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3DOF Pedestrian Trajectory Prediction Learned from Long-Term

Autonomous Mobile Robot Deployment Data

Li Sun1 and Zhi Yan2 and Sergi Molina Mellado1 and Marc Hanheide1 and Tom Duckett1

Abstract— This paper presents a novel 3DOF pedestrian
trajectory prediction approach for autonomous mobile service
robots. While most previously reported methods are based
on learning of 2D positions in monocular camera images,
our approach uses range-finder sensors to learn and predict
3DOF pose trajectories (i.e. 2D position plus 1D rotation within
the world coordinate system). Our approach, T-Pose-LSTM
(Temporal 3DOF-Pose Long-Short-Term Memory), is trained
using long-term data from real-world robot deployments and
aims to learn context-dependent (environment- and time-
specific) human activities. Our approach incorporates long-term
temporal information (i.e. date and time) with short-term pose
observations as input. A sequence-to-sequence LSTM encoder-
decoder is trained, which encodes observations into LSTM and
then decodes as predictions. For deployment, it can perform
on-the-fly prediction in real-time. Instead of using manually
annotated data, we rely on a robust human detection, tracking
and SLAM system, providing us with examples in a global
coordinate system. We validate the approach using more than
15K pedestrian trajectories recorded in a care home environ-
ment over a period of three months. The experiment shows that
the proposed T-Pose-LSTM model advances the state-of-the-art
2D-based method for human trajectory prediction in long-term
mobile robot deployments.

I. INTRODUCTION

Pedestrian trajectory prediction is still an open problem,

especially for real-world deployments of autonomous mobile

robots. Most of the existing work focuses on the modeling

of social interactions between people or human groups in

large indoor public areas [1], [2], [3], [4], [5], [6], [7],

[8]. However, these approaches typically do not consider the

spatial and temporal context of human activities, which can

help trajectory prediction, especially over longer durations

(e.g. more than 5 seconds). For instance, in a large hospital,

pedestrians are likely to queue up in a reception area during

specific periods in the daytime or at an emergency desk at

night-time, and are likely to walk through corridors and stand

near coffee machines. In order to capture such contextual

cues, long-term sensory data from actual robotic deployments

can be used to learn predictive models.

Conventional approaches for pedestrian trajectory pre-

diction are based on the learning of 2D trajectories from

manually annotated data [2], [3], [4], [5], [7], [8], [9].

Data-driven methods such as Social-LSTM [7] achieve the

state-of-the-art performance in 2D trajectory prediction. The

emerging 3D LiDAR devices are able to provide long-range
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Fig. 1. A screen-shot of our 3DOF pedestrian trajectory prediction in
a 3D LiDAR scan. The detected people are enclosed in green bounding
boxes with a unique ID. The colored lines represent the observed people
trajectories. The red arrow indicates the predicted poses for the next 1.2s.

and wide-angle laser scans, and are very accurate and not

affected by lighting conditions. With the continuing reduc-

tion in hardware prices, 3D LiDAR is becoming a popular

choice for pedestrian detection and tracking for mobile robot

applications.

Most of the existing works on human trajectory prediction

have the following limitations. Firstly, the existing datasets

were recorded with monocular cameras, which are generally

used to predict pedestrian positions in image frames rather

than in real-world coordinates. Though in these datasets [2],

[3], [9] the x-y coordinates are converted to the camera’s

coordinate system (in meters) using the intrinsic camera

parameters, the depth is missing. Secondly, the existing work

does not consider the spatial and temporal context of the

human activities in the environment.

In this research, we use range-finder sensors for hu-

man trajectory observation and prediction. Our model is

trained using two datasets collected by mobile service

robots (one using 2D laser and RGB-D sensors, and the

other 3D laser/LiDAR), including a 3-month autonomous

deployment in a care home [10]. The contributions of

this paper are as follows. We propose a novel approach

for learning to predict 3DOF pedestrian trajectories (in-

cluding both 2D position and orientation) from the real-

world robot data, using a new LSTM-based architecture to

incorporate spatial and temporal context information from

the deployment environment. We also publish our data,

comprising a novel 3D pedestrian trajectory dataset based

on 3D LIDAR data. The dataset and demo are avail-

ar
X

iv
:1

71
0.

00
12

6v
1 

 [
cs

.C
V

] 
 3

0 
Se

p 
20

17



able online at: https://lcas.lincoln.ac.uk/wp/3dof-pedestrian-

trajectory-dataset/.

The remainder of this paper is organized as follows:

Section II gives an overview of the related literature; Sec-

tion III describes our approach based on the LSTM model;

Section IV presents the experimental results on two real-

world datasets; and the paper is concluded with contributions

and suggestions for future research.

II. RELATED WORK

In this section, we first review the state-of-the-art ap-

proaches for pedestrian trajectory prediction and activity

forecasting. Then we introduce the latest achievements on

long-term autonomy of mobile robotic systems.

A. Pedestrian Trajectory & Activity Prediction

Predicting pedestrian trajectories has a long history in

computer vision [2], [3], [4], [5], [7], [8], [9]. Pioneer-

ing work focuses on representing the social context with

hand-crafted features [2], [3], [4], [5], while more recent

approaches have tried to learn from context information

relating to the position of other pedestrians or landmarks in

the environment [7], [8]. As the trajectory prediction can

be formulated as a regression problem, Gaussian Process

(GP)-based methods [4], [11] are very popular in pedestrian

prediction. The limitation of GP-like parametric models is

that the computation increases exponentially with the number

of training examples. Although sparse GP methods [11] can

be much more efficient for large-scale datasets, this problem

is unlikely be remedied.

LSTM-based data-driven approaches [7], [8] have

achieved the state-of-the-art performance, especially with

large-scale datasets [9]. Later, an end-to-end trajectory pre-

diction method was proposed by [12], which combines

the CNN (Convolutional Neural Network) for local image

context understanding and LSTM for consecutive position

prediction.

Furthermore, researchers are working on understanding

higher-level human behaviors from pedestrian trajectories in

station surveillance videos, including work on travel time

estimation [13], recognition of stationary crowd groups [14],

and destination forecasting [15]. Pioneering research has

also considered the representation of dynamic maps from

long-term datasets, including the FreMEn approach [16] for

signal analysis, which uses the Fourier Transform to identify

underlying periodic processes in the environment and hence

make predictions of human activities based on the frequency

spectrum of the observations.

B. Person Detection and Tracking in Autonomous Mobile

Robot Systems

Nowadays, mobile robots are equipped with various sen-

sors such as RGB/RGB-D/stereo cameras and 2D/3D Li-

DARs, alone or in combination. An important use of these

sensors is to detect and track objects, including pedestrians.

For example, [17] used a template and the depth information

of the RGB-D camera to identify human upper bodies (i.e.

shoulders and head), and the classical Multiple Hypotheses

Tracking (MHT) algorithm for pedestrian tracking. [18]

extracted 14 features for legs detection and tracking in 2D

LiDAR scans, including the number of beams, circularity,

radius, mean curvature, mean speed, and more. Both ap-

proaches used an offline trained model, while our previous

work [19] learned a human model online in 3D LiDAR

scans with the help of an EKF (Extended Kalman Filter)-

based tracking system. Regarding combined use of different

sensors, [20] introduced a people tracking system for mobile

robots in very crowded and dynamic environments. Their

system was evaluated with a robot equipped with two RGB-

D cameras, a stereo camera and two 2D LiDARs. Although

the above work has been able to track pedestrians in world

coordinates (xy-plane), such approaches have limited appli-

cability for trajectory prediction beyond 1 second.

Over the past 20 years of development of Simultaneous

Localization and Mapping (SLAM), 2D laser-based SLAM

[21] and visual-SLAM [22], [23] have largely become off-

the-shelf technologies employed in many robotic systems.

With the advances in robustness and adaptability of robotic

systems in real-world environments, long-term autonomy has

become an important research topic, starting from museum

robots interacting with visitors [24], through robots em-

ployed in office environments [25], [26], to robots running

for months in care homes [10]. Such interactive robots

provide an excellent opportunity to learn from the long-

term observations of people in their vicinity and gather –

and subsequently exploit – such experience for their own

behaviour generation and planning. Data sets gathered by

the long-term autonomous robotic system of the STRANDS

project [10], [27] are also used to evaluate the approach

proposed in this paper (see Sec. IV-A).

C. Discussion

After investigation of the state-of-the-art methods for

pedestrian trajectory prediction, we concluded that their

limitations are twofold. Firstly, the predominantly reported

methods are based on monocular cameras, see e.g. the

UCY [2], ETH [3] and SDD [9] datasets. The drawback

of monocular cameras is that the trajectories are not in real-

world coordinates (meters) when the camera is not perpen-

dicular to the ground. Also, the visual scope of monocular

cameras is very narrow on mobile platforms. For mobile

robot applications, alternative means of sensing need to be

found. Secondly, the existing works on pedestrian trajectory

prediction proposed various methods to parameterize the

social context, while few of them take account of the overall

spatial and temporal context.

In order to learn environment- and time-specific activity

patterns, long-term data from the target environment, i.e.

covering several weeks or more, is required. Recent state-of-

the-art methods for real-time detection, tracking and SLAM

have pushed the limits of mobile service robots towards life-

long autonomy. The emerging 3D LiDAR sensors have the

potential to be the sensor of choice for pedestrian activity

prediction by mobile robots. In this paper, our contribution



is to incorporate spatial and temporal context information

into human trajectory prediction, by training our model using

actual data from such long-term deployments.

III. METHODOLOGY

A. Problem Formulation

Our trajectory prediction model is based on LSTM [28].

We train an LSTM network on consecutive observations

and predict the observation in the future time stamp. Prac-

tically speaking, in order to enhance the supervision, we

train the LSTM as an encoder-decoder between two se-

quences of observations with time difference ∆t. Given a

sequence of observations O : {ot, . . . , ot+n+1} with interval

of ∆t, the LSTM is modeled as a sequence-to-sequence

encoder-decoder between O{t,t+n} : {ot, . . . , ot+n} and

Ot+1,t+n+1 : {ot+1, . . . , ot+n+1}. The observation ot at

time t is a 6DOF pedestrian pose {x, y, z, qx, qy, qz, qw}
(here, q. are quaternions), which we simplify in our approach

to 3DOF {x, y, qz, qw} with the assumption that pedestrians

have constant height (z-axis) in indoor environments and

only yaw axis rotation is applicable. Finally, we concatenate

the pose with additional time information, i.e. calendar day

and hour-minute-second {tday, thms}, and obtain the final

observation {x, y, qz, qw, tday, thms}. It is worth noting that,

instead of using camera frame data, we transform the coor-

dinates to the world frame, and as a consequence, the two-

dimensional position feature can represent the 3D positions

of pedestrians in real-world coordinates.

B. Network Architecture

The architecture of the proposed LSTM for 3DOF Trajec-

tory prediction is shown in Fig. 2. As shown in the figure,

the 3DOF pose data are concatenated with time information

as the observation. Before input to the LSTM, for each

pedestrian trajectory, we encode the observations into a 128-

dimensional embedding using a fully-connected layer and

rectified linear unit (ReLU) activation function:

(St+1, ht+1) = LSTM
(

φ(oi;We), St, ht, gi, gf , go;W{i,f,o,s}

)

,
(1)

where We are the parameters in the embedding layer and

φ is the non-linear function of the linear embedding with

a ReLU activation. St, ht and St+1, ht+1 are the LSTM’s

state and output variables of time t and t + 1. gi, gf , go
refers to the input, forget and output gate, respectively.

W{i,f,o,s} are the parameters of LSTM. In our approach, the

social-pooling reported in [7] is not used as there were no

substantial improvement in our testing scenarios, where there

were few obvious social behaviors.

Our LSTM model is a triple-layer sequence-to-sequence

model with output size of 128. Using a multi-layer LSTM

can enlarge the receptive field of the short-memory and

thereby preserve the short-memory against vanishing too

quickly. In our approach, we used a shared LSTM cell

for all three layers in order to achieve a longer-term short

memory without increasing the model’s parameters. The

LSTM is trained as an encoder-decoder from the pose at

the current time t to the pose of the next observation at

t+∆t. Hence for each observation in the training sequence,

the next observation is connected with the loss of LSTM as

the prediction ground truth.

In the real-world data, the pedestrian trajectories are of

dynamic length because of the limited sensor scope. In order

to fully leverage all the trajectory data, we train our LSTM

with dynamic sequence lengths. Practically speaking, we

obtain a batch of training sequences of dynamic lengths,

we use a binary activation mask to memorize the position

(rowi, coli) of the observations and obtain the batch loss as:

lossbatch = 1i[rowi, coli]⊙ [lossi], (2)

where ⊙ is an element-wise multiplication operation.

C. 3DOF Pose Loss

We incorporate the position loss and the rotation loss into

the loss function. More specifically, similar to previous works

with 2D data [7], we use the Gaussian Probabilistic-Density-

Function (PDF ) as the likelihood function for position

prediction. For the rotation loss, we tried both L2 loss and

cosine distance loss. In this paper, L2 loss is used as it

achieves the best performance. Moreover, a L2 regularization

term is applied on all weights to eliminate over-fitting.

Overall, our pose trajectory prediction loss function is:

loss =

N
∑

i

n
∑

j

−log
(

PDF ((xgt, ygt)
i,j ,N i,j(µ,Σ))

)

+‖ri,jp − r
i,j
gt ‖2 + λ‖W‖2,

(3)

where n is the length of the observation sequences, and N is

the number of training sequences. (xgt, ygt)
i,j is the ground

truth x-y position and ri,jp =(qzp , q
w
p )

i,j and r
i,j
gt =(qzgt, q

w
gt)

i,j

refer to prediction quaternions and ground truth quaternions,

respectively. W refers to all the trainable weights in our

neural network and λ is the weight of the regularization

term (a fixed value of 0.005 is used in our implemen-

tation). A bi-variant Gaussian distribution is used in the

PDF ((xgt, ygt)
i,j ,N i,j(µ,Σ)) function:

PDF =
exp

(

− 1

2
((xgt, ygt)

i,j − µ)Σ−1((xgt, ygt)
i,j − µ)T

)

((2π)2|Σ|)−1/2

(4)

µ = (µx, µy)
i,j
, Σ =

(

σ2
x ρσxσy

ρσxσy σ2
y

)i,j

, (5)

where µx, µy are two mean variables, σx, σy are the two stan-

dard deviations and ρ is the correlation between them. Within

this loss function, our neural network decoder therefore has

7 outputs corresponding to (µx, µy, σx, σy, ρ, q
z
p , q

w
p )

i,j .

D. Life-long Deployment

Given a prediction (µx, µy, σx, σy, ρ, q
z
p , q

w
p )

t from LSTM

at time t, the forward prediction position at time t + 1 can

be estimated by sampling within the predicted bi-variant

Gaussian distribution:

xt+1, yt+1 =
1

Ns

Ns
∑

k

(xs, ys)
k ∼ Np(µ,Σ), (6)



Fig. 2. The architecture of our Temporal Pose-LSTM network. A shared-triple-layer LSTM is trained in a sequence-to-sequence encoder-decoder form.

where Np is obtained from (µx, µy, σx, σy, ρ)
t and Ns is the

number of samples. The rotation (quaternion) of t + 1 can

be directly obtained from the LSTM output (0, 0, qzp , q
w
p )

t

with normalization. For a long-term consecutive prediction,

we use the new predicted pose as the input of the latest

observation and predict the poses iteratively.

In our implementation, we proposed an on-the-fly LSTM

for real-time life-long pedestrian trajectories prediction. Our

system is able to be deployed in real time (10 Hz)1. For

each iteration, all pedestrians in the robot’s visual range are

scanned, detected and tracked. The pedestrians’ identities and

poses are published with a certain frequency and subscribed

by Pose-LSTM on-the-fly. Each pedestrian has its own

LSTM states. We initialize the states of newly appearing

pedestrians and free the states of disappeared pedestrians.

For all the pedestrians at the same time stamp, we extract the

pose features and update their states using a shared LSTM

model.

IV. EXPERIMENTS

In this section, we first introduce two novel 3D pedestrian

activity datasets, the STRANDS pedestrian dataset and L-

CAS pedestrian dataset. We further provide the details of our

evaluation protocol and implementation. The experimental

result on the STRANDS and L-CAS datasets are presented

in Section IV-D and Section IV-E.

A. Two Novel 3D Pedestrian Activity Datasets

We evaluated our approach with two recent datasets which

have 3DOF pose annotations, i.e. the STRANDS [10] per-

son trajectory dataset (see Fig. 3), and the L-CAS people

Dataset [19] (see Fig. 4), rather than with the conventional

2D image datasets [2], [3], [9].

1In our video demo, we used a 2.5 Hz prediction rate, which is the
standard time interval used widely in similar problems.

The STRANDS dataset was collected during a long-term

robot deployment in a care facility in Vienna, Austria, span-

ning all weeks from 28/11/2016 until 3/4/2017 (19 weeks).

During this time the robot traveled a total of more than 87

km along the corridors of the ground floor of the care home,

as sketched in Fig. 3 and served in 6866 different tasks,

interacting with humans. The robot employed is based on

a SCITOS G5 platform, equipped with a 2D Sick Laser

and two ASUS Xtion Pro cameras (one on the head for

person detection and tracking, and one on the chest for

obstacle avoidance); for details refer to [10]. For pedestrian

detection, a kinect-based upper-body detector, and 2D laser-

based leg detector are integrated in an unscented Kalman-

Filter tracking framework, as described in [29]. In total,

17609 trajectories (comprising timestamp, global x and y

coordinates on the floor plane, as well as the estimated angle

of the direction of travel) of persons encountered in this

environment are recorded and the average length of each

trajectory is 22.6 seconds.

The L-CAS dataset was collected by a Velodyne VLP-16

3D LiDAR, mounted at a height of 0.8 m from the floor

on the top of a Pioneer 3-AT robot, in one of the main

buildings (a large indoor public space, including a canteen,

a coffee shop and the resting area) of Lincoln University,

UK. This dataset captures new research challenges for indoor

service robots including human groups, children, people with

trolleys, etc. Similar to the STRANDS dataset, the data

were recorded in the sensor reference frame, and all human

detections and tracks were then transformed to the world

frame. We conducted our experiments on the first 19 minutes

of data, in which 935 pedestrian trajectories were extracted.

A comparison with the above-mentioned prior datasets can

be seen in Table I.

B. Evaluation Protocol

Following the previous works [3], [4], [7], [8], [9], the

Average Displacement Error (ADE) is used to measure the



Fig. 3. Part of the trajectory examples in the STRANDS dataset are shown. The three sub-figures are zoomed in iteratively.

Fig. 4. Trajectory examples in the L-CAS dataset including: extracted pedestrian trajectories (left), detected point clusters (middle), and trajectories
heatmap (right). In the heatmap, warmer colors indicate higher frequencies of pedestrian occupancy. The map is normalized between 0 and 1.

TABLE I

COMPARISON OF THE EXISTING DATASETS FOR PEDESTRIAN TRAJECTORY PREDICTION

Dataset Duration #Tracks Ave. Len. Sensors Views Annotation

ETH [3] < 1h 390 6.7s RGB camera (building view) camera-view manual

UCY [2] < 1h 434 16.5s RGB camera (building view) camera-view manual

SDD [9] ≈ 8.6h 11216 - RGB camera (bird view) camera-view auto

STRANDS [10] ≈ 3192h 17609 22.6s RGB-D camera, 2D LiDAR global-view auto

L-CAS [19] < 1h 935 13.5s 3D LiDAR global-view auto

TABLE II

COMPARISON OF THE PEDESTRIAN TRAJECTORY APPROACHES ON THE

STRANDS DATASET. THE ADE|AEDE ARE SHOWN.

❳
❳
❳
❳
❳

❳
❳❳

Test
Method

Social-LSTM[7] Pose-LSTM T-Pose-LSTM

obs. 5s pred. 1s 0.48m | nan 0.43m | 3.8◦ 0.43m | 3.8◦

obs. 5s pred. 2s 0.68m | nan 0.62m | 4.9◦ 0.53m | 4.6◦

obs. 5s pred. 3s 0.89m | nan 0.79m | 5.6◦ 0.76m | 5.8◦

obs. 5s pred. 4s 1.13m | nan 0.93m | 6.2◦ 0.87m | 6.7◦

obs. 5s pred. 5s 1.28m | nan 1.03m | 6.7◦ 0.90m | 6.9◦

obs. 5s pred. 6s 1.41m | nan 1.42m | 8.9◦ 1.09m | 7.6◦

obs. 5s pred. 7s 1.62m | nan 1.35m | 8.0◦ 1.31m | 8.6◦

obs. 5s pred. 8s 1.75m | nan 1.32m | 7.2◦ 1.25m | 8.8◦

obs. 5s pred. 9s 1.95m | nan 1.47m | 8.1◦ 1.38m | 9.3◦

TABLE III

COMPARISON OF THE PEDESTRIAN TRAJECTORY APPROACHES ON THE

L-CAS DATASET. THE ADE|AEDE ARE SHOWN.

Dataset Methods Social-LSTM[7] Pose-LSTM

L-CAS 1.19m | nan 0.95m | 35◦

error of predicted positions, which is computed using mean

square error over all predicted position and ground truth

positions as:

ADE =
1

N ∗ n

N
∑

i

n
∑

j

√

(xi,j
p − x

i,j
gt )

2 + (yi,j
p − y

i,j
gt )

2 (7)

As our approach predicts the 3DOF pose rather than

2D position, the Average Eulerian angle Difference error

(AEDE) is used to measure the rotation loss. We first

convert the prediction and the ground truth quaternion to

Eulerian angles, and calculate the absolute error of the yaw

angle as:

AEDE =
1

N ∗ n

N
∑

i

n
∑

j

min(|eulerz(r
i,j
p )− eulerz(r

i,j
gt )|,

2π − |eulerz(r
i,j
p )− eulerz(r

i,j
gt )|),

(8)

where the eulerz is the function converting quaternions to



Fig. 5. A full evaluation of 3D-Pose-LSTM on the L-CAS dataset is shown.
In this figure, the length of observations/prediction sequence varies from 1
to 20 (with the interval of 0.4s) and the errors are in meters.

Eulerian angle (i.e. yaw). In this paper, the measurement of

ADE is in meters and AEDE is in degree (π/180).

For comparison, as there are no previous works for 3DOF

pose trajectory prediction, we implement the state-of-the-

art 2D trajectory prediction method Social-LSTM [7] as a

baseline method. We use Social-LSTM as the baseline as it

outperforms most of the conventional methods, e.g. [2], [3],

[4], [5], [9], [30]. As both Social-LSTM and our approach

are LSTM-based methods, this comparison can indicate the

difference between 2D position prediction (Social-LSTM),

the proposed 3DOF pose prediction (Pose-LSTM) and Time-

included 3DOF Pose-prediction (T-Pose-LSTM).

C. Implementation Details

In our LSTM implementation (including Social-LSTM),

we use the 128-dimensional feature embedding and the

hidden state dimension of LSTM is 128. For Social-LSTM,

we follow its original configuration on social-pooling: spatial

pooling size is 32 and pooling window size is 8× 8. For the

training, we use a mini-batch of 128 with RMS-prop opti-

mizer [31] for training. There are a few differences between

our Social-LSTM implementation and the original LSTM

reported in [7]: Firstly, we use a sequence-to-sequence model

to enhance supervision. Secondly, a dynamic sequence length

is used in training. Thirdly, we do not use the synthetic

data generated by Social-Force [1] for pre-training. Our

implementation is based on the TensorFlow library2. More

details of training are shown in Section IV-D and IV-E.

D. Experiments on STRANDS dataset

In this experiment, we split the whole dataset into 2/3 for

training and 1/3 for testing randomly on the time axis, which

means that the training sequences and testing sequences are

fully split. As a result, we get 11743 frames for training and

5866 frames for testing. The training comprises two steps: we

2https://www.tensorflow.org/

first train LSTM with a fixed sequence length of 20 for 100

epochs with an initial learning rate of 0.005 with exponential

decay of 0.98. Then we finetune the LSTM with a dynamic

length of [8, 20] for another 100 epochs with a learning rate

0.003 and exponential decay of 0.98.

More specifically, the settings for the inputs of the LSTM

models are as follows: Social-LSTM: 2 dimensional position

i.e. x, y, Pose-LSTM: 4 dimensional pose i.e. x, y, rz ,

rw; T-Pose-LSTM: 4 dimensional pose and 2 dimensional

time representation, i.e. x, y, rz , rw, date, time. We nor-

malize each input dimension to N (0, 1) as pre-processing.

In this experiment, a single-layer LSTM is used rather

than triple-layers due to the large observation interval (1s).

For our proposed approach, both the Average Displacement

Error (ADE) and Average Eulerian angle Difference error

(AEDE) are evaluated.

In order to evaluate the effectiveness of our proposed

approach, we take 5 observations and predict the following 1

to 9 seconds. The observations are made with a frequency of

1HZ. As shown in Table II, on the STRANDS dataset our

proposed T-Pose-LSTM achieves the lowest ADE among

the three LSTM models. For a short-term prediction (less

than 5 seconds), the performance of three methods are very

close, while after 5 seconds, T-Pose-LSTM experienced a

substantial advantage for the longer-term prediction. This

verified our hypothesis, that the time information learned

from long-term data can improve activity prediction. Without

time information, Pose-LSTM still performs better than

the baseline (approximately 10%-20%) on ADE, so we

conclude that the encoded orientation (pose) information

has the potential to enhance the position prediction. For

the orientation prediction, T-Pose-LSTM and Pose-LSTM

produce similar AEDE, and we did not give the AEDE of

Social-LSTM as it is proposed for 2D position prediction.

E. Experiments on L-CAS Pedestrian Trajectory Dataset

In this experiment, the L-CAS 3D pedestrian dataset is

used. We acquire the 3DOF pose trajectories from the tracker.

Following the settings of previous research [2], [3], [7],

[8], [9], we sample the frames at 2.5HZ (time interval of

0.4s). We take 8 observations (3.2 seconds) and predict

the following 12 observations (4.8 seconds). Similar to the

experiments on the STRANDS dataset, we split the whole

dataset into 2/3 of the trajectories for training and 1/3 for

testing. In this experiment, the triple-layer shared LSTM

architecture is used as the interval of observations is very

short. The training has two steps: we first train Pose-LSTM

with a fixed sequence length of 30 for 100 epochs, then

finetune with a dynamic sequence length [10, 20] for another

100 epochs. As this dataset only covers around 20 minutes,

long-term training data is not available, so we only compared

our proposed Pose-LSTM with the baseline method (Social-

LSTM [7]) without including date and time information.

The result on the L-CAS dataset is shown in Table

III, where our proposed Pose-LSTM experienced a good

improvement (0.95m AV E) compared to the baseline (1.19m

AV E). The AEDE of Pose-LSTM is 35 degrees, which



is much higher than for the STRANDS dataset. This is

because there are more static humans in the L-CAS dataset

and the poses annotations of static people estimated by the

Bayesian tracker are not accurate. We further fully verified

the proposed model on different combinations of observation

length and prediction length, with the results shown in Fig.

5. We can observe that the predictions are of poor accuracy

when the observation length is 1 as LSTM cannot give

reliable predictions with only the initial state input. For the

remaining combinations, the ADE error increases gradually

with increasing prediction length and decreases gradually

with more observations.

V. CONCLUSION

In this paper, we presented a novel neural network model

Pose-LSTM for predicting the 3DOF pose trajectories rather

than 2D positions of humans. Compared to 2D models,

e.g. Social-SLTM, our Pose-LSTM is able to predict more

information, i.e. both position and orientation. Predicting

higher dimensional data is a more challenging task for data-

driven methods, while our approach utilized the correlation

between different sources of input and is able to predict

more information without losing accuracy. For a longer-

term prediction, our proposed T-Pose-LSTM learned from

long-term robot deployment data incorporates the short-term

observation and long-term spatio-temporal context, which

makes longer-term prediction more accurate.

For future work, we will extend our novel 3D LiDAR tra-

jectory dataset (L-CAS dataset) to a period of several weeks

across several buildings. Furthermore, we will investigate the

possibility of training our Pose-LSTM in life-long mode for

open-ended learning in dynamic environments.
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