (17)

and the final coefficients are obtained by performing the follow-
ing spherical Bessel decomposition:

f̃ℓmn =

Nlayers
∑

i=1

f̃ℓm(ri)kℓn jℓ(kℓnri). (18)

With this method, radial and angular spaces are discretised and
both transforms are approximated.

2.3.2. Reverse approach (SBH)

For the reverse approach, a 2D scheme on the sphere was re-
quired as well. As previously, this scheme defines a set of Npix
zones (pixels) related to angular nodes γq. If Gq denotes the
points of the survey located in the solid angle corresponding
to the qth zone of the scheme, we perform the spherical Bessel
transform (raw estimate) in each zone

f̃ℓn(γq) = f̃ℓ(kℓn,γq) =
∑

p∈Gq

kℓn jℓ(kℓnrp), (19)

and each of these intermediate maps is decomposed into spher-
ical harmonic (spherical harmonics transform), which gives the
Fourier-Bessel coefficients

f̃ℓmn =

Npix
∑

q=1

f̃ℓn(γq)Y∗ℓm(γq). (20)

With the reverse method, one can avoid to discretise radial space.
Moreover, this one-shell pixelisation of the sky (thus based on
physical solid angles) allows for a natural treatment of radial dis-
tortions (redshift, relativistic) and masking effects. Using mul-
tiple resolutions at different radial values, as would be possi-
ble with the forward method, is much more questionable. The
SHB method also proves to be a powerful tool for weighting the
data prior to estimating the power spectrum. For instance, Tadros
et al. (1999) used a fiducial power spectrum to derive an optimal
weighting operation. This operation is quite complex when using
the raw Fourier-Bessel approach, whereas the SHB formulation
naturally handles the dependence on k of the weighting function.

The three methods to estimate the spherical Fourier-Bessel
decomposition can therefore also be expressed for a discrete 3D
survey, summarised schematically below:

RAW: {rp}
Raw sum, best estimate of FB coefficients
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ f̃ℓmn

SHB: {rp}
Approx SHT
−−−−−−−−−→ f̃ℓm(ri)

Approx SBT
−−−−−−−−−→ f̃ℓmn

SBH: {rp}
Exact SBT
−−−−−−−→ f̃ℓn(γp)

Approx SHT
−−−−−−−−−→ f̃ℓmn.

Note that in practice, the range of (l,m, n) is finite, which intro-
duces an additional approximation. Here, ℓ and n are restricted
to [0, ℓmax] and [1, nmax], respectively. Given ℓ, m goes from −ℓ
to ℓ.

3. Method comparison

3.1. Complexity, accuracy and discretisation grids

For a survey that probes a field by N discrete points, the raw
method is the natural estimate of the Fourier-Bessel coefficients.
However, since each point contributes to the calculation of every
coefficient f̃ℓmn (∀ l,m, n), computation time is proportional to
N · nmax(ℓmax + 1)2/2, which can be highly problematic for large
surveys.

In the forward method, the repeated spherical harmonic
transforms take advantage of tesselation schemes and high-
performance algorithms such as those provided by HEALPix
Górski et al. (2005), IGLOO Crittenden & Turok (1998) or
GLESP Doroshkevich et al. (2005). Roughly speaking, the num-
ber of nodes to be considered is reduced from N to Npix, and the
use of fast spherical harmonic transforms on these schemes sig-
nificantly decreases computation time.
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However, this approach requires the 3D space to be divided
into shells Ω(ri). Both radial and angular dimensions are dis-
cretised, and the survey is approximated on an actual 3D grid.
In practice, this approximation deteriorates the accuracy of the
estimated Fourier-Bessel coefficients. Furthermore, designing a
meaningful radial discretisation is a difficult task. For equal-
area pixelisations, the area of each pixel on the ith shell is
4πr2

i
/Npix(i). With HEALPix, the nside angular parameter may

only be increased by a factor 2, which changes the number of
pixels by a factor of 4 (since Npix(i) = 12nside(i)2). This means
that pixel areas cannot be stabilised for subsequent shells as r
increases. Consequently, it is not possible to adapt a resolution
to obtain a 3D scheme with equal-volume voxels. Extending 2D
schemes to 3D is difficult and may even require a novel formal-
ism for an equal-voxel 3D grid.

In the reverse approach, though, the use of angular 2D
schemes is possible, but radial space does not need to be discre-
tised. The points of the survey are grouped according to angular
zones instead of being approximated on a 3D grid. An estimate
of the spherical Bessel transform is computed in every solid an-
gle, and the result is then expanded in spherical harmonics on
the 2D spherical grid. In the final account, this method naturally
leads to more accurate coefficients than the forward method and
also takes advantage of high-performance 2D schemes. For these
reasons, we focus on the reverse approach and its implementa-
tion, using HEALPix for the angular transform.

Finally, for both forward and reverse methods the spherical
harmonics discretised basis (coefficients Yℓm(γp)) may be fully
pre-computed and stored in external files. This is a particularly
useful feature (incompatible with the original formulation of
spherical Fourier-Bessel), which significantly eases and speeds
up the use of these methods.

3.2. Speed and accuracy of the reverse method

To test the accuracy and speed of the reverse method compared
to the raw method, we considered the high-resolution full-sky
horizon simulation (Teyssier et al. 2009). Horizon is a N-body
simulation covering a 2 h−1 Gpc periodic box using 70 billion
dark matter particles using a WMAP3 cosmology (Spergel et al.
2007). A derived halo catalogue is available, which we used to
calculate fℓmn and Cℓ(kℓn) values using both methods (raw and
reverse). Since we are interested only in comparing the speed
of each method, we simply considered each halo to have equal
weight.

We performed the raw and the reverse estimates on three
“surveys” of N = 4.2 × 105, 3.1 × 106 and 1 × 107 halos, which
correspond to three different depths (zmax = 0.1, 0.2 and 0.3,
respectively) in the horizon simulation. The HEALPix angular
parameter is given by nside.

The results of the accuracy and speed tests are given in
Table 1. The third (fourth) column gives the percentage f coef-
ficients for which the relative accuracy ǫ( fℓmn) (ǫ(Cℓn)) is lower
than 0.3% for given values of nside and N. We considered the
intervals (l, n) ∈ ([0, 20], [1, 20]) and (l, n) ∈ ([21, 50], [21, 50])
separately, since the estimation of higher coefficients depends
more on the value of nside. We also compared computation times
of the two methods by observing the ratio T = treverse/traw. Given
a survey and a method, computation time denotes the CPU time
required to compute the kln’s (from the Bessel functions) and
the final coefficients fℓmn without using pre-computed quantities.
Note that we performed this analysis by distributing the calcu-
lations on five machines and simply adding the individual con-
tributions to computation time since our method is linear with

Table 1. Estimation of Fourier-Bessel coefficients: comparison of
the new method, the reverse formulation (Eqs. (19) and (20) using
HEALPix discretisation) with the original, raw formulation (Eq. (7)).

N nside ǫr( fℓmn) < 0.3% ǫr(Cℓn) < 0.3% T

[0, 20]/[21, 50] [0, 20]/[21, 50]
4.2e5 512 87%/42% 99%/96% 8

1024 95%/65% 99%/98% 4
2048 99%/84% 99%/99% 2

3.1e6 512 92%/50% 99%/95% 10
1024 98%/74% 100%/100% 5
2048 99%/90% 100%/100% 2

9.7e6 512 92%/50% 100%/97% 12
1024 97%/74% 100%/100% 6
2048 99%/90% 100%/100% 3

Notes. The third (fourth) column gives the percentage f coefficients for
which the relative accuracy ǫ( fℓmn) (ǫ(Cℓn)) is lower than 0.3% for given
values of nside and N. T is the ratio of elapsed times of the two methods.

survey size. With the reverse method, though, the roots of the
Bessel functions as well as the spherical harmonics may be pre-
computed and stored in external files, which decreases computa-
tion time and complexity when working with 3DEX.

The reverse method is about an order of magnitude faster
than the raw method, but this depends on the choice of nside.
For nside = 1024 almost all fℓmn coefficients in the range [0, 20]
(for ℓ and n) have relative error below 1%, and 90% have it be-
low 0.3%, whereas over 99% of C(ℓ, kn) coefficients are accu-
rate to <0.3%. In the range [20, 50], the accuracy is somewhat
degraded due to the extension of the HEALPix formalism to 3D
surveys. Indeed, for data distributed on the sphere, 3D space is
very sparse even for large surveys. Increasing nside to 1024 or
2048 strongly improves the accuracy for higher orders ℓ. Note
that comparisons for ℓ > 50 are limited by the amount of time
the raw method takes.

Figures 1 and 2 show the time taken for calculations as a
function of ℓmax and nmax (Fig. 1), and as a function of num-
ber of halos (Fig. 2). The boxes correspond to the raw method,
the circles and diamonds to the reverse method with nside =

512, 1024, respectively. The dashed line corresponds to the gen-
eral rule that the raw method scales as Nnmax (ℓmax + 1)2 /2,
whereas the points are all estimated from calculations. With
ℓmax = nmax = 100 and N = 9.7e6, the raw decomposition
took a few days of calculations, whereas the reverse method
only took 12 hours. In our formalism, kmax is determined by
the choice of R for the boundary condition and by the band-
limit nmax for spherical Bessel coefficients. For each multipole
ℓ we have kmax = kℓnmax = qℓnmax/R where qℓnmax is the nmax-the
root of the ℓth spherical Bessel function. Because R is usually
imposed by the problem or the data, one must increase nmax to
probe smaller radial scales. In fact, a reasonable approximation
(or even a simple plot) shows that qℓn ≈ (ℓ + 3n). This observa-
tion enabled one to predict which radial scales are probed and
how computation time scales with kmax, given that we provide
the complexity for ℓmax and nmax.

One of the main advantages of the reverse method is that it is
naturally suited to parallel computing because it uses HEALPix
fast spherical harmonics transform routines. All previous tests
were performed on a recent computer (i7 processor, 8 Go RAM)
and take advantage of OpenMP (with four threads). More ad-
vanced computing means (larger RAM and more processors)
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Fig. 1. Speed results (raw and reverse methods) for increasing summa-
tion limits ℓmax = nmax, for a survey of N = 9.7×106 halos. Dashed lines
are the fitted complexity curves. The reverse formulation is suitable for
pre-calculations and external storage of the spherical harmonics, which
was not performed here but enables for additional speed improvements.

Fig. 2. Speed results (raw and reverse methods) for increasing survey
size, for ℓmax = nmax = 30. Dashed lines are the fitted complexity curves.

significantly decrease calculation time. For example, ℓmax =

nmax = 128 with nside = 2048 took about an hour with 128 cores
and 512 Go RAM, whereas computation time for the raw method
was estimated to several days on the same machine. Note that
the raw method is also suited to parallelisation: galaxies may
be treated separately by different threads. In all experiments, we
took advantage of this property and performed both raw and re-
verse decompositions with four threads to perform relevant com-
parisons between the two.

In terms of the power spectrum, Figs. 3 and 4 show the rela-
tive error between the raw and the reverse methods both in mode-
mode space (ℓ − n) and in mode-scale space (ℓ − kℓn). For this
comparison we decomposed a survey of N = 4.2×105 halos with
zmax = 0.1. Figures in mode-mode space naturally differ accord-
ing to the choice of the boundary R because the latter determines
the discrete radial scale spectrum {kℓn}, and hence mode n com-
puted with two different R’s corresponds to different k-scales.
When comparing the results from R = 1000 and R = 2000 in
mode-scale space, we observe that the boundary condition fixes
the explored scales. The left column is thus complementary to

the right column to explore higher values of k. Although Fig. 3
gives information about the final coefficients, Fig. 4 is hence
more appropriate to see which scales are probed and with what
accuracy.

In view of the ℓ − kℓn space, we see that no fluctuations are
observed along the k axis up to k = 0.03 h Mpc−1. In this range,
fluctuations occur in ℓ space, which are accurately probed with
nside = 512 until ℓ = 25 but naturally require a more precise
scheme for ℓ > 25, k > 0.03 h Mpc−1 (smaller scales in physical
space). In conclusion, parameter nside (as well as R) must be cho-
sen depending on the scales one wishes to probe. Figures 3 and 4
provide accuracy results that are complementary to Table 1.

4. The 3DEX library

The 3DEX library requires the HEALPix package (v2.12 or
later) and the CFITSIO library. 3DEX may either by installed
with an HEALPix-like procedure (configure and make com-
mands) or using CMake. The Fortran modules, the 3DEX dy-
namic library and the related executables will be created in the
relevant directories (see README file for more information).

In addition to the numerical procedures required to compute
Fourier-Bessel coefficients, various other routines are provided
in the library, such as those converting redshift to comoving
distance, computing spherical Bessel functions and their zeros,
reading and writing 3D structures ( flmn and Cln), or reconstruct-
ing radial maps from Fourier-Bessel coefficients.

Three executable programmes are generated:

– survey2almn performs the spherical Fourier-Bessel decom-
position (reverse method) of a discrete survey with input pa-
rameters lmax, nmax, r and nside. Outputs are the flmn coeffi-
cients and the power spectrum;

– survey2almn_interactive is very similar to the previous pro-
gramme, but converts redshift values into comoving distance
before performing the spherical Fourier-Bessel decomposi-
tion. In particular, the routine takes a .txt file as input, taking
into account parameters on the cosmology and on the de-
composition;

– almn2rmap extracts the flmn coefficients from a FITS file
and reconstructs the field (HEALPix map) at a given radius.
Inputs are the resolution, the radius and summation limits
lmax and nmax, which allows one to reconstruct several maps
at different scales and resolutions.

The corresponding calls are given by the examples below.

> survey2almn survey_thetaphir.dat almn.fits
cln.fits 20 20 256 2000.0,

where survey_thetaphir.dat is a survey with columns rep-
resenting θ, φ, r, and the keywords correspond to values of
ℓ, n, nside,R. The output is both the coefficient values (almn.fis)
and the Fourier-Bessel spectrum (cln.fits).

> survey2almn_interactive parameters.txt,

where parameters.txt is an external file containing input param-
eters for the survey and the cosmology (which allows for more
flexible use). Finally, for the map reconstruction, we can use:

> almn2rmap almn.fits map.fits 400.0 256 10

10 2000.0,

where the keywords correspond to rmax, nside, ℓ, n, R.
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Fig. 3. Relative error on the power spectrum in mode-mode space C(l, n). We compare the original formulation of spherical Fourier-Bessel decom-
position with the reverse formulation, testing nside = 512, 1024 (rows) and R = 1000, 2000 (columns). Only a few zones (white spots) are outside
the range [−0.3%,+0.3%].

Fig. 4. Relative error on the power spectrum in mode-scale space C(l, k) (k is in h Mpc−1). We compare the original formulation of spherical
Fourier-Bessel decomposition with the reverse formulation, testing nside = 512, 1024 (rows) and R = 1000, 2000 (columns). Only a few zones
(white spots) are outside the range [−0.3%,+0.3%].

5. Conclusion

High-precision cosmology from galaxy and weak lensing sur-
veys will require the analysis of 3D data in spherical coordi-
nates, a situation for which spherical Fourier-Bessel decomposi-
tion is most suited. Current methods will be inadequate for future
planned cosmological surveys, which will provide for example

galaxy surveys with billions of galaxies, compared to millions
today.

We have reviewed the forward or SHB formalism of the
spherical Fourier-Bessel decomposition which first calculates
the tangential, then the radial decomposition. We also introduced
the reverse or SBH formalism that inverses this order. Only the
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latter approach can take advantage of existing fast codes for the
calculation of tangential modes. (To do the same, the former
would require a a new voxelisation scheme.)

We presented a public code 3DEX (3D EXpansions) for the
fast calculation of Fourier-Bessel coefficients and spectra, which
uses the HEALPix pixelisation scheme for calculating the tan-
gential modes. The 3DEX code is based on the reverse/SBH for-
mulation of the Fourier-Bessel decomposition.

We tested the 3DEX code on linear and quasi-linear scales
(ℓ < 50 and kℓn < 0.2 h Mpc−1) using the horizon halo simu-
lation for redshifts z < 0.3. For nside = 1024 the 3DEX method
for calculating the power spectrum C(ℓ, k) is accurate to 0.3% on
these scales.

For surveys with <10 million galaxies, computation time is
reduced by a factor 4–12 depending on the desired scales and ac-
curacy. For larger surveys the gain in time will be even greater.
Finally, the use of the 3DEX code is not restricted to cosmo-
logical calculations, and can be used in any other discipline that
requires a spherical Fourier-Bessel analysis of 3D data.
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Appendix A: Normalisation and discrete radial

spectrum

The basis functions k jl(kr)Ylm(θ, φ) form a set of eigenfunctions
of the Laplacian operator in spherical coordinates. In particu-
lar, these functions are orthonormalised in the continuous case,
thanks to the orthogonality relation
∫

dΩdr r2 jl(kr) jl′ (k
′r)Ylm(θ, φ)Y∗l′m′(θ, φ) =

π

2kk′
δD(k − k′)δK

ll′δ
K
mm′ , (A.1)

(Baddour 2010) where δK is Kronecker’s delta notation and δD

Dirac’s function.
A common approach to simplify the problem is to assume

some boundary conditions for the field f . Different conditions
have been explored in the literature (Fisher et al. 1995; Heavens
& Taylor 1995), including potential or gradient continuity. In
this paper, we used a condition that derives from the classical
formulation of the discrete spherical Bessel transform: space is
assumed to be finite and limited to a sphere of radius R. In this
case, the spherical Bessel functions are not normalised and the
boundary effect leads to a discrete spectrum {kln}. The Fourier-
Bessel coefficients become a set flmn = flm(kln), and the com-
plete description of the field in the so-called Fourier-Bessel basis
(Binney & Quinn 1991) is summarised in Eq. (5).

As a consequence, a natural choice for the boundary con-
dition is to impose the field to vanish at r = R (Abramo et al.
2010), which constrains the Bessel functions and generates the
radial spectrum {kln} such that, for all l and n,

jl(klnR) = 0. (A.2)

If qln denotes the nth root of jl(z), the closure relation of the
Bessel basis is
∫ 1

0
dz z2 jl(qlnz) jl′ (ql′n′z) =

1
2

[ jl+1(qln)]2δll′δnn′ , (A.3)

which gives with kln = qln/R,

∫ R

0
dr r2klnkl′n′ jl(klnr) jl′ (kl′n′r) =

k2
ln

[ jl+1(qln)]2

2R−3
δll′δnn′ . (A.4)

The discrete spectrum is thus fixed by the zeros of the spher-
ical Bessel functions. We obtain the normalisation coefficients
κln (Fisher et al. 1995)

κ−1
ln =

R3

2
[kln jl+1(klnR)]2, (A.5)

which are used for field reconstruction (Eq. (5)).
Other approaches are possible to tackle boundary conditions

in radial space, notably those imposing potential continuity at
r = R (Fisher et al. 1995). Then, the discrete spectrum k′

ln
is

such that

jl−1(k′lnR) = 0, (A.6)

and normalisation constraint becomes

κ′
−1
ln =

R3

2
[kln jl(klnR)]2. (A.7)

Appendix B: Angular masks

3DEX takes into account optional angular masks under the form
of either an equatorial cut or an input all-sky FITS map.

In the first case, supplying θcut defines the latitude (in de-
grees) of a straight symmetric cut around the equator. Pixels lo-
cated within that cut (l = cos(θcut)) are ignored.

In the second case, the supplied mask must be an HEALPix
map (ring ordering) of Npix pixels at resolution nside (which must
be identical to Fourier-Bessel resolution parameter)
{

w(γq)
}

q=1,...,Npix
. (B.1)

In the forward method, the first step is to apply the mask to each
discrete shell before performing the spherical harmonics trans-
form. Hence for the ith shell, field f is weighted by the mask at
each pixel

f ′(ri,γq) = w(γq) f (ri,γq). (B.2)

The Fourier-Bessel coefficients are obtained after performing SH
and SB transforms.

In the reverse method, the first step is still the spherical
Bessel transform, which gives a set of nmax HEALPix maps
f (kln,γq). The mask is then applied to each of these maps

f ′(kln,γq) = w(γq) f (kln,γq). (B.3)

and the modified spherical harmonics transform gives the final
flmn coefficients.
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